Ty,

SCIENCE
PASSION
TECHNOLOGY

Modern Public Key Cryptography

Efficient Zero-Knowledge

Daniel Kales
based on slides by David Derler

> www.iaik.tugraz.at

Outline

Efficient ZK Proofs of Knowledge

Efficient NIZK with Random Oracles

Efficient ZK for General Circuits

28

Recall: Zero Knowledge Proofs

NP-language L w.r.t. relation R

= xel << Jw: (x,w)ER

Non-interactive proof system

(x,w) €R
7 < Proof(x, w) xel

Proof 7 ! ¢

>
>

v /% < Verify(x, 7)

2/28

Recall: Zero Knowledge Proofs contd’

Completeness

= Honestly computed proof for (x, w) € R will always verify
Soundness

= Infeasible to produce valid proof forx ¢ L

Extractability

= Stronger variant of soundness

= Extract witness from valid proof (using trapdoor)

3/28

Recall: Zero Knowledge Proofs contd’

Witness Indistinguishability (WI)

= Distinguish proofs for same x w.r.t. different w, w’

Zero-Knowledge (ZK)

= Stronger variant of witness indistinguishability

= Simulate proofs without knowing w (using trapdoor)

28

Honest-Verifier Zero Knowledge

complete: honestly computed proofs must always verify

5/28

Honest-Verifier Zero Knowledge

complete: honestly computed proofs must always verify

special-sound: dishonest proofs can only verify with negligible probability

5/28

Honest-Verifier Zero Knowledge

complete: honestly computed proofs must always verify
special-sound: dishonest proofs can only verify with negligible probability

(special) honest-verifier zero-knowledge: verifier learns nothing beyond validity of
the proof

28

Honest-Verifier Zero Knowledge

complete: honestly computed proofs must always verify
special-sound: dishonest proofs can only verify with negligible probability

(special) honest-verifier zero-knowledge: verifier learns nothing beyond validity of
the proof

We consider X -protocols

= 3-move public coin HVZKPoK

28

Y -protocols for DLOG (Schnorr proof)

Prove knowledge of dlog k € Z, in DL commitment /» = g* of p-order group G = (g):

28

Y -protocols for DLOG (Schnorr proof)

Prove knowledge of dlog k € Z, in DL commitment /» = g* of p-order group G = (g):

P(g, k) V(g,h)
pickr <~Z,, q<«g" =

28

Y -protocols for DLOG (Schnorr proof)

Prove knowledge of dlog k € Z, in DL commitment /» = g* of p-order group G = (g):

P(9,k) V(9,h)
pickr <~Z,, q<«g" =
& pick challenge ¢ <27,

28

Y -protocols for DLOG (Schnorr proof)

Prove knowledge of dlog k € Z, in DL commitment /» = g* of p-order group G = (g):

P(g, k) V(g,h)
pickr <~Z,, q<«g" =

& pick challenge ¢ <27,
z ?
Z<+r-+ck — g =q-h°

Y -protocols for DLOG (Schnorr proof)

Prove knowledge of dlog k € Z, in DL commitment /» = g* of p-order group G = (g):

P(g, k) V(g,h)
pickr <~Z,, q<«g" =

& pick challenge ¢ <27,
z ?
Z<+r-+ck — g =q-h°

We write PoK{ () : h = g*} to denote such a proof

Y -protocols for DLOG (Schnorr proof)

Prove knowledge of dlog k € Z, in DL commitment /» = g* of p-order group G = (g):

P(g, k) V(g,h)
pickr <~Z,, q<«g" =

& pick challenge ¢ <27,
z ?
Z<+r-+ck — g =q-h°

We write PoK{ () : h = g*} to denote such a proof

Completeness?

Y -protocols (ctd.)

How is special soundness formalized?

= P*canonly answer correctly if c guessed!

= [f challenge space chosen large enough,

=- soundness error negligible with one round

= Otherwise, we can extract secret (= P knows secret)!

7/28

Y -protocols (ctd.)

How is special soundness formalized?
= P*canonly answer correctly if c guessed!

= [f challenge space chosen large enough,

=- soundness error negligible with one round
= Otherwise, we can extract secret (= P knows secret)!

Extraction for Schnorr protocol:
= After first showing, rewind P to step 2
= Two valid showings (9,¢,2),(9,c,Z): g = q-hcand g* = g - h¢

= gk = g7 k) e k= (z — Z)(c — ¢)

7/28

Y -protocols (ctd.)

How to show (special) honest-verifier ZK?

= Interaction between P and V can be efficiently simulated (HVZK — S does not use
V*)

28

Y -protocols (ctd.)

How to show (special) honest-verifier ZK?

= Interaction between P and V can be efficiently simulated (HVZK — S does not use
V*)

Simulation of Schnorr protocol

= Pickc,z<*Z,andsetq < g°/g°
= (9,¢z)valid:g? =g - g°

= (g,c,z)distributed like real interaction

/28

Y -protocols (ctd.)

How to show (special) honest-verifier ZK?

= Interaction between P and V can be efficiently simulated (HVZK — S does not use
V*)

Simulation of Schnorr protocol

= Pickc,z<*Z,andsetq < g°/g°
= (9,¢z)valid:g? =g - g°

= (g,c,z)distributed like real interaction

= Forspecial HVZK, S also gets c as input

/28

Y -protocols (ctd.)

Composition of X -protocols:

= Possible to prove more general relations by combining several protocol instances

9/28

Y -protocols (ctd.)

Composition of X -protocols:
= Possible to prove more general relations by combining several protocol instances

= E.g. possible to prove relations:

= AND,
= OR,
= EQ
= NEQ,

= |nterval,...

Y -protocols (ctd.)

Composition of X -protocols:

Possible to prove more general relations by combining several protocol instances

E.g. possible to prove relations:

= AND,

= OR,

= EQ,

= NEQ,

= |nterval,...

Combination is again X-protocol (3-move structure)

Y -protocols (Schnorr AND Proof)

Two values:

— gkl’ — gkz

P(g’ kl;kZ)

pick ri, 2 <~Zp
— gl’l, (_ gl’z

10/28

Y -protocols (Schnorr AND Proof)

Two values:

— gkl’ — gkz

P(g’ kl;kZ)

V(g,h1,15)

pick ri, 2 <~Zp
— gl’l, (_ gl’z

(_

pick ¢ <*Zp,

10/28

Y -protocols (Schnorr AND Proof)

Two values: /1, = g, h, = g
P(g: kl,kZ) V(g’ ’)
pick ri, 2 <~Zp
— 9", g, g~ -
& pickc £z,
Zentck, zntck, 22 gn L g he

?

g22 = . C

10/28

Y -protocols (Schnorr AND Proof)

Two values: /1, = g, h, = g
7D(g’ kl,kZ) V(g)))
pick ri, 2 <~Zp
— gl’l’ — gl’z s
& pickc £z,
21+ cky, 2oy +cky 2 gZI; < hi€
g22 ; . C

We write PoK{ (a1, a2) : hy = g™ A hy, = g2}

10/28

Y -protocols (Schnorr OR Proof)

Two values: /1, = g, h, = g,

= where P only knows (w.l.o.g.) k1

11/28

Y -protocols (Schnorr OR Proof)

Two values: /1, = g, h, = g,

= where P only knows (w.l.o.g.) k1

Two parallel proofs, where proof for k; is| simulated |

P(g7k11) V(ga >)
r, | C,2o %RZp

11/28

Y -protocols (Schnorr OR Proof)

Two values: /1, = g, h, = g,

= where P only knows (w.l.o.g.) k1

Two parallel proofs, where proof for k; is| simulated |

P(g7k11) V(ga >)
r, | C,2o %RZp

— gf'l’ — gZZ/ C s

11/28

Y -protocols (Schnorr OR Proof)

Two values: /1, = g, h, = g,

= where P only knows (w.l.o.g.) k1

Two parallel proofs, where proof for k; is| simulated |

P(g7k11) V(ga >)
r, | C,2o %RZp

— gf'l’ — gZZ/ C s

11/28

Y -protocols (Schnorr OR Proof)

Two values: /1, = g, h, = g,

= where P only knows (w.l.o.g.) k1

Two parallel proofs, where proof for k; is| simulated |

P(Q} kl;) V(g,))
r, [€2,z <~ Zp
— g™, g g7 /h. —
& pick ¢ <~Z,
CL=C—Cp, 71 =1 + Crky 22z cta+o
921 c1

(%]

[~ 1

g~

11/28

Y -protocols (Pedersen Commitments)

Pedersen commitment C = g - h"tom € Z,

P(g,h,m,r) V(g,h,0)
r,r Zp, g < g"-h" -

12/28

Y -protocols (Pedersen Commitments)

Pedersen commitment C = g - h"tom € Z,

P(g,h,m,r) V(9,h,)
r,r Zp, g < g"-h" =
c . R
— pick ¢ <Z,

12/28

Y -protocols (Pedersen Commitments)

Pedersen commitment C = g - h"tom € Z,

P(g,h,m,r) V(g, h, C)
ry, N AZP’ <—gr1 . h"2 N
& pick ¢ <*Z,
Zy 41 +CMm,zy < rp+cCr ﬂ) gzl.hh; e

Completeness?

12/28

Non-Interactive PoKs (Fiat-Shamir Heuristic)

Goal: Make interactive proofs non-interactive

= Then anyone can verify!

3/28

Non-Interactive PoKs (Fiat-Shamir Heuristic)

Goal: Make interactive proofs non-interactive
= Then anyone can verify!
Idea: Let prover compute challenge c on its own

= s.t. challenge unpredictable

3/28

Non-Interactive PoKs (Fiat-Shamir Heuristic)

Goal: Make interactive proofs non-interactive
= Then anyone can verify!

Idea: Let prover compute challenge c on its own
= s.t. challenge unpredictable

How? Use hash function on initial commitment g

3/28

Non-Interactive PoKs (Fiat-Shamir Heuristic)

Goal: Make interactive proofs non-interactive

= Then anyone can verify!

Idea: Let prover compute challenge c on its own
= s.t. challenge unpredictable

How? Use hash function on initial commitment g
Applications:

= NIZKPoKs by itself an application!

= Signature schemes from identification schemes

3/28

Schnorr Signature

Non-interactive Schnorr protocol
= +inclusion of message m into computation of challenge c!

=- Secure digital signature in ROM

14/28

Schnorr Signature

Non-interactive Schnorr protocol
= +inclusion of message m into computation of challenge c!

=- Secure digital signature in ROM

Apply Fiat-Shamir:

B g < g" asin Schnorr protocol
= Set challenge ¢ < H(m||g), where H hash function

® 7 < r+ ckasinSchnorr protocol

14/28

Schnorr Signature

Non-interactive Schnorr protocol

= +inclusion of message m into computation of challenge c!

=- Secure digital signature in ROM

Apply Fiat-Shamir:

B g < g" asin Schnorr protocol

= Set challenge ¢ < H(m||g), where H hash function

® 7 < r+ ckasinSchnorr protocol

If His random-oracle, value ¢ not predictable!

14/28

Schnorr Signature (ctd.)

KeyGen(1%): Choose G* = (G, p,g), k <“Z,, compute /1 +— ¢g* and return
(sk,pk) < (k,h)

Sign(m, sk): Pick r <~Z,, compute g «— g', ¢ + H(m||9) and z < r + ck and output
o+ (c,2)

Verify(m, o, pk): Return [c = H(m||g?/h°)]

EUF-CMA secure in ROM based on DLP!

15/28

Notes

Is HVZK too weak in practice?
= Fiat-Shamir Heuristic

= Verifieris forced to be honest

m ZKinrandom oracle model

= Conversion for HVZK X-protocols to ZK ones [2]

16/28

Notes

Is HVZK too weak in practice?
= Fiat-Shamir Heuristic

= Verifieris forced to be honest

= ZKinrandom oracle model
= Conversion for HVZK X-protocols to ZK ones [2]
Omega Protocols
= Online extractability instead of rewinding P
= Compatible with the UC framework

= Tighter reductions

16/28

ZK for General Circuits

So far we have seen practically efficient proofs for statements regarding discrete
logarithms.

= Very usefulin practice
= Building block in many useful protocols

m secure voting schemes
= anonymous transactions

= anonymous credentials

What about arbitrary statements?

17/28

Interlude (Completeness of boolean circuits)

Any function computable in finite time can be expressed using a boolean circuit using
2-input gates.
= You may have heard that the NAND gate is complete

m Soisacombination of AND and XOR gates

m This is nice because it maps to fundamental mathematical operations
= Addition mod 2 = Binary XOR gate
= Multiplication mod 2 = Binary AND gate

D

18/28

Multiparty Computation

A method to securely evaluate a public
function between a number of parties,
who hold private inputs.

= Many different protocols exists
= Many work on a circuit
representation of the function

m Each gate corresponds to a “step”
in the MPC protocol

m Parties may need to communicate
to evaluate a gate together

= (n— 1)-privacy: even if all but one
party collude, they cannot learn any
information about the true values

19/28

MPC-in-the-Head Proof Systems

Thinking about Computations

MPC-in-the-Head Paradigm

Technique by Ishai et al. (2008) to build a zero-knowledge proof system:

Take a Multiparty Computation Protocol

Simulate the evaluation of the function with N players

Commit to the internal state and messages sent by the players
Reveal a fraction of the internal states based on a random challenge

= Notenough to leak any information about the real values
®m Enough that the consistency between the revealed parties can be verified
®m Gain some assurance that the remaining states are also ok

20/28

(cont.)

MPC-in-the-Head Paradigm

——

|

|

N
.

/

\

e«

i

\\

\

i
.

il

\\

\
.

I

i

I

LN
f

il

é«

B
B
5

<-

e

——

-
(]
=
=
(]
>

Prover

21/28

MPC-in-the-Head Paradigm (cont.)

g

X,
Verifier 4

comy, COM,, COM3, COMy y= f(X)<
S Z z

Prover
21/28

MPC-in-the-Head Paradigm (cont.)

=

{

—

—

f

!
,

I

—

Te——=

o

=

4
|

I

i
|

—_— §

—

——

.

ol

4e<-4e<
N
i

-

il

Verifier

™
>
‘
©
=%
-
]
o
©
c
@
=%
o

Prover

21/28

MPC-in-the-Head Paradigm (cont.)

P
(N

Verifier

state,, state,, statey

Prover
21/28

MPCitH as a Sigma Protocol

Can view MPCitH protocol as a X-protocol:

Prover Verifier
s P com <+ Py(x)

com

. . - $ k

= Prover simulates the MPC execution o hechs)

. — Pi(x, ,ch) =
= Commits to state of all players resp = Palx com,ch) 7
b + V(y, com, ch, resp)

. Pr:
m Prover reveals all messages and internal states (except party ch)
=V

m Verifier repeats execution with revealed parties

m Verify consistency of revealed parties

22/28

Non-Interactive MPCitH proofs

= Fiat-Shamir transformation

= Asseenabove z’;zi o Verifier
0
com
m Prover calculates challenge S st
ch
m Setchallenge c < #(com) resp ¢ Pa(x,com,ch) ~——
resp
b + V(y, com, ch, resp)
Prover Verifier
com < Py(x)
com
ch < H(com) —
resp + P1(x,com,ch)
resp
ch < #(com)
b + V(y,com, ch, resp)

ZK for General Circuits [8, 5]

X

Instantiation of MPC-in-the-Head approach
1. (2,3)-decompose circuit into three shares Mf w3 Vig
2. Revealing 2 parts reveals no information
3. Evaluate decomposed circuit per share " W ws

. .
4. Commit to each evaluation

5. Challenger requests to open 2 of 3
6. Verifies consistency

Proof for y = SHA-256(x): 13ms to create, 5ms to verify, ~ 220 kilobytes

24/28

What you should know...

® Interactive Proof Systems
= Concept of Interactive ZK Proofs (Security Properties)
= Proofs of Knowledge:

m Security Properties
m Y -protocols (Schnorr, compositions, ...)
® Fiat-Shamir Transform

= Schnorr Signature Scheme
= |dea of ZK for General Circuits

m MPC-in-the-Head

5/28

Questions?

Further Reading |

[1] Mihir Bellare and Oded Goldreich.
On defining proofs of knowledge.
In Advances in Cryptology - CRYPTO 92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 16-20, 1992, Proceedings, pages 390-420, 1992.
[2] Ronald Cramer, lvan Damgard, and Philip D. MacKenzie.
Efficient zero-knowledge proofs of knowledge without intractability assumptions.
In Public Key Cryptography, Third International Workshop on Practice and Theory in Public Key Cryptography, PKC 2000,
Melbourne, Victoria, Australia, January 18-20, 2000, Proceedings, pages 354-373, 2000.
[3] Ivan Damgard.
On X-protocols.

http://cs.au.dk/~ivan/Sigma.pdf.

[4] Juan A. Garay, Philip D. MacKenzie, and Ke Yang.
Strengthening zero-knowledge protocols using signatures.

J. Cryptology, 19(2):169-209, 2006.

27/28

http://cs.au.dk/~ivan/Sigma.pdf

Further Reading Il

[5] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi.
Zkboo: Faster zero-knowledge for boolean circuits.

In USENIX Security, 2016.

[6] Oded Goldreich.
Computational Complexity - A Conceptual Perspective.

Cambridge University Press, 2008.

[7] Jens Groth and Amit Sahai.
Efficient non-interactive proof systems for bilinear groups.
Cryptology ePrint Archive, Report 2007/155, 2007.

http://eprint.iacr.org/2007/155.

[8] Yuvallshai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge from secure multiparty computation.

In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages
21-30, 2007.

28/28

http://eprint.iacr.org/2007/155

	Efficient ZK Proofs of Knowledge
	Efficient NIZK with Random Oracles
	Efficient ZK for General Circuits
	MPC-in-the-Head Proof Systems
	

