

> www.iaik.tugraz.at

Daniel Kales

Graz, May 4, 2022

based on slides by David Derler

Outline

Efficient ZK Proofs of Knowledge

Efficient NIZK with Random Oracles

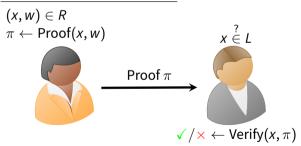
Efficient ZK for General Circuits

Recall: Zero Knowledge Proofs

NP-language L w.r.t. relation R

• $x \in L \iff \exists w : (x, w) \in R$

Non-interactive proof system



Recall: Zero Knowledge Proofs contd'

Completeness

■ Honestly computed proof for $(x, w) \in R$ will always verify

Soundness

■ Infeasible to produce valid proof for $x \notin L$

Extractability

- Stronger variant of soundness
- Extract witness from valid proof (using trapdoor)

Recall: Zero Knowledge Proofs contd'

Witness Indistinguishability (WI)

Distinguish proofs for same x w.r.t. different w, w'

Zero-Knowledge (ZK)

- Stronger variant of witness indistinguishability
- Simulate proofs without knowing w (using trapdoor)

complete: honestly computed proofs must always verify

special-sound: dishonest proofs can only verify with negligible probability

(special) honest-verifier zero-knowledge: verifier learns nothing beyond validity of the proof

We consider Σ -protocols

3-move public coin HVZKPok

complete: honestly computed proofs must always verify

special-sound: dishonest proofs can only verify with negligible probability

(special) honest-verifier zero-knowledge: verifier learns nothing beyond validity of the proof

We consider Σ -protocols

3-move public coin HVZKPoł

complete: honestly computed proofs must always verify

special-sound: dishonest proofs can only verify with negligible probability

(special) honest-verifier zero-knowledge: verifier learns nothing beyond validity of the proof

We consider Σ -protocols

3-move public coin HVZKPok

complete: honestly computed proofs must always verify

special-sound: dishonest proofs can only verify with negligible probability

(special) honest-verifier zero-knowledge: verifier learns nothing beyond validity of the proof

We consider Σ -protocols

3-move public coin HVZKPoK

Prove knowledge of dlog $k \in \mathbb{Z}_p$ in DL commitment $h = g^k$ of p-order group $G = \langle g \rangle$:

We write $\mathsf{PoK}ig\{ig(lphaig): h=g^lphaig\}$ to denote such a proof

Prove knowledge of dlog $k \in \mathbb{Z}_p$ in DL commitment $h = g^k$ of p-order group $G = \langle g \rangle$:

$$\begin{array}{cccc} \mathcal{P}(g,k) & \mathcal{V}(g,h) \\ \text{pick } r \overset{R}{\leftarrow} \mathbb{Z}_p, & q \leftarrow g^r & \stackrel{q}{\rightarrow} \\ & & \overset{c}{\leftarrow} & \text{pick challenge } c \overset{R}{\leftarrow} \mathbb{Z}_p \\ & z \leftarrow r + ck & \stackrel{z}{\rightarrow} & g^z \overset{?}{=} q \cdot h^c \end{array}$$

We write $\mathsf{PoK}ig\{ig(lphaig): h=g^lphaig\}$ to denote such a proof

Prove knowledge of dlog $k \in \mathbb{Z}_p$ in DL commitment $h = g^k$ of p-order group $G = \langle g \rangle$:

$$\begin{array}{cccc} \mathcal{P}(g,k) & \mathcal{V}(g,h) \\ \text{pick } r \overset{R}{\leftarrow} \mathbb{Z}_p, & q \leftarrow g^r & \stackrel{q}{\rightarrow} \\ & \overset{c}{\leftarrow} & \text{pick challenge } c \overset{R}{\leftarrow} \mathbb{Z}_p \\ & z \leftarrow r + ck & \stackrel{z}{\rightarrow} & g^z \overset{?}{=} q \cdot h^c \end{array}$$

We write $\mathsf{PoK}ig\{(lpha): h=g^lphaig\}$ to denote such a proof

Prove knowledge of dlog $k \in \mathbb{Z}_p$ in DL commitment $h = g^k$ of p-order group $G = \langle g \rangle$:

$$\begin{array}{cccc} \mathcal{P}(g, \textbf{k}) & \mathcal{V}(g, h) \\ \text{pick } r \overset{\mathcal{R}}{\leftarrow} \mathbb{Z}_p, & \textbf{q} \leftarrow g^r & \overset{\textbf{q}}{\rightarrow} \\ & \overset{c}{\leftarrow} & \text{pick challenge } c \overset{\mathcal{R}}{\leftarrow} \mathbb{Z}_p \\ \textbf{z} \leftarrow r + c\textbf{k} & \overset{\textbf{z}}{\rightarrow} & g^{\textbf{z}} \overset{?}{=} \textbf{q} \cdot h^c \end{array}$$

We write $\mathsf{PoK}ig\{ig(lphaig): h=g^lphaig\}$ to denote such a proo

Prove knowledge of dlog $k \in \mathbb{Z}_p$ in DL commitment $h = g^k$ of p-order group $G = \langle g \rangle$:

$$\begin{array}{cccc} \mathcal{P}(g, k) & \mathcal{V}(g, h) \\ \text{pick } r \overset{R}{\leftarrow} \mathbb{Z}_p, & q \leftarrow g^r & \overset{q}{\rightarrow} \\ & \overset{c}{\leftarrow} & \text{pick challenge } c \overset{R}{\leftarrow} \mathbb{Z}_p \\ & z \leftarrow r + ck & \overset{z}{\rightarrow} & g^z \overset{?}{=} q \cdot h^c \end{array}$$

We write $\mathsf{PoK}ig\{(lpha): h=g^lphaig\}$ to denote such a proof

Prove knowledge of dlog $k \in \mathbb{Z}_p$ in DL commitment $h = g^k$ of p-order group $G = \langle g \rangle$:

$$\begin{array}{cccc} \mathcal{P}(g, \textbf{k}) & \mathcal{V}(g, h) \\ \text{pick } r \overset{\mathcal{R}}{\leftarrow} \mathbb{Z}_p, & \textbf{q} \leftarrow g^r & \overset{\textbf{q}}{\rightarrow} \\ & \overset{c}{\leftarrow} & \text{pick challenge } c \overset{\mathcal{R}}{\leftarrow} \mathbb{Z}_p \\ \textbf{z} \leftarrow r + c\textbf{k} & \overset{\textbf{z}}{\rightarrow} & g^{\textbf{z}} \overset{?}{=} \textbf{q} \cdot h^c \end{array}$$

We write $\mathsf{PoK}ig\{(lpha): h=g^lphaig\}$ to denote such a proof

How is special soundness formalized?

- \mathcal{P}^* can only answer correctly if c guessed!
 - If challenge space chosen large enough,
 - ⇒ soundness error negligible with one round
- Otherwise, we can extract secret ($\Rightarrow P$ knows secret)!

Extraction for Schnorr protocol

- After first showing, rewind \mathcal{P} to step 2
- Two valid showings (q, c, z), (q, c', z'): $g^z = q \cdot h^c$ and $g^{z'} = q \cdot h^c$

$$\Rightarrow g^{(z-kc)} = g^{(z'-kc')}, \text{ i.e., } k = (z-z')(c-c')^{-1}$$

How is special soundness formalized?

- \mathcal{P}^* can only answer correctly if c guessed!
 - If challenge space chosen large enough,
 - ⇒ soundness error negligible with one round
- Otherwise, we can extract secret ($\Rightarrow P$ knows secret)!

Extraction for Schnorr protocol:

- After first showing, rewind \mathcal{P} to step 2
- Two valid showings (q, c, z), (q, c', z'): $g^z = q \cdot h^c$ and $g^{z'} = q \cdot h^{c'}$

$$\Rightarrow g^{(z-kc)} = g^{(z'-kc')}, \text{ i.e., } k = (z-z')(c-c')^{-1}$$

How to show (special) honest-verifier ZK?

■ Interaction between $\mathcal P$ and $\mathcal V$ can be efficiently simulated (HVZK $\to \mathcal S$ does not use $\mathcal V^*$)

Simulation of Schnorr protoco

- Pick $c, z \leftarrow^{\mathbb{R}} \mathbb{Z}_p$ and set $q \leftarrow g^z/g^c$
- $(q, c, z) \text{ valid: } g^z = q \cdot g^c$
- (q, c, z) distributed like real interaction

• For special HVZK, S also gets c as input

How to show (special) honest-verifier ZK?

■ Interaction between $\mathcal P$ and $\mathcal V$ can be efficiently simulated (HVZK $\to \mathcal S$ does not use $\mathcal V^*$)

Simulation of Schnorr protocol

- Pick $c, \mathbf{z} \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ and set $\mathbf{q} \leftarrow g^{\mathbf{z}}/g^c$
- (q, c, z) valid: $g^z = q \cdot g^c$
- (q, c, z) distributed like real interaction

For special HVZK, S also gets c as input

How to show (special) honest-verifier ZK?

■ Interaction between $\mathcal P$ and $\mathcal V$ can be efficiently simulated (HVZK $\to \mathcal S$ does not use $\mathcal V^*$)

Simulation of Schnorr protocol

- Pick $c, \mathbf{z} \stackrel{\scriptscriptstyle R}{\leftarrow} \mathbb{Z}_p$ and set $\mathbf{q} \leftarrow \mathbf{g}^{\mathbf{z}}/\mathbf{g}^c$
- (q, c, z) valid: $g^z = q \cdot g^c$
- (q, c, z) distributed like real interaction

■ For special HVZK, S also gets c as input

Composition of Σ -protocols:

- Possible to prove more general relations by combining several protocol instances
- E.g. possible to prove relations:
 - AND
 - OR
 - EQ
 - NEQ
 - Interval, ...
- Combination is again Σ -protocol (3-move structure)

Composition of Σ -protocols:

- Possible to prove more general relations by combining several protocol instances
- E.g. possible to prove relations:
 - AND,
 - OR,
 - EQ,
 - NEQ,
 - Interval, ...
- Combination is again Σ -protocol (3-move structure)

Composition of Σ -protocols:

- Possible to prove more general relations by combining several protocol instances
- E.g. possible to prove relations:
 - AND,
 - OR,
 - EQ,
 - NEQ,
 - Interval, ...
- Combination is again Σ -protocol (3-move structure)

Two values: $h_1 = g^{k_1}$, $h_2 = g^{k_2}$

$$\begin{array}{cccc}
\mathcal{P}(g, \mathbf{k}_{1}, \mathbf{k}_{2}) & \mathcal{V}(g, h_{1}, h_{2}) \\
& \text{pick } r_{1}, r_{2} \stackrel{\mathcal{R}}{\leftarrow} \mathbb{Z}_{p} \\
& q_{1} \leftarrow g^{r_{1}}, q_{2} \leftarrow g^{r_{2}} & \stackrel{q_{1}, q_{2}}{\leftarrow} \\
& z_{1} \leftarrow r_{1} + ck_{1}, z_{2} \leftarrow r_{2} + ck_{2} & \stackrel{z_{1}, z_{2}}{\rightarrow} & g^{z_{1}} \stackrel{?}{=} q_{1} \cdot h_{1}^{c} \\
& & g^{z_{2}} \stackrel{?}{=} q_{2} \cdot h_{2}^{c}
\end{array}$$

We write $\mathsf{PoK}ig\{ig(lpha_1,lpha_2ig): h_1=g^{lpha_1}\wedge h_2=g^{lpha_2}ig\}$

Two values:
$$h_1 = g^{k_1}$$
, $h_2 = g^{k_2}$

$$\begin{array}{cccc}
\mathcal{P}(g, k_1, k_2) & \mathcal{V}(g, h_1, h_2) \\
& \text{pick } r_1, r_2 \stackrel{\mathcal{R}}{\leftarrow} \mathbb{Z}_p \\
& q_1 \leftarrow g^{r_1}, q_2 \leftarrow g^{r_2} & \stackrel{q_1, q_2}{\leftarrow} \\
& z_1 \leftarrow r_1 + ck_1, z_2 \leftarrow r_2 + ck_2 & \stackrel{z_1, z_2}{\rightarrow} & g^{z_1} \stackrel{?}{\leftarrow} q_1 \cdot h_1^c \\
& g^{z_2} \stackrel{?}{\leftarrow} q_2 \cdot h_2^c
\end{array}$$

We write
$$\mathsf{PoK}ig\{ig(lpha_1,lpha_2ig): h_1=g^{lpha_1}\wedge h_2=g^{lpha_2}ig\}$$

Σ-protocols (Schnorr AND Proof)

Two values: $h_1 = g^{k_1}$, $h_2 = g^{k_2}$

$$\begin{array}{cccc}
\mathcal{P}(g, k_1, k_2) & \mathcal{V}(g, h_1, h_2) \\
& \text{pick } r_1, r_2 \stackrel{\mathcal{R}}{\leftarrow} \mathbb{Z}_p \\
& q_1 \leftarrow g^{r_1}, q_2 \leftarrow g^{r_2} & \stackrel{q_1, q_2}{\leftarrow} \\
& z_1 \leftarrow r_1 + ck_1, z_2 \leftarrow r_2 + ck_2 & \stackrel{z_1, z_2}{\rightarrow} & g^{z_1} \stackrel{?}{=} q_1 \cdot h_1^c \\
& g^{z_2} \stackrel{?}{=} q_2 \cdot h_2^c
\end{array}$$

We write
$$\mathsf{PoK}ig\{ig(lpha_1,lpha_2ig): h_1=g^{lpha_1}\wedge h_2=g^{lpha_2}ig\}$$

Two values: $h_1 = g^{k_1}$, $h_2 = g^{k_2}$

We write $\mathsf{PoK}ig\{ig(lpha_1,lpha_2ig): h_1=g^{lpha_1}\wedge h_2=g^{lpha_2}ig\}$

Two values: $h_1 = g^{k_1}$, $h_2 = g^{k_2}$,

• where \mathcal{P} only knows (w.l.o.g.) k_1

$$\begin{array}{c|ccccc}
\mathcal{P}(g, k_{1}, h_{2}) & \mathcal{V}(g, h_{1}, h_{2}) \\
\hline
r_{1}, c_{2}, z_{2} \stackrel{\mathcal{R}}{\leftarrow} \mathbb{Z}_{p} & & & \\
q_{1} \leftarrow g^{r_{1}}, q_{2} \leftarrow g^{z_{2}}/h_{2}^{c_{2}} & \stackrel{q_{1}, q_{2}}{\leftarrow} & \\
c_{1} = c - c_{2}, z_{1} = r_{1} + c_{1}k_{1} & \stackrel{c_{1}, c_{2}, z_{1}, z_{2}}{\leftarrow} & c \stackrel{?}{=} c_{1} + c_{2} \\
g^{z_{1}} \stackrel{?}{=} q_{1} \cdot h_{1}^{c_{1}} & & & \\
g^{z_{2}} \stackrel{?}{=} q_{2} \cdot h_{2}^{c_{2}}
\end{array}$$

Two values: $h_1 = g^{k_1}$, $h_2 = g^{k_2}$,

• where \mathcal{P} only knows (w.l.o.g.) k_1

Two values: $h_1 = g^{k_1}$, $h_2 = g^{k_2}$,

• where \mathcal{P} only knows (w.l.o.g.) k_1

Two values: $h_1 = g^{k_1}$, $h_2 = g^{k_2}$,

• where \mathcal{P} only knows (w.l.o.g.) k_1

Two values: $h_1 = g^{k_1}$, $h_2 = g^{k_2}$,

• where \mathcal{P} only knows (w.l.o.g.) k_1

Σ-protocols (Pedersen Commitments)

Pedersen commitment $C = g^{m} \cdot h^{r}$ to $m \in \mathbb{Z}_{p}$

$$\begin{array}{ccc}
\mathcal{P}(g,h,m,r) & \mathcal{V}(g,h,C) \\
r_1,r_2 \stackrel{\mathcal{R}}{\leftarrow} \mathbb{Z}_p, & q \leftarrow g^{r_1} \cdot h^{r_2} & \stackrel{q}{\rightarrow} \\
& \stackrel{c}{\leftarrow} & \text{pick } c \stackrel{\mathcal{R}}{\leftarrow} \mathbb{Z}_p \\
z_1 \leftarrow r_1 + cm, z_2 \leftarrow r_2 + cr & \stackrel{z_1,z_2}{\rightarrow} & g^{z_1} \cdot h^{z_2} \stackrel{?}{=} q \cdot C^c
\end{array}$$

Σ -protocols (Pedersen Commitments)

Pedersen commitment $\mathcal{C} = g^{\textit{m}} \cdot h^{\textit{r}}$ to $\textit{m} \in \mathbb{Z}_p$

$$\begin{array}{ccc}
\mathcal{P}(g,h,m,r) & \mathcal{V}(g,h,C) \\
\hline
r_1,r_2 \stackrel{R}{\leftarrow} \mathbb{Z}_p, q \leftarrow g^{r_1} \cdot h^{r_2} & \stackrel{q}{\rightarrow} \\
 & \stackrel{c}{\leftarrow} & \text{pick } c \stackrel{R}{\leftarrow} \mathbb{Z}_p \\
\hline
z_1 \leftarrow r_1 + cm, z_2 \leftarrow r_2 + cr & \stackrel{z_1,z_2}{\rightarrow} & g^{z_1} \cdot h^{z_2} \stackrel{?}{=} q \cdot C^c
\end{array}$$

Σ -protocols (Pedersen Commitments)

Pedersen commitment $C = g^m \cdot h^r$ to $m \in \mathbb{Z}_p$

$$\begin{array}{ccc}
\mathcal{P}(g,h,\textbf{m},\textbf{r}) & \mathcal{V}(g,h,C) \\
r_1,r_2 \stackrel{R}{\leftarrow} \mathbb{Z}_p, & q \leftarrow g^{r_1} \cdot h^{r_2} & \stackrel{q}{\rightarrow} \\
& \stackrel{c}{\leftarrow} & \text{pick } c \stackrel{R}{\leftarrow} \mathbb{Z}_p \\
z_1 \leftarrow r_1 + cm, z_2 \leftarrow r_2 + cr & \stackrel{z_1,z_2}{\rightarrow} & g^{z_1} \cdot h^{z_2} \stackrel{?}{=} q \cdot C^c
\end{array}$$

Non-Interactive PoKs (Fiat-Shamir Heuristic)

Goal: Make interactive proofs non-interactive

⇒ Then anyone can verify!

Idea: Let prover compute challenge c on its own

s.t. challenge unpredictable

How? Use hash function on initial commitment q

Applications:

- NIZKPoKs by itself an application!
- Signature schemes from identification schemes

Non-Interactive PoKs (Fiat-Shamir Heuristic)

Goal: Make interactive proofs non-interactive

⇒ Then anyone can verify!

Idea: Let prover compute challenge c on its own

s.t. challenge unpredictable

How? Use hash function on initial commitment q

Applications:

- NIZKPoKs by itself an application!
- Signature schemes from identification schemes

Non-Interactive PoKs (Fiat-Shamir Heuristic)

Goal: Make interactive proofs non-interactive

⇒ Then anyone can verify!

Idea: Let prover compute challenge c on its own

s.t. challenge unpredictable

How? Use hash function on initial commitment q

Applications:

- NIZKPoKs by itself an application!
- Signature schemes from identification schemes

Non-Interactive PoKs (Fiat-Shamir Heuristic)

Goal: Make interactive proofs non-interactive

⇒ Then anyone can verify!

Idea: Let prover compute challenge c on its own

s.t. challenge unpredictable

How? Use hash function on initial commitment q

Applications:

- NIZKPoKs by itself an application!
- Signature schemes from identification schemes

Schnorr Signature

Non-interactive Schnorr protocol

- + inclusion of message *m* into computation of challenge *c*!
- ⇒ Secure digital signature in ROM

Apply Fiat-Shamir:

- $q \leftarrow g^r$ as in Schnorr protocol
- Set challenge $c \leftarrow H(m||q)$, where H hash function
- $z \leftarrow r + ck$ as in Schnorr protocol

If *H* is random-oracle, value *c* not predictable

Schnorr Signature

Non-interactive Schnorr protocol

- + inclusion of message *m* into computation of challenge *c*!
- ⇒ Secure digital signature in ROM

Apply Fiat-Shamir:

- $q \leftarrow g^r$ as in Schnorr protocol
- Set challenge $c \leftarrow H(m||q)$, where H hash function
- $\mathbf{z} \leftarrow \mathbf{r} + c\mathbf{k}$ as in Schnorr protocol

If H is random-oracle, value c not predictable!

Schnorr Signature

Non-interactive Schnorr protocol

- + inclusion of message *m* into computation of challenge *c*!
- ⇒ Secure digital signature in ROM

Apply Fiat-Shamir:

- $q \leftarrow g^r$ as in Schnorr protocol
- Set challenge $c \leftarrow H(m||q)$, where H hash function
- $\mathbf{z} \leftarrow \mathbf{r} + c\mathbf{k}$ as in Schnorr protocol

If *H* is random-oracle, value *c* not predictable!

Schnorr Signature (ctd.)

Scheme

```
KeyGen(1^{\kappa}): Choose \mathcal{G}^{\kappa} = (\mathbb{G}, p, g), k \overset{R}{\leftarrow} \mathbb{Z}_p, compute h \leftarrow g^k and return (sk, pk) \leftarrow (k, h)
Sign(m, sk): Pick r \overset{R}{\leftarrow} \mathbb{Z}_p^*, compute q \leftarrow g^r, c \leftarrow H(m\|q) and z \leftarrow r + ck and output \sigma \leftarrow (c, z)
Verify(m, \sigma, pk): Return [c = H(m\|g^z/h^c)]
```

EUF-CMA secure in ROM based on DLP!

Notes

Is HVZK too weak in practice?

- Fiat-Shamir Heuristic
 - Verifier is forced to be honest
 - ZK in random oracle model
- Conversion for HVZK Σ-protocols to ZK ones [2]

Omega Protocols

- lacksquare Online extractability instead of rewinding ${\cal P}$
- Compatible with the UC framework
- Tighter reductions

Notes

Is HVZK too weak in practice?

- Fiat-Shamir Heuristic
 - Verifier is forced to be honest
 - ZK in random oracle model
- Conversion for HVZK Σ-protocols to ZK ones [2]

Omega Protocols

- lacksquare Online extractability instead of rewinding ${\cal P}$
- Compatible with the UC framework
- Tighter reductions

ZK for General Circuits

So far we have seen practically efficient proofs for statements regarding discrete logarithms.

- Very useful in practice
- Building block in many useful protocols
 - secure voting schemes
 - anonymous transactions
 - anonymous credentials

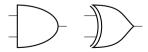
What about arbitrary statements?

Interlude (Completeness of boolean circuits)

Any function computable in finite time can be expressed using a boolean circuit using 2-input gates.

- You may have heard that the NAND gate is complete
- So is a combination of AND and XOR gates
 - This is nice because it maps to fundamental mathematical operations
 - Addition mod 2

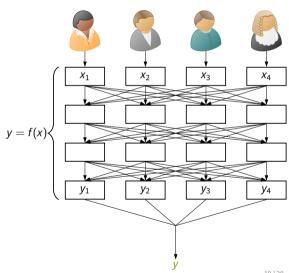
 Binary XOR gate
 - Multiplication mod 2 ≡ Binary AND gate



Multiparty Computation

A method to securely evaluate a public function between a number of parties. who hold private inputs.

- Many different protocols exists
 - Many work on a circuit representation of the function
 - Each gate corresponds to a "step" in the MPC protocol
 - Parties may need to communicate to evaluate a gate together
- (n-1)-privacy: even if all but one party collude, they cannot learn any information about the true values



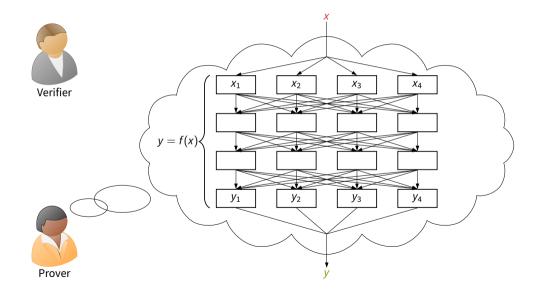
MPC-in-the-Head Proof Systems

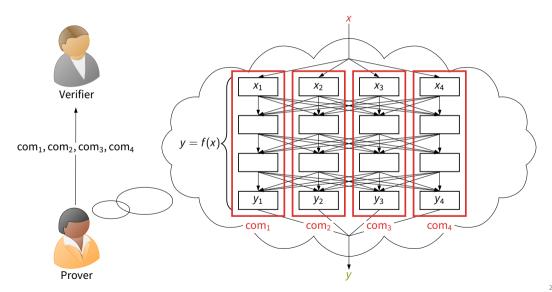
Thinking about Computations

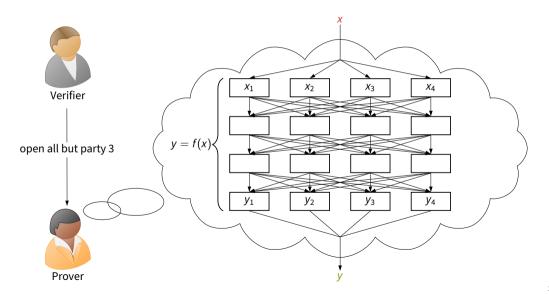
MPC-in-the-Head Paradigm

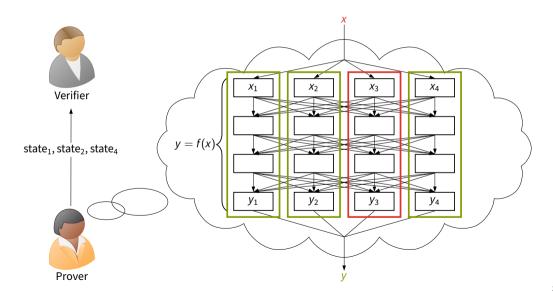
Technique by Ishai et al. (2008) to build a zero-knowledge proof system:

- Take a Multiparty Computation Protocol
- Simulate the evaluation of the function with N players
- Commit to the internal state and messages sent by the players
- Reveal a fraction of the internal states based on a random challenge
 - Not enough to leak any information about the real values
 - Enough that the consistency between the revealed parties can be verified
 - Gain some assurance that the remaining states are also ok









MPCitH as a Sigma Protocol

Can view MPCitH protocol as a Σ -protocol:

- \blacksquare \mathcal{P}_0 :
 - Prover simulates the MPC execution
 - Commits to state of all players

Prover		Verifier
$com \leftarrow \mathcal{P}_0(x)$ $resp \leftarrow \mathcal{P}_1(x, com, ch)$	ch resp	$ch \overset{\$}{\leftarrow} ChS(1^k)$ $b \leftarrow \mathcal{V}(y, com, ch, resp)$

- \mathbb{P}_1 :
 - Prover reveals all messages and internal states (except party ch)
- V:
 - Verifier repeats execution with revealed parties
 - Verify consistency of revealed parties

Non-Interactive MPCitH proofs

- Fiat-Shamir transformation
 - As seen above
 - Prover calculates challenge
 - Set challenge $c \leftarrow \mathcal{H}(\mathsf{com})$

Prover		Verifier
$com \leftarrow \mathcal{P}_0(x)$	ch	$ch \overset{\$}{\leftarrow} ChS(1^k)$
$ \operatorname{resp} \leftarrow \mathcal{P}_1(x,\operatorname{com},\operatorname{ch}) $	resp	$b \leftarrow \mathcal{V}(y, com, ch, resp)$

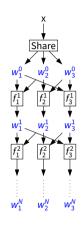
Prover		Verifier
$com \leftarrow \mathcal{P}_0(x)$	com	
$ch \leftarrow \mathcal{H}(com)$		
$resp \leftarrow \mathcal{P}_1(x,com,ch)$		
	resp	
		$ch \leftarrow \mathcal{H}(com)$
		$b \leftarrow \mathcal{V}(y, com, ch, resp)$

ZK for General Circuits [8, 5]

Instantiation of MPC-in-the-Head approach

- 1. (2,3)-decompose circuit into three shares
- 2. Revealing 2 parts reveals no information
- 3. Evaluate decomposed circuit per share
- 4. Commit to each evaluation
- 5. Challenger requests to open 2 of 3
- 6. Verifies consistency

Proof for y = SHA-256(x): 13ms to create, 5ms to verify, \approx 220 kilobytes



What you should know...

- Interactive Proof Systems
- Concept of Interactive ZK Proofs (Security Properties)
- Proofs of Knowledge:
 - Security Properties
 - Σ-protocols (Schnorr, compositions, ...)
 - Fiat-Shamir Transform
- Schnorr Signature Scheme
- Idea of ZK for General Circuits
 - MPC-in-the-Head

Questions?

Further Reading I

[1] Mihir Bellare and Oded Goldreich.

On defining proofs of knowledge.

In Advances in Cryptology - CRYPTO '92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings, pages 390–420, 1992.

[2] Ronald Cramer, Ivan Damgård, and Philip D. MacKenzie.

Efficient zero-knowledge proofs of knowledge without intractability assumptions.

In Public Key Cryptography, Third International Workshop on Practice and Theory in Public Key Cryptography, PKC 2000, Melbourne, Victoria, Australia, January 18-20, 2000, Proceedings, pages 354–373, 2000.

[3] Ivan Damgard.

On Σ -protocols.

http://cs.au.dk/~ivan/Sigma.pdf.

[4] Juan A. Garay, Philip D. MacKenzie, and Ke Yang.

Strengthening zero-knowledge protocols using signatures.

J. Cryptology, 19(2):169-209, 2006.

Further Reading II

[5] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi.

Zkboo: Faster zero-knowledge for boolean circuits.

In USENIX Security, 2016.

[6] Oded Goldreich.

Computational Complexity - A Conceptual Perspective.

Cambridge University Press, 2008.

[7] Jens Groth and Amit Sahai.

Efficient non-interactive proof systems for bilinear groups.

Cryptology ePrint Archive, Report 2007/155, 2007.

http://eprint.iacr.org/2007/155.

[8] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.

Zero-knowledge from secure multiparty computation.

In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 21–30, 2007.