Systems Programming
A3, A4

Luca Mayr / Christian Rieger
October 21, 2019

IAIK — Graz University of Technology

A3 - Virtual Memory

A4 - Interprocess Communication

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Course Overview

A5, A6
System Programming

A3, A4
Virtual Memory, Processes and Sandboxing

A0, Al, A2
Compiler, C, Multithreading, Synchronization

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

A3 - Virtual Memory

Segmentation fault www.tugraz.at

e Common scenario: User program accesses ‘“invalid” memory
location

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Segmentation fault www.tugraz.at

Common scenario: User program accesses “invalid” memory

location

The OS invokes a fault handler

This fault handler can abort the user program or fix the
situation by “making” the address valid

Efficient: Don't assign memory until necessary

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Segmentation fault www.tugraz.at

e Common scenario: User program accesses ‘“invalid” memory
location

e The OS invokes a fault handler

e This fault handler can abort the user program or fix the
situation by “making” the address valid

e Efficient: Don't assign memory until necessary

e Are pointers addresses in physical memory?

e How can addresses in physical memory be “invalid"?

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Virtual Memory www.tugraz.at

e Pointers are not addresses in physical memory

n Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Virtual Memory www.tugraz.at

e Pointers are not addresses in physical memory

e Pointers are virtual addresses

n Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Virtual Memo y www.tugraz.at

e Pointers are not addresses in physical memory
e Pointers are virtual addresses

e Addresses are translated from virtual addresses to real physical

addresses transparently

n Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Virtual Memo y www.tugraz.at

Pointers are not addresses in physical memory

Pointers are virtual addresses

Addresses are translated from virtual addresses to real physical

addresses transparently

Therefore, memory is split into parts called “pages”

n Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Virtual Memory www.tugraz.at

e Pointers are not addresses in physical memory

e Pointers are virtual addresses

e Addresses are translated from virtual addresses to real physical
addresses transparently

e Therefore, memory is split into parts called “pages”

e Operating system can “map” pages

n Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Virtual Memory www.tugraz.at

e Pointers are not addresses in physical memory
e Pointers are virtual addresses

e Addresses are translated from virtual addresses to real physical

addresses transparently

e Therefore, memory is split into parts called “pages”

e Operating system can “map” pages

e Operating system can maintain this mapping per process

n Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Virtual Memory www.tugraz.at

e Pointers are not addresses in physical memory
e Pointers are virtual addresses

e Addresses are translated from virtual addresses to real physical

addresses transparently

e Therefore, memory is split into parts called “pages”

e Operating system can “map” pages
e Operating system can maintain this mapping per process

— different processes can use the same addresses, but “see”
different things there

n Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

A3 - Memory Layout and Demand Paging s

Experiment with different kinds of variables, which addresses do
. they get?

Observe memory usage in practice, when does it really increase?

Answer questions from the test system questionnaire!

Register + participate in one of the virtual memory
discussions!

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

A4 - Interprocess Communication

Interprocess Communication S A P

e A4 is 25% of all possible points in SLP

n Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Interprocess Communication S A P

e A4 is 25% of all possible points in SLP

e You have to implement some Interprocess Communication Example

n Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Interprocess Communication S A P

e A4 is 25% of all possible points in SLP
e You have to implement some Interprocess Communication Example

e We provide you with a basic framework

n Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Interprocess Communication S A P

A4 is 25% of all possible points in SLP

e You have to implement some Interprocess Communication Example

We provide you with a basic framework

Just change the functions which are marked with TODO

n Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Interprocess Communication S A P

A4 is 25% of all possible points in SLP

e You have to implement some Interprocess Communication Example

We provide you with a basic framework

Just change the functions which are marked with TODO

You need to have a certain understanding of fork, exec and shared memory

n Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Interprocess Communication S A P

A4 is 25% of all possible points in SLP

e You have to implement some Interprocess Communication Example

We provide you with a basic framework

Just change the functions which are marked with TODO

You need to have a certain understanding of fork, exec and shared memory

Use the man pages to get this information, or just use google

n Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Interprocess Communication S A P

e A4 is 25% of all possible points in SLP

e You have to implement some Interprocess Communication Example

e We provide you with a basic framework

e Just change the functions which are marked with TODO

e You need to have a certain understanding of fork, exec and shared memory
e Use the man pages to get this information, or just use google

e Take a look at Assignment A2 you will need to use semaphores again :-)

n Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Interprocess Communication S A P

INTER PROCESS
COMMUNICATION

IGNORE
~’

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Interprocess Communication S A P

VALL GOT ANYMORE OF THOSE

-

i

LU-ANTRITTE

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

A4 - Shell www.tugraz.at

e e.g. using a shell on Linux

n Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

A4 - Shell www.tugraz.at

e e.g. using a shell on Linux

e the shell is a process itself

n Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

A4 - Shell www.tugraz.at

e e.g. using a shell on Linux
e the shell is a process itself

e executing a program with ./program

n Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

A4 - Shell www.tugraz.at

e e.g. using a shell on Linux
e the shell is a process itself

e executing a program with ./program

e — the program starts

n Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Fork and Exec www.tugraz.at

Code
$ 1s ~/

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Fork and Exec www.tugraz.at

Code Image
//shell stuff N J,

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Fork and Exec www.tugraz.at

Code Image
//shell stuff
P1 ¢
pid_t pid = fork(); shell

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Fork and Exec www.tugraz.at

Code Image
//shell stuff
P1 ¢
pid_t pid = fork(); shell
i i duplicating duplicated
= (p dal o O) fork shell
P2

P1

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Fork and Exec

www.tugraz.at

Code

//shell stuff

pid_t pid = fork();

if (pid == 0)
{
const charx* args/[]
}
else
{

//do further shell

shell

fork

duplicating

= {7/

P1

stuff

P2

duplicated
shell

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Fork and Exec www.tugraz.at

Code Image
//shell stuff
P1 ¢
pid_t pid = fork(); shell :
i £ (pld 0) duplicating dul;tC:"ted
1 == fork
¢ =
const char* args([] = {""/"};
execv("/bin/1ls", args);
}
else P1
{
//do further shell stuff
}

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Fork and Exec www.tugraz.at

Code Image
//shell stuff
P1 ¢
pid_t pid = fork(); shell
. 3 duplicating duplicated
if (pid == 0) ok shell
¢ .
const char* args([] = {""/"};
" q " . replacing
execv(/bll’l/lS 5 args) g program
}
else P1
our program
{ y
//do further shell stuff
}
A\

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Fork and Exec

www.tugraz.at

Image
P1 i
shell
duplicating duplicated
shell
fork
2
replacing
program
P1
your program
P2 l
A\

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Fork and Exec summary www.tugraz.at

1. the shell gets forked respectively " cloned”

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Fork and Exec summary www.tugraz.at

1. the shell gets forked respectively " cloned”

2. two identical processes exist simultanely independently

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Fork and Exec summary www.tugraz.at

1. the shell gets forked respectively " cloned”
2. two identical processes exist simultanely independently

3. the forked process will be emptied

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Fork and Exec summary www.tugraz.at

the shell gets forked respectively " cloned”
two identical processes exist simultanely independently

the forked process will be emptied

> W o=

your program will be filled into the empty process

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Fork and Exec summary www.tugraz.at

the shell gets forked respectively " cloned”
two identical processes exist simultanely independently

the forked process will be emptied

> W o=

your program will be filled into the empty process

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Fork and Exec summary www.tugraz.at

the shell gets forked respectively " cloned”
two identical processes exist simultanely independently
the forked process will be emptied

your program will be filled into the empty process

AN

execution of your main starts

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Process Creation www.tugraz.at

e fork followed by an exec

e Worse than just creating a process

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Process Creation www.tugraz.at

e fork followed by an exec

e Worse than just creating a process
e No, because of COW:
e Forked process shares memory with the old process
e Memory is copied upon write access
— Almost nothing copied if followed by an exec!

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Shared Memory www.tugraz.at

Code Image

/% something in the main or whatever
*/ File system

Program 1

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Shared Memory www.tugraz.at

Code Image
/* found in (/dev/shm/obj) */
int fd = shm_open("obj",0_RDWR ,60644) File system
Program 1

shared memory

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Shared Memory www.tugraz.at

- THISY/DEV/SHM]| FIlE

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Shared Memory www.tugraz.at

YIDON'T WE M

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Shared Memory www.tugraz.at

Code Image
/* found in (/dev/shm/obj) */
int fd = shm_open("obj",0_RDWR,60644) File system
/* enlarge the shared memory object Program 1
*/ shared memory
ftruncate (fd, 1000) ;

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

www.tugraz.at

Shared Memory

Code Image
/% found in (/dev/shm/obj) */
int fd = shm_open("obj",0_RDWR,b0644) File system
/% enlarge the shared memory object HregEn &
*/ shared memory
ftruncate (£fd, 1000) ; .

/% mow map the shared object */

char* ptr = (char*) mmap (NULL, 1000,
PROT_READ | PROT_WRITE, MAP_SHARED
, fd, 0);

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

www.tugraz.at

Shared Memory

Code Image
/% found in (/dev/shm/obj) */
int fd = shm_open("obj",0_RDWR,60644) File system
/* enlarge the shared memory object Program 1 Program 2
*/ shared memory
ftruncate (fd, 1000) ; a ==

/* mow map the shared object */
char* ptr = (char*) mmap (NULL, 1000,
PROT_READ | PROT_WRITE, MAP_SHARED
, fd, 0);
pid_t pid = fork();

Luca Mayr / Christian Rieger — IAIK — Graz University of Technology

Thanks for your attention!

	A3 - Virtual Memory
	A4 - Interprocess Communication

