
1

Operating Systems 2020

Operating Systems 2020
Scheduling

October 30, 2020

October 30, 2020



2

Operating Systems 2020

Scheduling

There are multiple things to do - how do we chose,
which one is done first?

We have

some threads that are running
some threads that are ready to run
some threads that are blocked

More runnable threads than processors - we need to
do choose

October 30, 2020



3

Operating Systems 2020

Scheduling

Which one is first?

Easy - just do it in the order they arrived. Seems fair.

October 30, 2020



4

Operating Systems 2020

Scheduling

Is it important, how we do scheduling?

Processors are soooo faaast anyhow....

Actually it is. Processors can become overloaded

Maybe not on your notebook .... but on Servers

October 30, 2020



5

Operating Systems 2020

Scheduling

Does not solve all problems:

if there are not enough resources, best
scheduling wont help

Scheduling policy important! Influences

Response Time: User perceived time to do
some task
Fairness: Equality in number and timeliness of
resources given to a task
Throughput: Rate at which tasks are completed

October 30, 2020



6

Operating Systems 2020

Scheduling

No “right” answer

always trade-off

We will look at some of them and discuss selecting a
policy

October 30, 2020



7

Operating Systems 2020

Example Scenario

Running a web site for a company

publicity hits

suddenly you have twice as many users as the day
before

your site may appear terribly slow....

October 30, 2020



8

Operating Systems 2020

Example Scenario

Response time

Google, Amazon etc. estimate they lose 5%-10% of
their customers if their response time increases by
100 milliseconds

(From Operating Systems, Principles & Practice,
Anderson T. and Dahlin M., Recursive Books)

October 30, 2020



9

Operating Systems 2020

Example Scenario

scheduler may not be the main bottleneck

good scheduling certainly important

should you turn away users to improve performance?

if you add a new server, how much better will
performance get?

October 30, 2020



10

Operating Systems 2020

Goals

Users want

Tasks to be done quickly (low response time)
Task to be completed predictably: Low variance
in response time
Tasks to be dealt with fairly

Overall goals

High Throughput
Low Scheduling Overhead: The time to switch
from one task to another
Avoid Starvation: Lack of progress for one task,
due to resources given to a higher priority task

October 30, 2020



11

Operating Systems 2020

Scheduling algorithm

takes a workload as input

Definition
Set of tasks for some system to perform along with when
each task arrives and how long each task takes to
complete.

decides which tasks to do first

Performance metric (throughput, latency) as output

October 30, 2020



12

Operating Systems 2020

Road map

Uniprocessor Scheduling

Multiprocessor Scheduling

October 30, 2020



13

Operating Systems 2020

Uniprocessor Scheduling

One processor only

three simple policies

first-in first-out
shortest-job-first
round-robin

Look at strengths and weaknesses

combine into a practical scheduler

October 30, 2020



14

Operating Systems 2020

Workloads and Task Types

Scheduling algorithms should work well across a
variety of environments

workloads varies from system to system and user to
user

Tasks can be

compute-bound: only use the processor
I/O-bound: most of the time wait for I/O-bound
mixed

October 30, 2020



15

Operating Systems 2020

More terms

Only preemptive, work-conserving schedulers to be
considered

Only work-conserving policies: never leave the
processor idle when there is work to do.

Scheduler can preempt the processor and give it to
some other task

October 30, 2020



16

Operating Systems 2020

First-In-First-Out

Simplest algorithm

also called FCFS - first-come-first-served

FIFO

Schedule tasks in the order they arrive

Continue running them until they complete or give up
the processor

October 30, 2020



17

Operating Systems 2020

FIFO

Pros

Minimizes overhead - switch only when task complete

best throughput when fixed number of cpu-bound
tasks

fair: every tasks waits its turn

October 30, 2020



18

Operating Systems 2020

FIFO

Cons

Task with little work is behind tasks that takes a long
time: has to wait

makes system inefficient

October 30, 2020



19

Operating Systems 2020

FIFO

October 30, 2020



20

Operating Systems 2020

FIFO

simple, but maybe useful:

Web-services store data in database

cache in front of database: memcached (e.g
Facebook)

look up data in cache before accessing database

requests are for small amount of data - memcached
replies to requests in FIFO order

FIFO is simple, minimizes average response time,
maximizes throughput

October 30, 2020



21

Operating Systems 2020

SJF - Shortest Job First

Optimal policy for minimizing average response time?

Yes: Schedule the shortest job first (SJF)

If we know the time each task needs, we can select
the task with the least work to do

October 30, 2020



22

Operating Systems 2020

SJF

October 30, 2020



23

Operating Systems 2020

SJF

Downsides:

impossible to implement
worst in variance in response time

long tasks are done as slowly as possible

starvation and frequent context switches
enough short tasks arrive - long tasks may never
complete
shorter task arrives: switch to it!

October 30, 2020



24

Operating Systems 2020

Example - Supermarket

No more Express-Kassen!

If anyone has only a few items - go to the front!

current customer interrupted
immediate service

full basket - you have to wait...

October 30, 2020



25

Operating Systems 2020

Round Robin

fighting starvation: schedule tasks in a round robin
fashion

Compromise between FIFO and SJF

Each task gets resource for a fixed period of time
(time quantum)

If task doesn’t complete, it goes back in line

October 30, 2020



26

Operating Systems 2020

Round Robin

Need to pick a time quantum

What if time quantum is too long?
Infinite?

What if time quantum is too short?
One instruction?

October 30, 2020



27

Operating Systems 2020

Round Robin

October 30, 2020



28

Operating Systems 2020

Round-Robin - equal length tasks

October 30, 2020



29

Operating Systems 2020

RR - I/O and compute tasks

October 30, 2020



30

Operating Systems 2020

Multi-Level Feedback

Goals:

Responsiveness
Low overhead
Starvation freedom
Support priorities
Fairness (among equal priority tasks)

Not perfect at any of them!

Used in Linux (and probably Windows, MacOS)

October 30, 2020



31

Operating Systems 2020

MFQ

Set of Round Robin queues

Each queue has a separate priority

High priority queues have short time slices

Low priority queues have long time slices

Scheduler picks first thread in highest priority queue

Tasks start in highest priority queue

If time slice expires, task drops one level

October 30, 2020



32

Operating Systems 2020

MFQ

October 30, 2020



33

Operating Systems 2020

Uniprocessor Summary

FIFO is simple and minimizes overhead.

If tasks are variable in size, then FIFO can have very
poor average response time.

If tasks are equal in size, FIFO is optimal in terms of
average response time.

Considering only the processor, SJF is optimal in
terms of average response time.

SJF is pessimal in terms of variance in response time.

October 30, 2020



34

Operating Systems 2020

Uniprocessor Summary (2)

If tasks are variable in size, Round Robin
approximates SJF.

If tasks are equal in size, Round Robin will have very
poor average response time.

Tasks that intermix processor and I/O benefit from
SJF and can do poorly under Round Robin.

By manipulating the assignment of tasks to priority
queues, an MFQ scheduler can achieve a balance
between responsiveness, low overhead, and fairness.

October 30, 2020



35

Operating Systems 2020

Multi-Processor Scheduling

Today: Most computers multi-processors

questions:

How do we make effective use of multiple cores
for running sequential tasks?
How do we adapt scheduling algorithms for
parallel applications?

October 30, 2020



36

Operating Systems 2020

Multi-Processor Architectures

October 30, 2020



37

Operating Systems 2020

Multiprocessor Scheduling

Take into account system state and policies

balance load across cores

aggregate threads on a few cores and put remaining
cores to sleep

if core becomes available - migrate the thread to new
core

October 30, 2020



38

Operating Systems 2020

Multi-Processor Scheduling

Uniprocessor scheduling: MFQ
What would happen if we used centralized MFQ on a
multiprocessor?

Needs centralized MFQ lock - Contention,
bottleneck
Cache access slowdown due to ready list data
structure pinging from one CPU to another
(cache coherence overhead)
Limited cache reuse: thread’s data from last time
it ran is often still in its old cache (on a different
processor maybe)

October 30, 2020



39

Operating Systems 2020

Per-Processor Affinity Scheduling

Each processor has its own ready list

Protected by a per-processor spinlock

Put threads back on the ready list where it had most
recently run

Ex: when I/O completes, or on Condition->signal
maximizes cache reuse

Idle processors can steal work from other processors

per-processor data structures must still be locked

October 30, 2020



40

Operating Systems 2020

Per-Processor Multi-level Feedback

October 30, 2020



41

Operating Systems 2020

Scheduling Parallel Programs

Scheduling parallel application poses different
challenges

often natural decomposition of a parallel app onto a
set of processors

Example: image processing

divide image into chunks
assign one to each processor

October 30, 2020



42

Operating Systems 2020

Scheduling Parallel Programs (2)

Issues

no relationship between number of threads
running and number of processors available

other processes or OS also need resources

Use scheduling algorithm as discussed (oblivious
scheduling)

multi-level feedback ensures all get fair share
OS schedules threads as independent entities
scheduler operates without knowledge of the
intent of the application

October 30, 2020



43

Operating Systems 2020

Oblivious Scheduling

October 30, 2020



44

Operating Systems 2020

Bulk Synchronous Delay

Computation limited by slowest processor involved

October 30, 2020



45

Operating Systems 2020

Bulk Synchronous Delay

Loop at each processor:

Compute on local data (in parallel)
Barrier
Send (selected) data to other processors (in
parallel)
Barrier

Examples:

MapReduce
Fluid flow over a wing
Most parallel algorithms can be recast in BSP

Sacrificing a small constant factor in performance

October 30, 2020



46

Operating Systems 2020

Producer-Consumer-Delay

preempting one thread stalls all others following in the
chain

October 30, 2020



47

Operating Systems 2020

Other issues I

Critical Path Delay

Preempting a thread on a critical path will slow
down end result

Preemption of lock holder

October 30, 2020



48

Operating Systems 2020

Other issues II

spin-then-wait strategy: short spin-waits, if lock
unavailable block and look for other work to do

reduces overhead when lock is held for short period of
time
problem when lock holder is preempted

I/O

October 30, 2020



49

Operating Systems 2020

Gang Scheduling

Application picks decomposition of work into some
number of threads

threads run either together or not at all

October 30, 2020



50

Operating Systems 2020

Gang Scheduling

Linux, Windows, MacOS: mechanisms for dedicating
a set of processors to an application

good on server with single primary use (e.g.
database)

application can pin threads to specific processor

system reserves subset of processors to other
applications

October 30, 2020



51

Operating Systems 2020

Gang Scheduling I

Effect of adding processors to an application depends
on application

some make efficient use of many processors
some have diminishing return

October 30, 2020



52

Operating Systems 2020

Space Sharing

Usually more efficient to run two parallel programs
with half the number of processors than assigning all
processors to one program

different processors to different tasks: space sharing

single processor to multiple tasks: time sharing, time
slicing

minimizes processor context switches

October 30, 2020



53

Operating Systems 2020

Space Sharing

October 30, 2020



54

Operating Systems 2020

Scheduler Activations

Application can be informed by an “upcall” from the
OS when a processor is added/taken away or a
thread blocks

Application can implement its own scheduling
mechanism

Open question: how many processors should we
assign?

October 30, 2020



55

Operating Systems 2020

Overload Management I

Most systems: no direct control on workload.

Whatever scheduling policy: if there is more load than
the system can handle: response time will drop

Key idea: do less work when overloaded

question: can we choose what to disable or do
we let events choose?

Obvious solution:

reject requests

October 30, 2020



56

Operating Systems 2020

Overload Management II

allows to preserve reasonable repsonse time for
remaining ones
harsh but pragmatic

Video Streaming

Reject to start new streams to be able to continue
providing good streaming service to users that
already have started

Alternative: reduce service time per request

October 30, 2020



57

Operating Systems 2020

Overload Management III

Replace dynamic web page creation by static
content
reduce bit rate for movies
Amazon has designed its web page to always
return a result quickly

better to give a wrong answer quickly and later
apologize than let user wait

October 30, 2020


