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Recall: Zero Knowledge Proofs

NP-language L w.r.t. relation R

= xel << Jw: (x,w)ER

Non-interactive proof system

(x,w) €R
7 < Proof(x, w) xel

Proof 7 ! ¢

>
>

v /% < Verify(x, 7)
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Recall: Zero Knowledge Proofs contd’

Completeness

= Honestly computed proof for (x, w) € R will always verify
Soundness

= Infeasible to produce valid proof forx ¢ L

Extractability

= Stronger variant of soundness

= Extract witness from valid proof (using trapdoor)
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Recall: Zero Knowledge Proofs contd’

Witness Indistinguishability (WI)

= Distinguish proofs for same x w.r.t. different w, w’

Zero-Knowledge (ZK)

= Stronger variant of witness indistinguishability

= Simulate proofs without knowing w (using trapdoor)
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Honest-Verifier Zero Knowledge

complete: honestly computed proofs must always verify
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Honest-Verifier Zero Knowledge

complete: honestly computed proofs must always verify
special-sound: dishonest proofs can only verify with negligible probability

(special) honest-verifier zero-knowledge: verifier learns nothing beyond validity of
the proof

We consider X -protocols

= 3-move public coin HVZKPoK
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Y -protocols for DLOG (Schnorr proof)

Prove knowledge of dlog k € Z, in DL commitment /» = g* of p-order group G = (g):
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Y -protocols for DLOG (Schnorr proof)

Prove knowledge of dlog k € Z, in DL commitment /» = g* of p-order group G = (g):

P(g, k) V(g,h)
pickr <~Z,, q<«g" =

& pick challenge ¢ <27,
z ?
Z<+r-+ck — g =q-h°

We write PoK{ () : h = g*} to denote such a proof

Completeness?



Y -protocols (ctd.)

How is special soundness formalized?

= P*canonly answer correctly if c guessed!

= [f challenge space chosen large enough,

=- soundness error negligible with one round

= Otherwise, we can extract secret (= P knows secret)!
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Y -protocols (ctd.)

How is special soundness formalized?
= P*canonly answer correctly if c guessed!

= [f challenge space chosen large enough,

=- soundness error negligible with one round
= Otherwise, we can extract secret (= P knows secret)!

Extraction for Schnorr protocol:
= After first showing, rewind P to step 2
= Two valid showings (9,¢,2),(9,c,Z): g = q-hcand g* = g - h¢

= gk = g7 k) e k= (z — Z)(c — ¢)
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Y -protocols (ctd.)

How to show (special) honest-verifier ZK?

= Interaction between P and V can be efficiently simulated (HVZK — S does not use
V*)

28



Y -protocols (ctd.)

How to show (special) honest-verifier ZK?

= Interaction between P and V can be efficiently simulated (HVZK — S does not use
V*)

Simulation of Schnorr protocol

= Pickc,z<*Z,andsetq < g°/g°
= (9,¢z)valid:g? =g - g°

= (g,c,z)distributed like real interaction

/28



Y -protocols (ctd.)

How to show (special) honest-verifier ZK?

= Interaction between P and V can be efficiently simulated (HVZK — S does not use
V*)

Simulation of Schnorr protocol

= Pickc,z<*Z,andsetq < g°/g°
= (9,¢z)valid:g? =g - g°

= (g,c,z)distributed like real interaction

= Forspecial HVZK, S also gets c as input

/28



Y -protocols (ctd.)

Composition of X -protocols:

= Possible to prove more general relations by combining several protocol instances
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Y -protocols (ctd.)

Composition of X -protocols:

Possible to prove more general relations by combining several protocol instances

E.g. possible to prove relations:

= AND,

= OR,

= EQ,

= NEQ,

= |nterval,...

Combination is again X-protocol (3-move structure)



Y -protocols (Schnorr AND Proof)

Two values:

— gkl’ — gkz

P(g’ kl;kZ)

pick ri, 2 <~Zp
— gl’l, (_ gl’z
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Y -protocols (Schnorr AND Proof)

Two values:

— gkl’ — gkz

P(g’ kl;kZ)

V(g,h1,15)

pick ri, 2 <~Zp
— gl’l, (_ gl’z

(_

pick ¢ <*Zp,
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Y -protocols (Schnorr AND Proof)

Two values: /1, = g, h, = g
P(g: kl,kZ) V(g’ ’ )
pick ri, 2 <~Zp
— 9", g, g~ -
& pickc £z,
Zentck, zntck, 22 gn L g he

?

g22 = . C
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Y -protocols (Schnorr AND Proof)

Two values: /1, = g, h, = g
7D(g’ kl,kZ) V(g) ) )
pick ri, 2 <~Zp
— gl’l’ — gl’z s
& pickc £z,
21+ cky, 2oy +cky 2 gZI; < hi€
g22 ; . C

We write PoK{ (a1, a2) : hy = g™ A hy, = g2}
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Y -protocols (Schnorr OR Proof)

Two values: /1, = g, h, = g,

= where P only knows (w.l.o.g.) k1
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Y -protocols (Schnorr OR Proof)

Two values: /1, = g, h, = g,

= where P only knows (w.l.o.g.) k1

Two parallel proofs, where proof for k; is| simulated |

P(Q} kl; ) V(g, ) )
r, [ €2,z <~ Zp
— g™, g g7 /h. —
& pick ¢ <~Z,
CL=C—Cp, 71 =1 + Crky 22z cta+o
921 c1

(%]

[~ 1

g~
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Y -protocols (Pedersen Commitments)

Pedersen commitment C = g - h"tom € Z,

P(g,h,m,r) V(g,h,0)
r,r Zp, g < g"-h" -

12/28
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Y -protocols (Pedersen Commitments)

Pedersen commitment C = g - h"tom € Z,

P(g,h,m,r) V(g, h, C)
ry, N AZP’ <—gr1 . h"2 N
& pick ¢ <*Z,
Zy 41 +CMm,zy < rp+cCr ﬂ) gzl.hh; e

Completeness?
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Non-Interactive PoKs (Fiat-Shamir Heuristic)

Goal: Make interactive proofs non-interactive

= Then anyone can verify!
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Non-Interactive PoKs (Fiat-Shamir Heuristic)

Goal: Make interactive proofs non-interactive

= Then anyone can verify!

Idea: Let prover compute challenge c on its own
= s.t. challenge unpredictable

How? Use hash function on initial commitment g
Applications:

= NIZKPoKs by itself an application!

= Signature schemes from identification schemes

3/28



Schnorr Signature

Non-interactive Schnorr protocol
= +inclusion of message m into computation of challenge c!

=- Secure digital signature in ROM
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Schnorr Signature

Non-interactive Schnorr protocol

= +inclusion of message m into computation of challenge c!

=- Secure digital signature in ROM

Apply Fiat-Shamir:

B g < g" asin Schnorr protocol

= Set challenge ¢ < H(m||g), where H hash function

® 7 < r+ ckasinSchnorr protocol

If His random-oracle, value ¢ not predictable!

14/28



Schnorr Signature (ctd.)

KeyGen(1%): Choose G* = (G, p,g), k <“Z,, compute /1 +— ¢g* and return
(sk,pk) < (k,h)

Sign(m, sk): Pick r <~Z,, compute g «— g', ¢ + H(m||9) and z < r + ck and output
o+ (c,2)

Verify(m, o, pk): Return [c = H(m||g?/h°)]

EUF-CMA secure in ROM based on DLP!
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Notes

Is HVZK too weak in practice?
= Fiat-Shamir Heuristic

= Verifieris forced to be honest

m  ZKinrandom oracle model

= Conversion for HVZK X-protocols to ZK ones [2]
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Notes

Is HVZK too weak in practice?
= Fiat-Shamir Heuristic

= Verifieris forced to be honest

= ZKinrandom oracle model
= Conversion for HVZK X-protocols to ZK ones [2]
Omega Protocols
= Online extractability instead of rewinding P
= Compatible with the UC framework

= Tighter reductions
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ZK for General Circuits

So far we have seen practically efficient proofs for statements regarding discrete
logarithms.

= Very usefulin practice
= Building block in many useful protocols

m  secure voting schemes
= anonymous transactions

= anonymous credentials

What about arbitrary statements?
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Interlude (Completeness of boolean circuits)

Any function computable in finite time can be expressed using a boolean circuit using
2-input gates.
= You may have heard that the NAND gate is complete

m  Soisacombination of AND and XOR gates

m  This is nice because it maps to fundamental mathematical operations
=  Addition mod 2 = Binary XOR gate
= Multiplication mod 2 = Binary AND gate

D
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Multiparty Computation

A method to securely evaluate a public
function between a number of parties,
who hold private inputs.

= Many different protocols exists
= Many work on a circuit
representation of the function

m  Each gate corresponds to a “step”
in the MPC protocol

m  Parties may need to communicate
to evaluate a gate together

= (n— 1)-privacy: even if all but one
party collude, they cannot learn any
information about the true values

19/28



MPC-in-the-Head Proof Systems

Thinking about Computations



MPC-in-the-Head Paradigm

Technique by Ishai et al. (2008) to build a zero-knowledge proof system:

Take a Multiparty Computation Protocol

Simulate the evaluation of the function with N players

Commit to the internal state and messages sent by the players
Reveal a fraction of the internal states based on a random challenge

= Notenough to leak any information about the real values
®m  Enough that the consistency between the revealed parties can be verified
®m  Gain some assurance that the remaining states are also ok
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(cont.)

MPC-in-the-Head Paradigm
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MPC-in-the-Head Paradigm (cont.)

g

X,
Verifier 4

comy, COM,, COM3, COMy y= f(X)<
S Z z

Prover
21/28



MPC-in-the-Head Paradigm (cont.)
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MPC-in-the-Head Paradigm (cont.)

P
(N

Verifier

state,, state,, statey

Prover
21/28



MPCitH as a Sigma Protocol

Can view MPCitH protocol as a X-protocol:

Prover Verifier
s P com <+ Py(x)

com

. . - $ k

= Prover simulates the MPC execution o hechs)

. — Pi(x, ,ch) =
= Commits to state of all players resp = Palx com,ch) 7
b + V(y, com, ch, resp)

. Pr:
m  Prover reveals all messages and internal states (except party ch)
=V

m  Verifier repeats execution with revealed parties

m  Verify consistency of revealed parties
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Non-Interactive MPCitH proofs

= Fiat-Shamir transformation

= Asseenabove z’;zi o Verifier
0
com
m  Prover calculates challenge S st
ch
m  Setchallenge c < #(com) resp ¢ Pa(x,com,ch) ~——
resp
b + V(y, com, ch, resp)
Prover Verifier
com < Py(x)
com
ch < H(com) —
resp + P1(x,com,ch)
resp
ch < #(com)
b + V(y,com, ch, resp)




ZK for General Circuits [8, 5]

X

Instantiation of MPC-in-the-Head approach
1. (2,3)-decompose circuit into three shares Mf w3 Vig
2. Revealing 2 parts reveals no information
3. Evaluate decomposed circuit per share " W ws

. .
4. Commit to each evaluation

5. Challenger requests to open 2 of 3
6. Verifies consistency

Proof for y = SHA-256(x): 13ms to create, 5ms to verify, ~ 220 kilobytes
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What you should know...

®  Interactive Proof Systems
= Concept of Interactive ZK Proofs (Security Properties)
= Proofs of Knowledge:

m  Security Properties
m Y -protocols (Schnorr, compositions, ...)
®  Fiat-Shamir Transform

= Schnorr Signature Scheme
= |dea of ZK for General Circuits

m  MPC-in-the-Head
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Questions?
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