
Systems Programming

A3, A4

Luca Mayr / Christian Rieger

October 21, 2019

IAIK – Graz University of Technology



A3 - Virtual Memory

A4 - Interprocess Communication

1 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Course Overview www.tugraz.at

A0, A1, A2

Compiler, C, Multithreading, Synchronization

A3, A4

Virtual Memory, Processes and Sandboxing

A5, A6

System Programming

2 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



A3 - Virtual Memory



Segmentation fault www.tugraz.at

• Common scenario: User program accesses “invalid” memory

location

• The OS invokes a fault handler

• This fault handler can abort the user program or fix the

situation by “making” the address valid

• Efficient: Don’t assign memory until necessary

• Are pointers addresses in physical memory?

• How can addresses in physical memory be “invalid”?

3 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Segmentation fault www.tugraz.at

• Common scenario: User program accesses “invalid” memory

location

• The OS invokes a fault handler

• This fault handler can abort the user program or fix the

situation by “making” the address valid

• Efficient: Don’t assign memory until necessary

• Are pointers addresses in physical memory?

• How can addresses in physical memory be “invalid”?

3 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Segmentation fault www.tugraz.at

• Common scenario: User program accesses “invalid” memory

location

• The OS invokes a fault handler

• This fault handler can abort the user program or fix the

situation by “making” the address valid

• Efficient: Don’t assign memory until necessary

• Are pointers addresses in physical memory?

• How can addresses in physical memory be “invalid”?

3 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Virtual Memory www.tugraz.at

• Pointers are not addresses in physical memory

• Pointers are virtual addresses

• Addresses are translated from virtual addresses to real physical

addresses transparently

• Therefore, memory is split into parts called “pages”

• Operating system can “map” pages

• Operating system can maintain this mapping per process

→ different processes can use the same addresses, but “see”

different things there

4 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Virtual Memory www.tugraz.at

• Pointers are not addresses in physical memory

• Pointers are virtual addresses

• Addresses are translated from virtual addresses to real physical

addresses transparently

• Therefore, memory is split into parts called “pages”

• Operating system can “map” pages

• Operating system can maintain this mapping per process

→ different processes can use the same addresses, but “see”

different things there

4 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Virtual Memory www.tugraz.at

• Pointers are not addresses in physical memory

• Pointers are virtual addresses

• Addresses are translated from virtual addresses to real physical

addresses transparently

• Therefore, memory is split into parts called “pages”

• Operating system can “map” pages

• Operating system can maintain this mapping per process

→ different processes can use the same addresses, but “see”

different things there

4 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Virtual Memory www.tugraz.at

• Pointers are not addresses in physical memory

• Pointers are virtual addresses

• Addresses are translated from virtual addresses to real physical

addresses transparently

• Therefore, memory is split into parts called “pages”

• Operating system can “map” pages

• Operating system can maintain this mapping per process

→ different processes can use the same addresses, but “see”

different things there

4 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Virtual Memory www.tugraz.at

• Pointers are not addresses in physical memory

• Pointers are virtual addresses

• Addresses are translated from virtual addresses to real physical

addresses transparently

• Therefore, memory is split into parts called “pages”

• Operating system can “map” pages

• Operating system can maintain this mapping per process

→ different processes can use the same addresses, but “see”

different things there

4 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Virtual Memory www.tugraz.at

• Pointers are not addresses in physical memory

• Pointers are virtual addresses

• Addresses are translated from virtual addresses to real physical

addresses transparently

• Therefore, memory is split into parts called “pages”

• Operating system can “map” pages

• Operating system can maintain this mapping per process

→ different processes can use the same addresses, but “see”

different things there

4 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Virtual Memory www.tugraz.at

• Pointers are not addresses in physical memory

• Pointers are virtual addresses

• Addresses are translated from virtual addresses to real physical

addresses transparently

• Therefore, memory is split into parts called “pages”

• Operating system can “map” pages

• Operating system can maintain this mapping per process

→ different processes can use the same addresses, but “see”

different things there

4 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



A3 - Memory Layout and Demand Paging www.tugraz.at

• Experiment with different kinds of variables, which addresses do

they get?

• Observe memory usage in practice, when does it really increase?

• Answer questions from the test system questionnaire!

• Register + participate in one of the virtual memory

discussions!

5 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



A4 - Interprocess Communication



Interprocess Communication www.tugraz.at

• A4 is 25% of all possible points in SLP

• You have to implement some Interprocess Communication Example

• We provide you with a basic framework

• Just change the functions which are marked with TODO

• You need to have a certain understanding of fork, exec and shared memory

• Use the man pages to get this information, or just use google

• Take a look at Assignment A2 you will need to use semaphores again :-)

6 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Interprocess Communication www.tugraz.at

• A4 is 25% of all possible points in SLP

• You have to implement some Interprocess Communication Example

• We provide you with a basic framework

• Just change the functions which are marked with TODO

• You need to have a certain understanding of fork, exec and shared memory

• Use the man pages to get this information, or just use google

• Take a look at Assignment A2 you will need to use semaphores again :-)

6 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Interprocess Communication www.tugraz.at

• A4 is 25% of all possible points in SLP

• You have to implement some Interprocess Communication Example

• We provide you with a basic framework

• Just change the functions which are marked with TODO

• You need to have a certain understanding of fork, exec and shared memory

• Use the man pages to get this information, or just use google

• Take a look at Assignment A2 you will need to use semaphores again :-)

6 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Interprocess Communication www.tugraz.at

• A4 is 25% of all possible points in SLP

• You have to implement some Interprocess Communication Example

• We provide you with a basic framework

• Just change the functions which are marked with TODO

• You need to have a certain understanding of fork, exec and shared memory

• Use the man pages to get this information, or just use google

• Take a look at Assignment A2 you will need to use semaphores again :-)

6 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Interprocess Communication www.tugraz.at

• A4 is 25% of all possible points in SLP

• You have to implement some Interprocess Communication Example

• We provide you with a basic framework

• Just change the functions which are marked with TODO

• You need to have a certain understanding of fork, exec and shared memory

• Use the man pages to get this information, or just use google

• Take a look at Assignment A2 you will need to use semaphores again :-)

6 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Interprocess Communication www.tugraz.at

• A4 is 25% of all possible points in SLP

• You have to implement some Interprocess Communication Example

• We provide you with a basic framework

• Just change the functions which are marked with TODO

• You need to have a certain understanding of fork, exec and shared memory

• Use the man pages to get this information, or just use google

• Take a look at Assignment A2 you will need to use semaphores again :-)

6 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Interprocess Communication www.tugraz.at

• A4 is 25% of all possible points in SLP

• You have to implement some Interprocess Communication Example

• We provide you with a basic framework

• Just change the functions which are marked with TODO

• You need to have a certain understanding of fork, exec and shared memory

• Use the man pages to get this information, or just use google

• Take a look at Assignment A2 you will need to use semaphores again :-)

6 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Interprocess Communication www.tugraz.at

7 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Interprocess Communication www.tugraz.at

8 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



A4 - Shell www.tugraz.at

• e.g. using a shell on Linux

• the shell is a process itself

• executing a program with ./program

• → the program starts

9 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



A4 - Shell www.tugraz.at

• e.g. using a shell on Linux

• the shell is a process itself

• executing a program with ./program

• → the program starts

9 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



A4 - Shell www.tugraz.at

• e.g. using a shell on Linux

• the shell is a process itself

• executing a program with ./program

• → the program starts

9 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



A4 - Shell www.tugraz.at

• e.g. using a shell on Linux

• the shell is a process itself

• executing a program with ./program

• → the program starts

9 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Fork and Exec www.tugraz.at

Code
$ ls ~/

10 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Fork and Exec www.tugraz.at

Code
// shell stuff

Image

11 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Fork and Exec www.tugraz.at

Code
// shell stuff

pid_t pid = fork();

Image

12 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Fork and Exec www.tugraz.at

Code
// shell stuff

pid_t pid = fork();

if(pid == 0)

Image

13 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Fork and Exec www.tugraz.at

Code
// shell stuff

pid_t pid = fork();

if(pid == 0)

{

const char* args[] = {"~/"};

}

else

{

//do further shell stuff

}

Image

14 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Fork and Exec www.tugraz.at

Code
// shell stuff

pid_t pid = fork();

if(pid == 0)

{

const char* args[] = {"~/"};

execv("/bin/ls", args);

}

else

{

//do further shell stuff

}

Image

15 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Fork and Exec www.tugraz.at

Code
// shell stuff

pid_t pid = fork();

if(pid == 0)

{

const char* args[] = {"~/"};

execv("/bin/ls", args);

}

else

{

//do further shell stuff

}

Image

16 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Fork and Exec www.tugraz.at

Image

17 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Fork and Exec summary www.tugraz.at

1. the shell gets forked respectively ”cloned”

2. two identical processes exist simultanely independently

3. the forked process will be emptied

4. your program will be filled into the empty process

5. execution of your main starts

18 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Fork and Exec summary www.tugraz.at

1. the shell gets forked respectively ”cloned”

2. two identical processes exist simultanely independently

3. the forked process will be emptied

4. your program will be filled into the empty process

5. execution of your main starts

18 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Fork and Exec summary www.tugraz.at

1. the shell gets forked respectively ”cloned”

2. two identical processes exist simultanely independently

3. the forked process will be emptied

4. your program will be filled into the empty process

5. execution of your main starts

18 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Fork and Exec summary www.tugraz.at

1. the shell gets forked respectively ”cloned”

2. two identical processes exist simultanely independently

3. the forked process will be emptied

4. your program will be filled into the empty process

5. execution of your main starts

18 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Fork and Exec summary www.tugraz.at

1. the shell gets forked respectively ”cloned”

2. two identical processes exist simultanely independently

3. the forked process will be emptied

4. your program will be filled into the empty process

5. execution of your main starts

18 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Fork and Exec summary www.tugraz.at

1. the shell gets forked respectively ”cloned”

2. two identical processes exist simultanely independently

3. the forked process will be emptied

4. your program will be filled into the empty process

5. execution of your main starts

18 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Process Creation www.tugraz.at

• fork followed by an exec

• Worse than just creating a process

• No, because of COW:

• Forked process shares memory with the old process

• Memory is copied upon write access

→ Almost nothing copied if followed by an exec!

19 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Process Creation www.tugraz.at

• fork followed by an exec

• Worse than just creating a process

• No, because of COW:

• Forked process shares memory with the old process

• Memory is copied upon write access

→ Almost nothing copied if followed by an exec!

19 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Shared Memory www.tugraz.at

Code
/* something in the main or whatever

*/

Image

20 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Shared Memory www.tugraz.at

Code
/* found in (/dev/shm/obj) */

int fd = shm_open("obj",O_RDWR ,0644)

;

Image

21 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Shared Memory www.tugraz.at

22 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Shared Memory www.tugraz.at

23 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Shared Memory www.tugraz.at

Code
/* found in (/dev/shm/obj) */

int fd = shm_open("obj",O_RDWR ,0644)

;

/* enlarge the shared memory object

*/

ftruncate(fd, 1000);

Image

24 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Shared Memory www.tugraz.at

Code
/* found in (/dev/shm/obj) */

int fd = shm_open("obj",O_RDWR ,0644)

;

/* enlarge the shared memory object

*/

ftruncate(fd, 1000);

/* now map the shared object */

char* ptr = (char*) mmap(NULL , 1000,

PROT_READ | PROT_WRITE , MAP_SHARED

, fd, 0);

Image

25 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Shared Memory www.tugraz.at

Code
/* found in (/dev/shm/obj) */

int fd = shm_open("obj",O_RDWR ,0644)

;

/* enlarge the shared memory object

*/

ftruncate(fd, 1000);

/* now map the shared object */

char* ptr = (char*) mmap(NULL , 1000,

PROT_READ | PROT_WRITE , MAP_SHARED

, fd, 0);

pid_t pid = fork();

Image

26 Luca Mayr / Christian Rieger — IAIK – Graz University of Technology



Thanks for your attention!


	A3 - Virtual Memory
	A4 - Interprocess Communication

