Operating Systems 2020

Ty,

Operating Systems 2020
Scheduling

October 30, 2020

October 30, 2020



Operating Systems 2020 ﬁ-g,la!.

Scheduling

= There are multiple things to do - how do we chose,
which one is done first?

= \We have

= some threads that are running
= some threads that are ready to run
» some threads that are blocked

= More runnable threads than processors - we need to
do choose
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Scheduling

= Which one is first?
= Easy - just do it in the order they arrived. Seems fair.
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Scheduling

Is it important, how we do scheduling?

Processors are soooo faaast anyhow....

Actually it is. Processors can become overloaded

Maybe not on your notebook .... but on Servers
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Scheduling

= Does not solve all problems:

= if there are not enough resources, best
scheduling wont help

= Scheduling policy important! Influences

= Response Time: User perceived time to do
some task

= Fairness: Equality in number and timeliness of
resources given to a task

= Throughput: Rate at which tasks are completed
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ﬂ Scheduling

= No “right” answer
= always trade-off

= We will look at some of them and discuss selecting a
policy
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Example Scenario

= Running a web site for a company
= publicity hits

= suddenly you have twice as many users as the day
before

= your site may appear terribly slow....
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ﬂ Example Scenario

Google, Amazon etc. estimate they lose 5%-10% of
their customers if their response time increases by
100 milliseconds

(From Operating Systems, Principles & Practice,
Anderson T. and Dahlin M., Recursive Books)
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ﬂ Example Scenario

= scheduler may not be the main bottleneck
= good scheduling certainly important
= should you turn away users to improve performance?

= if you add a new server, how much better will
performance get?
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Goals

= Users want

= Tasks to be done quickly (low response time)

= Task to be completed predictably: Low variance
in response time

» Tasks to be dealt with fairly

= QOverall goals

» High Throughput

= Low Scheduling Overhead: The time to switch
from one task to another

= Avoid Starvation: Lack of progress for one task,
due to resources given to a higher priority task
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Scheduling algorithm

= takes a workload as input
Definition
Set of tasks for some system to perform along with when

each task arrives and how long each task takes to
complete.

= decides which tasks to do first
= Performance metric (throughput, latency) as output
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Road map

= Uniprocessor Scheduling
= Multiprocessor Scheduling
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Uniprocessor Scheduling

= One processor only
= three simple policies

= first-in first-out
= shortest-job-first
= round-robin

= Look at strengths and weaknesses
= combine into a practical scheduler
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Workloads and Task Types

= Scheduling algorithms should work well across a
variety of environments

= workloads varies from system to system and user to
user

= Tasks can be

= compute-bound: only use the processor
= |/O-bound: most of the time wait for I/O-bound
= mixed
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More terms

= Only preemptive, work-conserving schedulers to be
considered

= Only work-conserving policies: never leave the
processor idle when there is work to do.

= Scheduler can preempt the processor and give it to
some other task
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First-In-First-Out

= Simplest algorithm
= also called FCFS - first-come-first-served

= Schedule tasks in the order they arrive

= Continue running them until they complete or give up
the processor
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FIFO
Pros

= Minimizes overhead - switch only when task complete

= best throughput when fixed number of cpu-bound
tasks

= fair: every tasks waits its turn
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FIFO
Cons

= Task with little work is behind tasks that takes a long
time: has to wait

= makes system inefficient
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FIFO
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FIFO

= simple, but maybe useful:
= \WWeb-services store data in database

cache in front of database: memcached (e.g
Facebook)

look up data in cache before accessing database

requests are for small amount of data - memcached
replies to requests in FIFO order

FIFO is simple, minimizes average response time,
maximizes throughput
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SJF - Shortest Job First

= Optimal policy for minimizing average response time?
= Yes: Schedule the shortest job first (SJF)

= |f we know the time each task needs, we can select
the task with the least work to do

October 30, 2020



Operating Systems 2020 ﬁ-l;g.

SJF
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SJF

= Downsides:

= impossible to implement
= worst in variance in response time
= long tasks are done as slowly as possible
= starvation and frequent context switches

= enough short tasks arrive - long tasks may never
complete
= shorter task arrives: switch to it!
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Example - Supermarket

= No more Express-Kassen!
= [f anyone has only a few items - go to the front!

= current customer interrupted
= immediate service

= full basket - you have to wait...
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Round Robin

= fighting starvation: schedule tasks in a round robin
fashion

= Compromise between FIFO and SJF

= Each task gets resource for a fixed period of time
(time quantum)

= |f task doesn’t complete, it goes back in line
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Round Robin

= Need to pick a time quantum

= What if time quantum is too long?
= Infinite?
= What if time quantum is too short?

= One instruction?
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Round Robin

Tasks Round Robin (1 ms time slice)
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Round-Robin - equal length tasks

Tasks Round Robin (1 ms time slice)
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RR - 1/O and compute tasks
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Multi-Level Feedback

= Goals:

» Responsiveness

= Low overhead

= Starvation freedom

= Support priorities

= Fairness (among equal priority tasks)

= Not perfect at any of them!

= Used in Linux (and probably Windows, MacOS)
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MFQ

= Set of Round Robin queues
= Each queue has a separate priority
= High priority queues have short time slices
= Low priority queues have long time slices

= Scheduler picks first thread in highest priority queue
= Tasks start in highest priority queue

= [f time slice expires, task drops one level
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MFQ

Priority Time Slice (ms) Round Robin Queues
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Uniprocessor Summary

» FIFO is simple and minimizes overhead.

= |f tasks are variable in size, then FIFO can have very
poor average response time.

= |f tasks are equal in size, FIFO is optimal in terms of
average response time.

= Considering only the processor, SJF is optimal in
terms of average response time.

= SJF is pessimal in terms of variance in response time.
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Uniprocessor Summary (2)

= |f tasks are variable in size, Round Robin
approximates SJF.

= |f tasks are equal in size, Round Robin will have very
poor average response time.

» Tasks that intermix processor and I/O benefit from
SJF and can do poorly under Round Robin.

= By manipulating the assignment of tasks to priority
queues, an MFQ scheduler can achieve a balance
between responsiveness, low overhead, and fairness.
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Multi-Processor Scheduling

= Today: Most computers multi-processors
= questions:

» How do we make effective use of multiple cores
for running sequential tasks?

= How do we adapt scheduling algorithms for
parallel applications?
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Multi-Processor Architectures

Processor Core Processor Core




Operating Systems 2020 ﬁ-g,g.

Multiprocessor Scheduling

Take into account system state and policies

= palance load across cores

= aggregate threads on a few cores and put remaining
cores to sleep

if core becomes available - migrate the thread to new
core
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Multi-Processor Scheduling

= Uniprocessor scheduling: MFQ

= What would happen if we used centralized MFQ on a
multiprocessor?

= Needs centralized MFQ lock - Contention,
bottleneck

= Cache access slowdown due to ready list data
structure pinging from one CPU to another
(cache coherence overhead)

= Limited cache reuse: thread’s data from last time
it ran is often still in its old cache (on a different
processor maybe)

October 30, 2020



Operating Systems 2020 ﬁ-g,g.

Per-Processor Affinity Scheduling

= Each processor has its own ready list
= Protected by a per-processor spinlock

= Put threads back on the ready list where it had most
recently run

= Ex: when I/O completes, or on Condition->signal
» maximizes cache reuse

= |dle processors can steal work from other processors
= per-processor data structures must still be locked
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Per-Processor Multi-level Feedback

Processor 1 Processor 2 Processor 3
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Scheduling Parallel Programs

= Scheduling parallel application poses different
challenges

= often natural decomposition of a parallel app onto a
set of processors

= Example: image processing

= divide image into chunks
= assign one to each processor
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Scheduling Parallel Programs (2)

= [ssues
= no relationship between number of threads
running and number of processors available
= other processes or OS also need resources

= Use scheduling algorithm as discussed (oblivious
scheduling)

= multi-level feedback ensures all get fair share
= OS schedules threads as independent entities

= scheduler operates without knowledge of the
intent of the application
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Oblivious Scheduling
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Bulk Synchronous Delay

Processor 1 Processor2  Processor 3  Processor 4

Local Computation

Communication

o

Local Computation

Time

Computation limited by slowest processor involved
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Bulk Synchronous Delay

= Loop at each processor:

= Compute on local data (in parallel)

= Barrier

= Send (selected) data to other processors (in
parallel)

= Barrier

= Examples:

= MapReduce

= Fluid flow over a wing

= Most parallel algorithms can be recast in BSP
= Sacrificing a small constant factor in performance
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Producer-Consumer-Delay

Processor 1 Processor 2 Processor 3 Processor 4

= preempting one thread stalls all others following in the
chain
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Other issues |

= Critical Path Delay

= Preempting a thread on a critical path will slow
down end result

......

= Preemption of lock holder
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Other issues Il

= spin-then-wait strategy: short spin-waits, if lock
unavailable block and look for other work to do

= reduces overhead when lock is held for short period of
time
= problem when lock holder is preempted

= |/O
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Gang Scheduling

= Application picks decomposition of work into some

number of threads

= threads run either together or not at all
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Gang Scheduling

= Linux, Windows, MacOS: mechanisms for dedicating
a set of processors to an application

= good on server with single primary use (e.g.
database)

= gpplication can pin threads to specific processor

= system reserves subset of processors to other
applications
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Gang Scheduling |

= Effect of adding processors to an application depends
on application

= some make efficient use of many processors
= some have diminishing return

Performance
werse Response Time)

Number of Processors
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Space Sharing

= Usually more efficient to run two parallel programs
with half the number of processors than assigning all
processors to one program

= different processors to different tasks: space sharing

= single processor to multiple tasks: time sharing, time
slicing
= minimizes processor context switches
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Space Sharing

Processor 1

Processor 2

Processor 3 Processor 4 Processor 5 Processor 6

Time
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Scheduler Activations

= Application can be informed by an “upcall” from the
OS when a processor is added/taken away or a
thread blocks

= Application can implement its own scheduling
mechanism

= Open question: how many processors should we
assign?

October 30, 2020



Operating Systems 2020 ﬁ-g,la!.

Overload Management |

= Most systems: no direct control on workload.

» Whatever scheduling policy: if there is more load than
the system can handle: response time will drop

= Key idea: do less work when overloaded

= question: can we choose what to disable or do
we let events choose?

= Obvious solution:

= reject requests
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Overload Management Il

= allows to preserve reasonable repsonse time for
remaining ones

= harsh but pragmatic

Reject to start new streams to be able to continue
providing good streaming service to users that
already have started

= Alternative: reduce service time per request
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Overload Management I

= Replace dynamic web page creation by static
content
= reduce bit rate for movies

= Amazon has designed its web page to always
return a result quickly

= better to give a wrong answer quickly and later
apologize than let user wait
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