Operating Systems 2020

Ty,

Operating Systems 2020
Scheduling

October 30, 2020

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

Scheduling

= There are multiple things to do - how do we chose,
which one is done first?

= \We have

= some threads that are running
= some threads that are ready to run
» some threads that are blocked

= More runnable threads than processors - we need to
do choose

October 30, 2020

Operating Systems 2020 ﬁ-l;g.

Scheduling

= Which one is first?
= Easy - just do it in the order they arrived. Seems fair.

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

Scheduling

Is it important, how we do scheduling?

Processors are soooo faaast anyhow....

Actually it is. Processors can become overloaded

Maybe not on your notebook but on Servers

October 30, 2020

Operating Systems 2020 ﬁ-g,g.

Scheduling

= Does not solve all problems:

= if there are not enough resources, best
scheduling wont help

= Scheduling policy important! Influences

= Response Time: User perceived time to do
some task

= Fairness: Equality in number and timeliness of
resources given to a task

= Throughput: Rate at which tasks are completed

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

ﬂ Scheduling

= No “right” answer
= always trade-off

= We will look at some of them and discuss selecting a
policy

October 30, 2020

Operating Systems 2020

Example Scenario

= Running a web site for a company
= publicity hits

= suddenly you have twice as many users as the day
before

= your site may appear terribly slow....

October 30, 2020

Operating Systems 2020 ﬁ-l;la!.

ﬂ Example Scenario

Google, Amazon etc. estimate they lose 5%-10% of
their customers if their response time increases by
100 milliseconds

(From Operating Systems, Principles & Practice,
Anderson T. and Dahlin M., Recursive Books)

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

ﬂ Example Scenario

= scheduler may not be the main bottleneck
= good scheduling certainly important
= should you turn away users to improve performance?

= if you add a new server, how much better will
performance get?

October 30, 2020

Operating Systems 2020 ﬁ-g,g.

Goals

= Users want

= Tasks to be done quickly (low response time)

= Task to be completed predictably: Low variance
in response time

» Tasks to be dealt with fairly

= QOverall goals

» High Throughput

= Low Scheduling Overhead: The time to switch
from one task to another

= Avoid Starvation: Lack of progress for one task,
due to resources given to a higher priority task

October 30, 2020

Operating Systems 2020 ﬁ-l;la!.

Scheduling algorithm

= takes a workload as input
Definition
Set of tasks for some system to perform along with when

each task arrives and how long each task takes to
complete.

= decides which tasks to do first
= Performance metric (throughput, latency) as output

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

Road map

= Uniprocessor Scheduling
= Multiprocessor Scheduling

October 30, 2020

Operating Systems 2020

Uniprocessor Scheduling

= One processor only
= three simple policies

= first-in first-out
= shortest-job-first
= round-robin

= Look at strengths and weaknesses
= combine into a practical scheduler

October 30, 2020

Operating Systems 2020 ﬁ-g,g.

Workloads and Task Types

= Scheduling algorithms should work well across a
variety of environments

= workloads varies from system to system and user to
user

= Tasks can be

= compute-bound: only use the processor
= |/O-bound: most of the time wait for I/O-bound
= mixed

October 30, 2020

Operating Systems 2020 ﬁ-g,g.

More terms

= Only preemptive, work-conserving schedulers to be
considered

= Only work-conserving policies: never leave the
processor idle when there is work to do.

= Scheduler can preempt the processor and give it to
some other task

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

First-In-First-Out

= Simplest algorithm
= also called FCFS - first-come-first-served

= Schedule tasks in the order they arrive

= Continue running them until they complete or give up
the processor

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

FIFO
Pros

= Minimizes overhead - switch only when task complete

= best throughput when fixed number of cpu-bound
tasks

= fair: every tasks waits its turn

October 30, 2020

Operating Systems 2020 ﬁg;!.

FIFO
Cons

= Task with little work is behind tasks that takes a long
time: has to wait

= makes system inefficient

October 30, 2020

Operating Systems 2020 ﬁ-g,g.

FIFO

Tasks FIFO
| |
@ []
€]]
@]

(8) I:‘

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

FIFO

= simple, but maybe useful:
= \WWeb-services store data in database

cache in front of database: memcached (e.g
Facebook)

look up data in cache before accessing database

requests are for small amount of data - memcached
replies to requests in FIFO order

FIFO is simple, minimizes average response time,
maximizes throughput

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

SJF - Shortest Job First

= Optimal policy for minimizing average response time?
= Yes: Schedule the shortest job first (SJF)

= |f we know the time each task needs, we can select
the task with the least work to do

October 30, 2020

Operating Systems 2020 ﬁ-l;g.

SJF

Tasks SJF
4] [
o]
@ []
“ O
)]
Time

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

SJF

= Downsides:

= impossible to implement
= worst in variance in response time
= long tasks are done as slowly as possible
= starvation and frequent context switches

= enough short tasks arrive - long tasks may never
complete
= shorter task arrives: switch to it!

October 30, 2020

Operating Systems 2020

Example - Supermarket

= No more Express-Kassen!
= [f anyone has only a few items - go to the front!

= current customer interrupted
= immediate service

= full basket - you have to wait...

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

Round Robin

= fighting starvation: schedule tasks in a round robin
fashion

= Compromise between FIFO and SJF

= Each task gets resource for a fixed period of time
(time quantum)

= |f task doesn’t complete, it goes back in line

October 30, 2020

Operating Systems 2020

Round Robin

= Need to pick a time quantum

= What if time quantum is too long?
= Infinite?
= What if time quantum is too short?

= One instruction?

October 30, 2020

Operating Systems 2020 ﬁ-l;la!.

Round Robin

Tasks Round Robin (1 ms time slice)

n[] [Rest of Task 1
@ [

® O

@]

®)]

Tasks Round Robin (100 ms time slice)

o | | | Rest of Task 1 |
@ [l

@]

@ [

®) O

Time

October 30, 2020

Operating Systems 2020

Round-Robin - equal length tasks

Tasks Round Robin (1 ms time slice)

o] O L] U] L]

5 []] L] [] L]
Tasks FIFO and SJF

o]

@ L]

@ L]

@]

© L]

Time

October 30, 2020

Ty,

Operating Systems 2020

RR - 1/O and compute tasks

Tasks
1/0 Bound [] []
Issues 170 Issues 1/0
1/0 Completes 1/0 Completes
Request

Request

Time

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

Multi-Level Feedback

= Goals:

» Responsiveness

= Low overhead

= Starvation freedom

= Support priorities

= Fairness (among equal priority tasks)

= Not perfect at any of them!

= Used in Linux (and probably Windows, MacOS)

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

MFQ

= Set of Round Robin queues
= Each queue has a separate priority
= High priority queues have short time slices
= Low priority queues have long time slices

= Scheduler picks first thread in highest priority queue
= Tasks start in highest priority queue

= [f time slice expires, task drops one level

October 30, 2020

Operating Systems 2020 ﬁl-,la!.

MFQ

Priority Time Slice (ms) Round Robin Queues
] 10 - o N or 10
2 i T (;;,;Ierai:f:
3 . T (
. v [TIT .

October 30, 2020

Operating Systems 2020 ﬁ-g,g.

Uniprocessor Summary

» FIFO is simple and minimizes overhead.

= |f tasks are variable in size, then FIFO can have very
poor average response time.

= |f tasks are equal in size, FIFO is optimal in terms of
average response time.

= Considering only the processor, SJF is optimal in
terms of average response time.

= SJF is pessimal in terms of variance in response time.

October 30, 2020

Operating Systems 2020 ﬁ-g,g.

Uniprocessor Summary (2)

= |f tasks are variable in size, Round Robin
approximates SJF.

= |f tasks are equal in size, Round Robin will have very
poor average response time.

» Tasks that intermix processor and I/O benefit from
SJF and can do poorly under Round Robin.

= By manipulating the assignment of tasks to priority
queues, an MFQ scheduler can achieve a balance
between responsiveness, low overhead, and fairness.

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

Multi-Processor Scheduling

= Today: Most computers multi-processors
= questions:

» How do we make effective use of multiple cores
for running sequential tasks?

= How do we adapt scheduling algorithms for
parallel applications?

October 30, 2020

Operating Systems 2020

Multi-Processor Architectures

Processor Core Processor Core

Operating Systems 2020 ﬁ-g,g.

Multiprocessor Scheduling

Take into account system state and policies

= palance load across cores

= aggregate threads on a few cores and put remaining
cores to sleep

if core becomes available - migrate the thread to new
core

October 30, 2020

Operating Systems 2020 ﬁ-g,g.

Multi-Processor Scheduling

= Uniprocessor scheduling: MFQ

= What would happen if we used centralized MFQ on a
multiprocessor?

= Needs centralized MFQ lock - Contention,
bottleneck

= Cache access slowdown due to ready list data
structure pinging from one CPU to another
(cache coherence overhead)

= Limited cache reuse: thread’s data from last time
it ran is often still in its old cache (on a different
processor maybe)

October 30, 2020

Operating Systems 2020 ﬁ-g,g.

Per-Processor Affinity Scheduling

= Each processor has its own ready list
= Protected by a per-processor spinlock

= Put threads back on the ready list where it had most
recently run

= Ex: when I/O completes, or on Condition->signal
» maximizes cache reuse

= |dle processors can steal work from other processors
= per-processor data structures must still be locked

October 30, 2020

Operating Systems 2020 ﬁ-l;la!.

Per-Processor Multi-level Feedback

Processor 1 Processor 2 Processor 3
......... R P P
T (.. (.. (
.'

e— (.................................. (................................. (

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

Scheduling Parallel Programs

= Scheduling parallel application poses different
challenges

= often natural decomposition of a parallel app onto a
set of processors

= Example: image processing

= divide image into chunks
= assign one to each processor

October 30, 2020

Operating Systems 2020

Scheduling Parallel Programs (2)

= [ssues
= no relationship between number of threads
running and number of processors available
= other processes or OS also need resources

= Use scheduling algorithm as discussed (oblivious
scheduling)

= multi-level feedback ensures all get fair share
= OS schedules threads as independent entities

= scheduler operates without knowledge of the
intent of the application

October 30, 2020

Operating Systems 2020

Oblivious Scheduling

Processor 1

pl4
o
@ p2.3
gl S
p3.1

5

October 30, 2020

Processor 2

p2.1

o
5
o

px.y = Thread y in process x

p3.4

p2.4

Processor 3

o
S
5

pl.2

pl.3

p2.2

Operating Systems 2020 ﬁ-g,g.

Bulk Synchronous Delay

Processor 1 Processor2 Processor 3 Processor 4

Local Computation

Communication

o

Local Computation

Time

Computation limited by slowest processor involved

October 30, 2020

Operating Systems 2020

Bulk Synchronous Delay

= Loop at each processor:

= Compute on local data (in parallel)

= Barrier

= Send (selected) data to other processors (in
parallel)

= Barrier

= Examples:

= MapReduce

= Fluid flow over a wing

= Most parallel algorithms can be recast in BSP
= Sacrificing a small constant factor in performance

October 30, 2020

Operating Systems 2020 ﬁ-l;g.

Producer-Consumer-Delay

Processor 1 Processor 2 Processor 3 Processor 4

= preempting one thread stalls all others following in the
chain

October 30, 2020

Operating Systems 2020

Other issues |

= Critical Path Delay

= Preempting a thread on a critical path will slow
down end result

......

= Preemption of lock holder

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

Other issues Il

= spin-then-wait strategy: short spin-waits, if lock
unavailable block and look for other work to do

= reduces overhead when lock is held for short period of
time
= problem when lock holder is preempted

= |/O

October 30, 2020

Operating Systems 2020

Ty,

Gang Scheduling

= Application picks decomposition of work into some

number of threads

= threads run either together or not at all

Processor 1 Processor 2

§™ S
§™ S
- S

Time

px.y = Thread y in process x

October 30, 2020

Processor 3

o
o
o

p1.3

p2.3

p3.3

Operating Systems 2020 ﬁ-g,la!.

Gang Scheduling

= Linux, Windows, MacOS: mechanisms for dedicating
a set of processors to an application

= good on server with single primary use (e.g.
database)

= gpplication can pin threads to specific processor

= system reserves subset of processors to other
applications

October 30, 2020

Ty,

Operating Systems 2020

Gang Scheduling |

= Effect of adding processors to an application depends
on application

= some make efficient use of many processors
= some have diminishing return

Performance
werse Response Time)

Number of Processors

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

Space Sharing

= Usually more efficient to run two parallel programs
with half the number of processors than assigning all
processors to one program

= different processors to different tasks: space sharing

= single processor to multiple tasks: time sharing, time
slicing
= minimizes processor context switches

October 30, 2020

Operating Systems 2020

Ty,

Space Sharing

Processor 1

Processor 2

Processor 3 Processor 4 Processor 5 Processor 6

Time
o

5

Process 1

o o o o

Process 2

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

Scheduler Activations

= Application can be informed by an “upcall” from the
OS when a processor is added/taken away or a
thread blocks

= Application can implement its own scheduling
mechanism

= Open question: how many processors should we
assign?

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

Overload Management |

= Most systems: no direct control on workload.

» Whatever scheduling policy: if there is more load than
the system can handle: response time will drop

= Key idea: do less work when overloaded

= question: can we choose what to disable or do
we let events choose?

= Obvious solution:

= reject requests

October 30, 2020

Operating Systems 2020 ﬁ-g,la!.

Overload Management Il

= allows to preserve reasonable repsonse time for
remaining ones

= harsh but pragmatic

Reject to start new streams to be able to continue
providing good streaming service to users that
already have started

= Alternative: reduce service time per request

October 30, 2020

Operating Systems 2020

Overload Management I

= Replace dynamic web page creation by static
content
= reduce bit rate for movies

= Amazon has designed its web page to always
return a result quickly

= better to give a wrong answer quickly and later
apologize than let user wait

October 30, 2020

