
S C I E N C E
P A S S I O N

T E C H N O L O G Y

Modern Public Key Cryptography
Efficient Zero-Knowledge

Daniel Kales
based on slides by David Derler

Graz, May 4, 2022

www.iaik.tugraz.at



Outline

Efficient ZK Proofs of Knowledge

Efficient NIZK with Random Oracles

Efficient ZK for General Circuits

1 / 28



Recall: Zero Knowledge Proofs

NP-language Lw.r.t. relation R

x ∈ L ⇐⇒ ∃w : (x,w) ∈ R

Non-interactive proof system

Proof π

(x,w) ∈ R
π ← Proof(x,w) x

?
∈ L

✓/× ← Verify(x,π)

2 / 28



Recall: Zero Knowledge Proofs contd’

Completeness

Honestly computed proof for (x,w) ∈ Rwill always verify

Soundness

Infeasible to produce valid proof for x /∈ L

Extractability

Stronger variant of soundness

Extract witness from valid proof (using trapdoor)

3 / 28



Recall: Zero Knowledge Proofs contd’

Witness Indistinguishability (WI)

Distinguish proofs for same x w.r.t. differentw,w′

Zero-Knowledge (ZK)

Stronger variant of witness indistinguishability

Simulate proofs without knowingw (using trapdoor)

4 / 28



Honest-Verifier Zero Knowledge

complete: honestly computed proofs must always verify

special-sound: dishonest proofs can only verify with negligible probability

(special) honest-verifier zero-knowledge: verifier learns nothing beyond validity of
the proof

We consider Σ-protocols

3-move public coin HVZKPoK

5 / 28



Honest-Verifier Zero Knowledge

complete: honestly computed proofs must always verify

special-sound: dishonest proofs can only verify with negligible probability

(special) honest-verifier zero-knowledge: verifier learns nothing beyond validity of
the proof

We consider Σ-protocols

3-move public coin HVZKPoK

5 / 28



Honest-Verifier Zero Knowledge

complete: honestly computed proofs must always verify

special-sound: dishonest proofs can only verify with negligible probability

(special) honest-verifier zero-knowledge: verifier learns nothing beyond validity of
the proof

We consider Σ-protocols

3-move public coin HVZKPoK

5 / 28



Honest-Verifier Zero Knowledge

complete: honestly computed proofs must always verify

special-sound: dishonest proofs can only verify with negligible probability

(special) honest-verifier zero-knowledge: verifier learns nothing beyond validity of
the proof

We consider Σ-protocols

3-move public coin HVZKPoK

5 / 28



Σ-protocols for DLOG (Schnorr proof)

Prove knowledge of dlog k ∈ Zp in DL commitment h = gk of p-order group G = ⟨g⟩:

P(g, k) V(g, h)
pick r←R Zp, q← gr q−→

c←− pick challenge c←R Zp
z← r + ck z−→ gz ?

= q · hc

We write PoK
{(

α
)
: h = gα

}
to denote such a proof

Completeness?

6 / 28



Σ-protocols for DLOG (Schnorr proof)

Prove knowledge of dlog k ∈ Zp in DL commitment h = gk of p-order group G = ⟨g⟩:

P(g, k) V(g, h)
pick r←R Zp, q← gr q−→

c←− pick challenge c←R Zp
z← r + ck z−→ gz ?

= q · hc

We write PoK
{(

α
)
: h = gα

}
to denote such a proof

Completeness?

6 / 28



Σ-protocols for DLOG (Schnorr proof)

Prove knowledge of dlog k ∈ Zp in DL commitment h = gk of p-order group G = ⟨g⟩:

P(g, k) V(g, h)
pick r←R Zp, q← gr q−→

c←− pick challenge c←R Zp
z← r + ck z−→ gz ?

= q · hc

We write PoK
{(

α
)
: h = gα

}
to denote such a proof

Completeness?

6 / 28



Σ-protocols for DLOG (Schnorr proof)

Prove knowledge of dlog k ∈ Zp in DL commitment h = gk of p-order group G = ⟨g⟩:

P(g, k) V(g, h)
pick r←R Zp, q← gr q−→

c←− pick challenge c←R Zp
z← r + ck z−→ gz ?

= q · hc

We write PoK
{(

α
)
: h = gα

}
to denote such a proof

Completeness?

6 / 28



Σ-protocols for DLOG (Schnorr proof)

Prove knowledge of dlog k ∈ Zp in DL commitment h = gk of p-order group G = ⟨g⟩:

P(g, k) V(g, h)
pick r←R Zp, q← gr q−→

c←− pick challenge c←R Zp
z← r + ck z−→ gz ?

= q · hc

We write PoK
{(

α
)
: h = gα

}
to denote such a proof

Completeness?

6 / 28



Σ-protocols for DLOG (Schnorr proof)

Prove knowledge of dlog k ∈ Zp in DL commitment h = gk of p-order group G = ⟨g⟩:

P(g, k) V(g, h)
pick r←R Zp, q← gr q−→

c←− pick challenge c←R Zp
z← r + ck z−→ gz ?

= q · hc

We write PoK
{(

α
)
: h = gα

}
to denote such a proof

Completeness?

6 / 28



Σ-protocols (ctd.)

How is special soundness formalized?

P∗ can only answer correctly if c guessed!

If challenge space chosen large enough,
⇒ soundness error negligible with one round

Otherwise, we can extract secret (⇒P knows secret)!

Extraction for Schnorr protocol:

After first showing, rewindP to step 2

Two valid showings (q, c, z), (q, c′, z′): gz = q · hc and gz′ = q · hc′

⇒ g(z−kc) = g(z′−kc′), i.e., k = (z − z′)(c− c′)−1

7 / 28



Σ-protocols (ctd.)

How is special soundness formalized?

P∗ can only answer correctly if c guessed!

If challenge space chosen large enough,
⇒ soundness error negligible with one round

Otherwise, we can extract secret (⇒P knows secret)!

Extraction for Schnorr protocol:

After first showing, rewindP to step 2

Two valid showings (q, c, z), (q, c′, z′): gz = q · hc and gz′ = q · hc′

⇒ g(z−kc) = g(z′−kc′), i.e., k = (z − z′)(c− c′)−1

7 / 28



Σ-protocols (ctd.)

How to show (special) honest-verifier ZK?

Interaction betweenP and V can be efficiently simulated (HVZK→S does not use
V∗)

Simulation of Schnorr protocol

Pick c, z←R Zp and set q← gz/gc

(q, c, z) valid: gz = q · gc

(q, c, z) distributed like real interaction

For special HVZK, S also gets c as input

8 / 28



Σ-protocols (ctd.)

How to show (special) honest-verifier ZK?

Interaction betweenP and V can be efficiently simulated (HVZK→S does not use
V∗)

Simulation of Schnorr protocol

Pick c, z←R Zp and set q← gz/gc

(q, c, z) valid: gz = q · gc

(q, c, z) distributed like real interaction

For special HVZK, S also gets c as input

8 / 28



Σ-protocols (ctd.)

How to show (special) honest-verifier ZK?

Interaction betweenP and V can be efficiently simulated (HVZK→S does not use
V∗)

Simulation of Schnorr protocol

Pick c, z←R Zp and set q← gz/gc

(q, c, z) valid: gz = q · gc

(q, c, z) distributed like real interaction

For special HVZK, S also gets c as input

8 / 28



Σ-protocols (ctd.)

Composition of Σ-protocols:

Possible to prove more general relations by combining several protocol instances

E.g. possible to prove relations:

AND,
OR,
EQ,
NEQ,
Interval, . . .

Combination is again Σ-protocol (3-move structure)

9 / 28



Σ-protocols (ctd.)

Composition of Σ-protocols:

Possible to prove more general relations by combining several protocol instances

E.g. possible to prove relations:

AND,
OR,
EQ,
NEQ,
Interval, . . .

Combination is again Σ-protocol (3-move structure)

9 / 28



Σ-protocols (ctd.)

Composition of Σ-protocols:

Possible to prove more general relations by combining several protocol instances

E.g. possible to prove relations:

AND,
OR,
EQ,
NEQ,
Interval, . . .

Combination is again Σ-protocol (3-move structure)

9 / 28



Σ-protocols (Schnorr AND Proof)

Two values: h1 = gk1 , h2 = gk2

P(g, k1, k2) V(g, h1, h2)
pick r1, r2←R Zp

q1 ← gr1 , q2 ← gr2
q1,q2−−−→
c← pick c←R Zp

z1 ← r1 + ck1, z2 ← r2 + ck2
z1,z2−−→ gz1 ?

= q1 · h1
c

gz2 ?
= q2 · h2

c

We write PoK
{(

α1,α2
)
: h1 = gα1 ∧ h2 = gα2

}

10 / 28



Σ-protocols (Schnorr AND Proof)

Two values: h1 = gk1 , h2 = gk2

P(g, k1, k2) V(g, h1, h2)
pick r1, r2←R Zp

q1 ← gr1 , q2 ← gr2
q1,q2−−−→
c← pick c←R Zp

z1 ← r1 + ck1, z2 ← r2 + ck2
z1,z2−−→ gz1 ?

= q1 · h1
c

gz2 ?
= q2 · h2

c

We write PoK
{(

α1,α2
)
: h1 = gα1 ∧ h2 = gα2

}

10 / 28



Σ-protocols (Schnorr AND Proof)

Two values: h1 = gk1 , h2 = gk2

P(g, k1, k2) V(g, h1, h2)
pick r1, r2←R Zp

q1 ← gr1 , q2 ← gr2
q1,q2−−−→
c← pick c←R Zp

z1 ← r1 + ck1, z2 ← r2 + ck2
z1,z2−−→ gz1 ?

= q1 · h1
c

gz2 ?
= q2 · h2

c

We write PoK
{(

α1,α2
)
: h1 = gα1 ∧ h2 = gα2

}

10 / 28



Σ-protocols (Schnorr AND Proof)

Two values: h1 = gk1 , h2 = gk2

P(g, k1, k2) V(g, h1, h2)
pick r1, r2←R Zp

q1 ← gr1 , q2 ← gr2
q1,q2−−−→
c← pick c←R Zp

z1 ← r1 + ck1, z2 ← r2 + ck2
z1,z2−−→ gz1 ?

= q1 · h1
c

gz2 ?
= q2 · h2

c

We write PoK
{(

α1,α2
)
: h1 = gα1 ∧ h2 = gα2

}

10 / 28



Σ-protocols (Schnorr OR Proof)

Two values: h1 = gk1 , h2 = gk2 ,

whereP only knows (w.l.o.g.) k1

Two parallel proofs, where proof for k2 is simulated :

P(g, k1, h2) V(g, h1, h2)

r1, c2, z2←R Zp
q1 ← gr1 , q2 ← gz2/h2

c2
q1,q2−−−→
c←− pick c←R Zp

c1 = c− c2, z1 = r1 + c1k1
c1,c2,z1,z2−−−−−→ c ?

= c1 + c2

gz1 ?
= q1 · h1

c1

gz2 ?
= q2 · h2

c2

11 / 28



Σ-protocols (Schnorr OR Proof)

Two values: h1 = gk1 , h2 = gk2 ,

whereP only knows (w.l.o.g.) k1

Two parallel proofs, where proof for k2 is simulated :

P(g, k1, h2) V(g, h1, h2)

r1, c2, z2←R Zp
q1 ← gr1 , q2 ← gz2/h2

c2
q1,q2−−−→
c←− pick c←R Zp

c1 = c− c2, z1 = r1 + c1k1
c1,c2,z1,z2−−−−−→ c ?

= c1 + c2

gz1 ?
= q1 · h1

c1

gz2 ?
= q2 · h2

c2

11 / 28



Σ-protocols (Schnorr OR Proof)

Two values: h1 = gk1 , h2 = gk2 ,

whereP only knows (w.l.o.g.) k1

Two parallel proofs, where proof for k2 is simulated :

P(g, k1, h2) V(g, h1, h2)

r1, c2, z2←R Zp
q1 ← gr1 , q2 ← gz2/h2

c2
q1,q2−−−→
c←− pick c←R Zp

c1 = c− c2, z1 = r1 + c1k1
c1,c2,z1,z2−−−−−→ c ?

= c1 + c2

gz1 ?
= q1 · h1

c1

gz2 ?
= q2 · h2

c2

11 / 28



Σ-protocols (Schnorr OR Proof)

Two values: h1 = gk1 , h2 = gk2 ,

whereP only knows (w.l.o.g.) k1

Two parallel proofs, where proof for k2 is simulated :

P(g, k1, h2) V(g, h1, h2)

r1, c2, z2←R Zp
q1 ← gr1 , q2 ← gz2/h2

c2
q1,q2−−−→
c←− pick c←R Zp

c1 = c− c2, z1 = r1 + c1k1
c1,c2,z1,z2−−−−−→ c ?

= c1 + c2

gz1 ?
= q1 · h1

c1

gz2 ?
= q2 · h2

c2

11 / 28



Σ-protocols (Schnorr OR Proof)

Two values: h1 = gk1 , h2 = gk2 ,

whereP only knows (w.l.o.g.) k1

Two parallel proofs, where proof for k2 is simulated :

P(g, k1, h2) V(g, h1, h2)

r1, c2, z2←R Zp
q1 ← gr1 , q2 ← gz2/h2

c2
q1,q2−−−→
c←− pick c←R Zp

c1 = c− c2, z1 = r1 + c1k1
c1,c2,z1,z2−−−−−→ c ?

= c1 + c2

gz1 ?
= q1 · h1

c1

gz2 ?
= q2 · h2

c2

11 / 28



Σ-protocols (Pedersen Commitments)

Pedersen commitment C = gm · hr tom ∈ Zp

P(g, h,m, r) V(g, h, C)
r1, r2←R Zp, q← gr1 · hr2

q−→
c←− pick c←R Zp

z1 ← r1 + cm, z2 ← r2 + cr z1,z2−−→ gz1 · hz2 ?
= q · Cc

Completeness?

12 / 28



Σ-protocols (Pedersen Commitments)

Pedersen commitment C = gm · hr tom ∈ Zp

P(g, h,m, r) V(g, h, C)
r1, r2←R Zp, q← gr1 · hr2

q−→
c←− pick c←R Zp

z1 ← r1 + cm, z2 ← r2 + cr z1,z2−−→ gz1 · hz2 ?
= q · Cc

Completeness?

12 / 28



Σ-protocols (Pedersen Commitments)

Pedersen commitment C = gm · hr tom ∈ Zp

P(g, h,m, r) V(g, h, C)
r1, r2←R Zp, q← gr1 · hr2

q−→
c←− pick c←R Zp

z1 ← r1 + cm, z2 ← r2 + cr z1,z2−−→ gz1 · hz2 ?
= q · Cc

Completeness?

12 / 28



Non-Interactive PoKs (Fiat-Shamir Heuristic)

Goal: Make interactive proofs non-interactive

⇒ Then anyone can verify!

Idea: Let prover compute challenge c on its own

s.t. challenge unpredictable

How? Use hash function on initial commitment q

Applications:

NIZKPoKs by itself an application!

Signature schemes from identification schemes

13 / 28



Non-Interactive PoKs (Fiat-Shamir Heuristic)

Goal: Make interactive proofs non-interactive

⇒ Then anyone can verify!

Idea: Let prover compute challenge c on its own

s.t. challenge unpredictable

How? Use hash function on initial commitment q

Applications:

NIZKPoKs by itself an application!

Signature schemes from identification schemes

13 / 28



Non-Interactive PoKs (Fiat-Shamir Heuristic)

Goal: Make interactive proofs non-interactive

⇒ Then anyone can verify!

Idea: Let prover compute challenge c on its own

s.t. challenge unpredictable

How? Use hash function on initial commitment q

Applications:

NIZKPoKs by itself an application!

Signature schemes from identification schemes

13 / 28



Non-Interactive PoKs (Fiat-Shamir Heuristic)

Goal: Make interactive proofs non-interactive

⇒ Then anyone can verify!

Idea: Let prover compute challenge c on its own

s.t. challenge unpredictable

How? Use hash function on initial commitment q

Applications:

NIZKPoKs by itself an application!

Signature schemes from identification schemes

13 / 28



Schnorr Signature

Non-interactive Schnorr protocol

+ inclusion of messagem into computation of challenge c!

⇒ Secure digital signature in ROM

Apply Fiat-Shamir:

q← gr as in Schnorr protocol

Set challenge c← H(m∥q), where H hash function

z← r + ck as in Schnorr protocol

If H is random-oracle, value c not predictable!
14 / 28



Schnorr Signature

Non-interactive Schnorr protocol

+ inclusion of messagem into computation of challenge c!

⇒ Secure digital signature in ROM

Apply Fiat-Shamir:

q← gr as in Schnorr protocol

Set challenge c← H(m∥q), where H hash function

z← r + ck as in Schnorr protocol

If H is random-oracle, value c not predictable!
14 / 28



Schnorr Signature

Non-interactive Schnorr protocol

+ inclusion of messagem into computation of challenge c!

⇒ Secure digital signature in ROM

Apply Fiat-Shamir:

q← gr as in Schnorr protocol

Set challenge c← H(m∥q), where H hash function

z← r + ck as in Schnorr protocol

If H is random-oracle, value c not predictable!
14 / 28



Schnorr Signature (ctd.)

Scheme

KeyGen(1κ): Choose Gκ = (G, p, g), k←R Zp, compute h← gk and return
(sk, pk)← (k, h)

Sign(m, sk): Pick r←R Z∗
p, compute q← gr, c← H(m∥q) and z← r + ck and output

σ ← (c, z)

Verify(m,σ, pk): Return [c = H(m∥gz/hc)]

EUF-CMA secure in ROM based on DLP!

15 / 28



Notes

Is HVZK too weak in practice?

Fiat-Shamir Heuristic

Verifier is forced to be honest
ZK in random oracle model

Conversion for HVZK Σ-protocols to ZK ones [2]

Omega Protocols

Online extractability instead of rewindingP

Compatible with the UC framework

Tighter reductions

16 / 28



Notes

Is HVZK too weak in practice?

Fiat-Shamir Heuristic

Verifier is forced to be honest
ZK in random oracle model

Conversion for HVZK Σ-protocols to ZK ones [2]

Omega Protocols

Online extractability instead of rewindingP

Compatible with the UC framework

Tighter reductions

16 / 28



ZK for General Circuits

So far we have seen practically efficient proofs for statements regarding discrete
logarithms.

Very useful in practice

Building block in many useful protocols

secure voting schemes
anonymous transactions
anonymous credentials

What about arbitrary statements?

17 / 28



Interlude (Completeness of boolean circuits)

Any function computable in finite time can be expressed using a boolean circuit using
2-input gates.

You may have heard that the NAND gate is complete

So is a combination of AND and XOR gates

This is nice because it maps to fundamental mathematical operations
Addition mod 2≡ Binary XOR gate
Multiplication mod 2≡ Binary AND gate

18 / 28



Multiparty Computation

A method to securely evaluate a public
function between a number of parties,
who hold private inputs.

Many different protocols exists

Many work on a circuit
representation of the function
Each gate corresponds to a “step”
in the MPC protocol
Parties may need to communicate
to evaluate a gate together

(n− 1)-privacy: even if all but one
party collude, they cannot learn any
information about the true values

x1 x2 x3 x4

y1 y2 y3 y4

y

y = f(x)

19 / 28



MPC-in-the-Head Proof Systems
j

Thinking about Computations



MPC-in-the-Head Paradigm

Technique by Ishai et al. (2008) to build a zero-knowledge proof system:

Take a Multiparty Computation Protocol

Simulate the evaluation of the function with N players

Commit to the internal state and messages sent by the players

Reveal a fraction of the internal states based on a random challenge

Not enough to leak any information about the real values
Enough that the consistency between the revealed parties can be verified
Gain some assurance that the remaining states are also ok

20 / 28



MPC-in-the-Head Paradigm (cont.)

x

x1 x2 x3 x4

y1 y2 y3 y4

y

y = f(x)

Prover

Verifier

21 / 28



MPC-in-the-Head Paradigm (cont.)

x

x1 x2 x3 x4

y1 y2 y3 y4

y

y = f(x)

Prover

Verifier

com1 com2 com3 com4

com1, com2, com3, com4

21 / 28



MPC-in-the-Head Paradigm (cont.)

x

x1 x2 x3 x4

y1 y2 y3 y4

y

y = f(x)

Prover

Verifier

open all but party 3

21 / 28



MPC-in-the-Head Paradigm (cont.)

x

x1 x2 x3 x4

y1 y2 y3 y4

y

y = f(x)

Prover

Verifier

state1, state2, state4

21 / 28



MPCitH as a Sigma Protocol

Can view MPCitH protocol as a Σ-protocol:

P0:

Prover simulates the MPC execution
Commits to state of all players

P1:

Prover reveals all messages and internal states (except party ch)

V :

Verifier repeats execution with revealed parties
Verify consistency of revealed parties

Prover Verifier
com← P0(x) com

ch $← ChS(1k)
ch

resp← P1(x, com, ch)
resp

b← V(y, com, ch, resp)

22 / 28



Non-Interactive MPCitH proofs

Fiat-Shamir transformation

As seen above
Prover calculates challenge
Set challenge c← H(com)

Prover Verifier
com← P0(x) com

ch $← ChS(1k)
ch

resp← P1(x, com, ch)
resp

b← V(y, com, ch, resp)

Prover Verifier
com← P0(x) com
ch← H(com)

resp← P1(x, com, ch)
resp

ch← H(com)

b← V(y, com, ch, resp)

23 / 28



ZK for General Circuits [8, 5]

Instantiation of MPC-in-the-Head approach

1. (2,3)-decompose circuit into three shares

2. Revealing 2 parts reveals no information

3. Evaluate decomposed circuit per share

4. Commit to each evaluation

5. Challenger requests to open 2 of 3

6. Verifies consistency

x

Share

w0
2w0

1 w0
3

f 1
1 f 1

2 f 1
3

w1
1 w1

2 w1
3

f 2
1 f 2

2 f 2
3

wN
1 wN

2 wN
3

Proof for y = SHA-256(x): 13ms to create, 5ms to verify,≈ 220 kilobytes

24 / 28



What you should know...

Interactive Proof Systems

Concept of Interactive ZK Proofs (Security Properties)

Proofs of Knowledge:

Security Properties
Σ-protocols (Schnorr, compositions, . . . )
Fiat-Shamir Transform

Schnorr Signature Scheme

Idea of ZK for General Circuits

MPC-in-the-Head

25 / 28



Questions?



Further Reading I

[1] Mihir Bellare and Oded Goldreich.

On defining proofs of knowledge.

In Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 16-20, 1992, Proceedings, pages 390–420, 1992.

[2] Ronald Cramer, Ivan Damgård, and Philip D. MacKenzie.

Efficient zero-knowledge proofs of knowledge without intractability assumptions.

In Public Key Cryptography, Third International Workshop on Practice and Theory in Public Key Cryptography, PKC 2000,
Melbourne, Victoria, Australia, January 18-20, 2000, Proceedings, pages 354–373, 2000.

[3] Ivan Damgard.

On Σ-protocols.

http://cs.au.dk/~ivan/Sigma.pdf.

[4] Juan A. Garay, Philip D. MacKenzie, and Ke Yang.

Strengthening zero-knowledge protocols using signatures.

J. Cryptology, 19(2):169–209, 2006.

27 / 28

http://cs.au.dk/~ivan/Sigma.pdf


Further Reading II

[5] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi.

Zkboo: Faster zero-knowledge for boolean circuits.

In USENIX Security, 2016.

[6] Oded Goldreich.

Computational Complexity - A Conceptual Perspective.

Cambridge University Press, 2008.

[7] Jens Groth and Amit Sahai.

Efficient non-interactive proof systems for bilinear groups.

Cryptology ePrint Archive, Report 2007/155, 2007.

http://eprint.iacr.org/2007/155.

[8] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.

Zero-knowledge from secure multiparty computation.

In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages
21–30, 2007.

28 / 28

http://eprint.iacr.org/2007/155

	Efficient ZK Proofs of Knowledge
	Efficient NIZK with Random Oracles
	Efficient ZK for General Circuits
	MPC-in-the-Head Proof Systems
	

