Modern Public Key Cryptography

SCIENCE PASSION TECHNOLOGY

Commitments and Zero-Knowledge

Daniel Kales based on slides by Sebastian Ramacher and David Derler

Graz, April 27, 2022

> www.iaik.tugraz.at

Outline

Commitment Schemes

Commitment Schemes

Commitments - Informal Idea

Imagine two parties A and B

- A makes some (secret) decision m
- A wants to later convince B that decision m was made
 - A must not be able to change *m* later on
 - B must not be able to learn anything about *m* before

Real world analogy

- A writes *m* on a piece of paper,
 - puts it in a box and locks the box
- A hands the locked box to B
 - Later, A can give the key for the box to B

Commitments - Informal Idea

Imagine two parties A and B

- A makes some (secret) decision m
- A wants to later convince B that decision m was made
 - A must not be able to change *m* later on
 - B must not be able to learn anything about *m* before

Real world analogy

- A writes *m* on a piece of paper,
 - puts it in a box and locks the box
- A hands the locked box to B
 - Later, A can give the key for the box to B

Commitment Scheme

Commitment Scheme

Gen (1^{κ}) : This probabilistic algorithm on input of κ , outputs (public) parameters pp.

Commit(pp, m): This (probabilistic) algorithm on input pp and message $m \in M$, outputs commitment C and opening information O.

Open(pp, C, O) : This deterministic algorithm on input pp C and O returns $m \in M \cup \{\bot\}$.

pp may be generated by a trusted third party (TTP) or one of the parties

Security

Binding

• Recall: A must not be able to change *m* later on

More formally: \forall PPT $\mathcal{A} \exists$ negl. $\epsilon(\cdot)$ such that

$$\Pr\left[\begin{array}{c} \mathsf{pp} \leftarrow \mathsf{Gen}(1^{\kappa}), (C^*, O^*, O'^*) \leftarrow \mathcal{A}(\mathsf{pp}), \\ m \leftarrow \mathsf{Open}(\mathsf{pp}, C^*, O^*), \\ m' \leftarrow \mathsf{Open}(\mathsf{pp}, C^*, O'^*) : \\ m \neq m' \land m \neq \bot \land m' \neq \bot \end{array}\right] \leq \epsilon(\kappa).$$

Security II

Hiding

Recall: *B* must not be able to learn anything about *m*

More formally: $\forall \mathsf{PPT} \ \mathcal{A} \exists \mathsf{negl.} \epsilon(\cdot) \mathsf{such that}$

$$\Pr\left[\begin{array}{c} \mathsf{pp} \leftarrow \mathsf{Gen}(1^{\kappa}), (m_0, m_1, \mathsf{state}) \leftarrow \mathcal{A}(\mathsf{pp}), \\ b \xleftarrow{R} \{0, 1\}, C_b \leftarrow \mathsf{Commit}(\mathsf{pp}, m_b), \\ b^* \leftarrow \mathcal{A}(\mathsf{state}, C_b) : b = b^* \end{array}\right] \leq \frac{1}{2} + \epsilon(\kappa).$$

Discrete Log Commitment

Scheme

$$Gen(1^{\kappa}): \text{ Set pp} \leftarrow \mathcal{G}^{\kappa} = (\mathbb{G}, p, g) \text{ and return pp.}$$
$$Commit(pp, m): \text{ Return } C \leftarrow g^m, O \leftarrow m$$
$$Open(pp, C, O): \text{ If } C = g^m \text{ return } m \text{ and } \bot \text{ otherwise.}$$

- Binding holds unconditional (only single *m* satisfies $C = g^m$)
- Hiding holds computational under DL (clearly, only for unpredictable messages)

Discrete Log Commitment

Scheme

$$Gen(1^{\kappa}): \text{ Set pp} \leftarrow \mathcal{G}^{\kappa} = (\mathbb{G}, p, g) \text{ and return pp.}$$
$$Commit(pp, m): \text{ Return } C \leftarrow g^m, O \leftarrow m$$
$$Open(pp, C, O): \text{ If } C = g^m \text{ return } m \text{ and } \bot \text{ otherwise.}$$

- Binding holds unconditional (only single *m* satisfies $C = g^m$)
- Hiding holds computational under DL (clearly, only for unpredictable messages)

Pedersen Commitment

Scheme

 $Gen(1^{\kappa}) : \text{ Choose } \mathcal{G}^{\kappa} = (\mathbb{G}, p, g), h \xleftarrow{R} \mathbb{G} \text{ and return } pp \leftarrow (\mathcal{G}^{\kappa}, h).$ $Commit(pp, m) : \text{ Choose } r \xleftarrow{R} \mathbb{Z}_p \text{ and return } C \leftarrow g^m h^r, O \leftarrow (m, r)$ $Open(pp, C, O) : \text{ If } C = g^m h^r \text{ return } m \text{ and } \bot \text{ otherwise.}$

- Binding holds under DL (recall first lecture & exercise)
- Hiding holds unconditional ($\forall C \forall m \exists unique r : C = g^m h^r$)
- Who can generate the pp?

Pedersen Commitment

Scheme

 $Gen(1^{\kappa}): \text{ Choose } \mathcal{G}^{\kappa} = (\mathbb{G}, p, g), h \overset{R}{\leftarrow} \mathbb{G} \text{ and return } pp \leftarrow (\mathcal{G}^{\kappa}, h).$ $Commit(pp, m): \text{ Choose } r \overset{R}{\leftarrow} \mathbb{Z}_p \text{ and return } C \leftarrow g^m h^r, O \leftarrow (m, r)$ $Open(pp, C, O): \text{ If } C = g^m h^r \text{ return } m \text{ and } \bot \text{ otherwise.}$

- Binding holds under DL (recall first lecture & exercise)
- Hiding holds unconditional ($\forall C \forall m \exists unique r : C = g^m h^r$)
- Who can generate the pp?

Unconditional vs. Computational Security

There is no scheme (in the classical setting) providing

- unconditional hiding and
- unconditional binding
- at the same time.

Why? (Recall exercises.)

Unconditional vs. Computational Security

There is no scheme (in the classical setting) providing

- unconditional hiding and
- unconditional binding

at the same time.

Why? (Recall exercises.)

Commitments from Encryption Schemes

Assume an IND-CPA secure encryption scheme

• $\Pi = (Gen, Enc, Dec)$

Commitment Scheme from Π

 $Gen(1^{\kappa})$: Run (sk, pk) \leftarrow $Gen(1^{\kappa})$ and return pk.

Commit(pp, *m*) : Randomly choose *r* and return $C \leftarrow Enc(pk, m; r), O \leftarrow (m, r)$

Open(pp, *C*, *O*) : If C = Enc(pk, m; r) return *m* and \perp otherwise.

Commitments from Encryption Schemes II

- Binding follows from perfect correctness
 - Correctness states

 $\forall (\mathsf{sk},\mathsf{pk}) \leftarrow \mathit{Gen}(1^{\kappa}), \forall m : m = \mathit{Dec}(\mathsf{sk},\mathit{Enc}(\mathsf{pk},m))$

- Breaking binding implies that
 - $Enc(pk, m_0) = Enc(pk, m_1)$, for a fixed pk
 - But then we have m₁ = Dec(sk, Enc(pk, m₀))
- Hiding follows from IND-CPA security
 - \mathcal{A} who breaks hiding can be used to break IND-CPA

Commitments from Encryption Schemes II

- Binding follows from perfect correctness
 - Correctness states

 $\forall (\mathsf{sk},\mathsf{pk}) \leftarrow \mathit{Gen}(1^{\kappa}), \forall m : m = \mathit{Dec}(\mathsf{sk},\mathit{Enc}(\mathsf{pk},m))$

- Breaking binding implies that
 - $Enc(pk, m_0) = Enc(pk, m_1)$, for a fixed pk
 - But then we have $m_1 = Dec(sk, Enc(pk, m_0))$
- Hiding follows from IND-CPA security
 - *A* who breaks hiding can be used to break IND-CPA

Efficiently Verifiable Proofs

- *NP* is the set of decision problems
 - where valid instances have efficiently verifiable proofs
- For any such problem *S* there is a deterministic polynomial time verifier
 - such that for any instance *x* ∈ *S*
 - there exists an algorithm (the prover) that provides a polynomial sized witness w (NP witness)
 - such that the verifier accepts on input (x, w) iff $x \in S$

Example: Graph Isomorphism (GI)

- Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there is a bijection $\pi : V_1 \mapsto V_2$ s.t. $\{u, v\} \in E_1 \iff \{\pi(u), \pi(v)\} \in E_2$
- Language $L_{G_l} = \{(G_1, G_2) | G_1 \cong G_2\}$ is in \mathcal{NP} (witness π)

- What if we allow the verifier to adaptively ask the prover?
 - Does not give a benefit (we can define an equivalent non-interactive verifier that takes a transcript)
- Allow an interactive verifier to be probabilistic?
 - Gives more power yields the class \mathcal{IP} ($\mathcal{IP} = \mathsf{PSPACE}$)
- Consider game between computationally bounded verifier $\mathcal V$ (PPT) and computationally unbounded prover $\mathcal P$
 - Prover convinces the verifier of the validity of some assertion ($x \in S$)

- What if we allow the verifier to adaptively ask the prover?
 - Does not give a benefit (we can define an equivalent non-interactive verifier that takes a transcript)
- Allow an interactive verifier to be probabilistic?
 - Gives more power yields the class $\mathcal{IP}(\mathcal{IP} = \mathsf{PSPACE})$
- Consider game between computationally bounded verifier $\mathcal V$ (PPT) and computationally unbounded prover $\mathcal P$
 - Prover convinces the verifier of the validity of some assertion ($x \in S$)

- What if we allow the verifier to adaptively ask the prover?
 - Does not give a benefit (we can define an equivalent non-interactive verifier that takes a transcript)
- Allow an interactive verifier to be probabilistic?
 - Gives more power yields the class $\mathcal{IP}(\mathcal{IP} = \mathsf{PSPACE})$
- Consider game between computationally bounded verifier $\mathcal V$ (PPT) and computationally unbounded prover $\mathcal P$
 - Prover convinces the verifier of the validity of some assertion ($x \in S$)

Interactive Proofs: Formalization

Interactive Proof System (IPS)

An IPS for a language *L* is an interactive protocol between an unrestricted prover \mathcal{P} and a PPT verifier \mathcal{V} such that on input *x* the following conditions hold:

```
Completeness: \forall x \in L: \Pr[(\mathcal{P}, \mathcal{V})(x) \text{ accepts}] = 1
```

Soundness: $\forall x \notin L, \forall \mathcal{P}^*: \Pr[(\mathcal{P}^*, \mathcal{V})(x) \text{ accepts}] \leq \frac{1}{2}$

- Perfect completeness (imperfect may have error probability)
- Interactive arguments: computational soundness (*P** is PPT)
- Reduce soundness error by sequential/parallel repetition

Interactive Proofs: Formalization

Interactive Proof System (IPS)

An IPS for a language *L* is an interactive protocol between an unrestricted prover \mathcal{P} and a PPT verifier \mathcal{V} such that on input *x* the following conditions hold:

```
Completeness: \forall x \in L: \Pr[(\mathcal{P}, \mathcal{V})(x) \text{ accepts}] = 1
```

Soundness: $\forall x \notin L, \forall \mathcal{P}^*: \Pr[(\mathcal{P}^*, \mathcal{V})(x) \text{ accepts}] \leq \frac{1}{2}$

- Perfect completeness (imperfect may have error probability)
- Interactive arguments: computational soundness (*P*^{*} is PPT)
- Reduce soundness error by sequential/parallel repetition

Example: Graph Non-Isomorphism (GNI)

- $L_{GNI} = \{(G_1, G_2) | |G_1| = |G_2|, G_1 \not\cong G_2\}$
- Unknown if $L_{GNI} \in \mathcal{NP}$ (clearly in co- \mathcal{NP}), but it is in \mathcal{IP}

IP for *L_{GNI}*

Let $x = (G_1, G_2)$ be the common input \mathcal{V} : Pick $i \leftarrow^{\mathbb{P}} \{1, 2\}$, randomly permute vertices of G_i and send \mathcal{P} : Find $b \in \{1, 2\}$ s.t. $G_i \cong G_b$ and send b (note that \mathcal{P} is unb \mathcal{V} : Accept if b = i

- If $G_1 \not\cong G_2$, any permutation of G_i uniquely determines *i*
- If $G_1 \cong G_2$, distribution of G_i independent of *i*

Example: Graph Non-Isomorphism (GNI)

- $L_{GNI} = \{(G_1, G_2) | |G_1| = |G_2|, G_1 \not\cong G_2\}$
- Unknown if $L_{GNI} \in \mathcal{NP}$ (clearly in co- \mathcal{NP}), but it is in \mathcal{IP}

IP for *L*_{GNI}

Let $x = (G_1, G_2)$ be the common input

- \mathcal{V} : Pick *i* \leftarrow^{R} {1, 2}, randomly permute vertices of *G_i* and send to \mathcal{P}
- \mathcal{P} : Find $b \in \{1, 2\}$ s.t. $G_i \cong G_b$ and send b (note that \mathcal{P} is unbounded)

 \mathcal{V} : Accept if b = i

- If $G_1 \not\cong G_2$, any permutation of G_i uniquely determines *i*
- If $G_1 \cong G_2$, distribution of G_i independent of *i*

Example: Graph Non-Isomorphism (GNI)

- $L_{GNI} = \{(G_1, G_2) | |G_1| = |G_2|, G_1 \not\cong G_2\}$
- Unknown if $L_{GNI} \in \mathcal{NP}$ (clearly in co- \mathcal{NP}), but it is in \mathcal{IP}

IP for *L*_{GNI}

Let $x = (G_1, G_2)$ be the common input

 \mathcal{V} : Pick *i* \leftarrow^{R} {1, 2}, randomly permute vertices of *G_i* and send to \mathcal{P}

 \mathcal{P} : Find $b \in \{1, 2\}$ s.t. $G_i \cong G_b$ and send b (note that \mathcal{P} is unbounded)

 \mathcal{V} : Accept if b = i

- If $G_1 \not\cong G_2$, any permutation of G_i uniquely determines *i*
- If $G_1 \cong G_2$, distribution of G_i independent of i

- Does proving the validity of an assertion always require giving away extra knowledge?
 - No, captured by zero-knowledge
- No adversary can gain anything from a prover (beyond being convinced of the validity of an assertion)
- How to model this requirement?
 - All an adversarial verifier can learn from interacting with the prover can be learned based on the assertion itself
 - Transcripts of real interactions not distinguishable from "simulated" interactions (on only public input)

- Does proving the validity of an assertion always require giving away extra knowledge?
 - No, captured by zero-knowledge
- No adversary can gain anything from a prover (beyond being convinced of the validity of an assertion)
- How to model this requirement?
 - All an adversarial verifier can learn from interacting with the prover can be learned based on the assertion itself
 - Transcripts of real interactions not distinguishable from "simulated" interactions (on only public input)

- Does proving the validity of an assertion always require giving away extra knowledge?
 - No, captured by zero-knowledge
- No adversary can gain anything from a prover (beyond being convinced of the validity of an assertion)
- How to model this requirement?
 - All an adversarial verifier can learn from interacting with the prover can be learned based on the assertion itself
 - Transcripts of real interactions not distinguishable from "simulated" interactions (on only public input)

- Alice knows a secret word to open a magic door in a cave
- Alices wants to convince Bob that she knows the secret
- But Alice does not want to reveal the secret word, nor for anyone else to find out about her skills (paparazzi)

- 1. Alice randomly chooses path A or B, while Bob waits outside.
- 2. Bob chooses an exit path.
- 3. Alice reliably appears at the exit Bob names.
- 4. An observer Otto won't be convinced prior agreement?

- 1. Alice randomly chooses path A or B, while Bob waits outside.
- 2. Bob chooses an exit path.
- 3. Alice reliably appears at the exit Bob names.
- 4. An observer Otto won't be convinced prior agreement?

- 1. Alice randomly chooses path A or B, while Bob waits outside.
- 2. Bob chooses an exit path.
- 3. Alice reliably appears at the exit Bob names.
- 4. An observer Otto won't be convinced prior agreement?

- 1. Alice randomly chooses path A or B, while Bob waits outside.
- 2. Bob chooses an exit path.
- 3. Alice reliably appears at the exit Bob names.
- 4. An observer Otto won't be convinced prior agreement?

Zero-Knowledge Proofs: Formalization

Perfect Zero-Knowledge

An IPS for a language *L* is said to provide perfect zero-knowledge, if for every PPT V^* there exists a PPT simulator S s.t.

 $(\mathcal{P}, \mathcal{V}^*)(x) \equiv \mathcal{S}(x), \text{ for every } x \in S$

- Statistical ZK: distributions are statistically close
- Computational ZK: distributions cannot be told apart by efficient distinguishers computationally indistinguishable

Zero-Knowledge Proofs: Formalization

Perfect Zero-Knowledge

An IPS for a language *L* is said to provide perfect zero-knowledge, if for every PPT V^* there exists a PPT simulator S s.t.

 $(\mathcal{P}, \mathcal{V}^*)(x) \equiv \mathcal{S}(x), \text{ for every } x \in S$

- Statistical ZK: distributions are statistically close
- Computational ZK: distributions cannot be told apart by efficient distinguishers computationally indistinguishable

Zero-Knowledge Proofs: Formalization

ZK

- We do not know how V* exactly behaves
- *S* needs to exist for arbitrary *V**
- So, we consider black-box access to *V*^{*} in the simulation
- Honest-verifier ZK
 - We assume *V*^{*} behaves honestly
 - Consequently, S ignores V* in the simulation

ZKP for GI

Let the common input be a pair of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ and let φ be an arbitrary isomorphism between them

- \mathcal{P} : Choose random permutation π and send $G' = (V_2, E)$ with $E = \{(\pi(u), \pi(v)) | \{u, v\} \in E_2\}$ to \mathcal{V} (if $G_1 \cong G_2$ this graph is isomorphic to both)
- \mathcal{V} : Choose $b \leftarrow \{1, 2\}$ and ask \mathcal{P} to reveal an isomorphism between G' and G_b
- \mathcal{P} : If $b = 2 \text{ send } \psi \leftarrow \pi$, otherwise send $\psi \leftarrow \pi \circ \varphi$ to \mathcal{V}

 $\mathcal{V}:~\mathsf{If}~\mathsf{received}~\psi$ is isomorphism between G' and G_b output <code>accept</code> and <code>reject</code> otherwise

 Honest prover always succeeds; cheating prover will succeed with prob. 1/2 (correctly guess the bit of V)

ZKP for GI

Let the common input be a pair of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ and let φ be an arbitrary isomorphism between them

- \mathcal{P} : Choose random permutation π and send $G' = (V_2, E)$ with $E = \{(\pi(u), \pi(v)) | \{u, v\} \in E_2\}$ to \mathcal{V} (if $G_1 \cong G_2$ this graph is isomorphic to both)
- \mathcal{V} : Choose $b \leftarrow \{1, 2\}$ and ask \mathcal{P} to reveal an isomorphism between G' and G_b
- \mathcal{P} : If b = 2 send $\psi \leftarrow \pi$, otherwise send $\psi \leftarrow \pi \circ \varphi$ to \mathcal{V}

 \mathcal{V} : If received ψ is isomorphism between G' and G_b output accept and reject otherwise

 Honest prover always succeeds; cheating prover will succeed with prob. 1/2 (correctly guess the bit of V)

- The GI protocol is honest-verifier ZK
 - S chooses b and ψ uniformly at random and outputs (G', b, ψ) with G' being ψ applied to G_b
- The GI protocol is perfect ZK
 - Let *b*^{*} be the random choice of *V*^{*}
 - S selects $b \leftarrow^{\mathbb{R}} \{1, 2\}$ (hoping \mathcal{V}^* selects $b^* = b$)
 - S constructs G' by permuting G_b under random ψ
 - If $b^* \neq b$, S restarts, otherwise output (G', b, ψ)
 - Output of S is perfectly indistinguishable from real (note b* is independent of b) and we expect a valid transcript every two runs (poly time S)

- The GI protocol is honest-verifier ZK
 - S chooses b and ψ uniformly at random and outputs (G', b, ψ) with G' being ψ applied to G_b
- The GI protocol is perfect ZK
 - Let *b*^{*} be the random choice of *V*^{*}
 - S selects $b \leftarrow \{1, 2\}$ (hoping \mathcal{V}^* selects $b^* = b$)
 - S constructs G' by permuting G_b under random ψ
 - If $b^* \neq b$, S restarts, otherwise output (G', b, ψ)
 - Output of S is perfectly indistinguishable from real (note b* is independent of b) and we expect a valid transcript every two runs (poly time S)

Zero-Knowledge for \mathcal{NP}

- ZK proofs exist for all $L \in \mathcal{NP}$
- Recall *NP*-completeness
 - A problem is \mathcal{NP} complete if it is in \mathcal{NP}
 - and every problem in \mathcal{NP} is poly time reducible to it
- ZK proof for *NP*-complete language **L** (e.g., graph 3-coloring)
 - Reduce L to L (and the witness)
 - Run ZK proof for L

Proofs of Knowledge

- ZKPs only interested in the validity of the assertion itself
- Proofs of knowledge (PoKs) capture IPs where *P* asserts knowledge of some object (e.g., a particular isomorphism)
- What does it mean for a machine *M* to know something?
 - There exists an efficient machine *E*, which, given black-box access to *M* can extract *M*'s "knowledge" (a string)
- PoK: Whenever there is a P* that convinces V to know something, we can extract this string from P*
- Stronger notion of soundness

Proofs of Knowledge

- ZKPs only interested in the validity of the assertion itself
- Proofs of knowledge (PoKs) capture IPs where *P* asserts knowledge of some object (e.g., a particular isomorphism)
- What does it mean for a machine *M* to know something?
 - There exists an efficient machine *E*, which, given black-box access to *M* can extract *M*'s "knowledge" (a string)
- PoK: Whenever there is a *P** that convinces *V* to know something, we can extract this string from *P**
- Stronger notion of soundness

Proofs of Knowledge: Formalization

- Consider an \mathcal{NP} relation $R = \{(x, w) | W(x, w) = \texttt{accept}\}$ where W is a PT algorithm deciding membership in R
- We can write $L_R = \{x \mid \exists w \text{ s.t. } (x, w) \in R\}$

Proof of Knowledge (PoK)

Let $(\mathcal{P}, \mathcal{V})$ be an IPS for L_R . Then, $(\mathcal{P}, \mathcal{V})$ is a PoK with knowledge error ρ if there exists a PPT knowledge extractor \mathcal{E} such that for any $x \in L_R$ and any PPT \mathcal{P}^* with $\delta = \Pr[(\mathcal{P}^*, \mathcal{V})(x) \text{ accepts}] > \rho$, we have that

$$\mathsf{Pr}[w \leftarrow \mathcal{E}^{_{\mathcal{P}^*}}(x) : \mathsf{R}(x,w) = \mathtt{accept}] \geq \mathsf{poly}(\delta -
ho)$$

Proofs of Knowledge: Formalization

- Consider an NP relation R = {(x, w) | W(x, w) = accept} where W is a PT algorithm deciding membership in R
- We can write $L_R = \{x \mid \exists w \text{ s.t. } (x, w) \in R\}$

Proof of Knowledge (PoK)

Let $(\mathcal{P}, \mathcal{V})$ be an IPS for L_R . Then, $(\mathcal{P}, \mathcal{V})$ is a PoK with knowledge error ρ if there exists a PPT knowledge extractor \mathcal{E} such that for any $x \in L_R$ and any PPT \mathcal{P}^* with $\delta = \Pr[(\mathcal{P}^*, \mathcal{V})(x) \operatorname{accepts}] > \rho$, we have that

$$\mathsf{Pr}[w \leftarrow \mathcal{E}^{_{\mathcal{P}^*}}(x) : \mathsf{R}(x,w) = \mathtt{accept}] \geq \mathsf{poly}(\delta -
ho)$$

- Non-interactive ZK (Single message)
 - In the common reference string model
 - General constructions very inefficient
- Witness indistinguishability (Relaxation of ZK)
 - For \mathcal{NP} relation R no \mathcal{V}^* can distinguish if \mathcal{P} uses witness w_1 or w_2 to x with $(x, w_i) \in R$ for $i \in \{1, 2\}$
- Public coin (e.g., GI) vs. private coin (e.g., GNI our version is not ZK but a slightly modified one)
- What we have seen so far is mainly of theoretical interest
- Will see (NI)-ZKPoKs that are useful and efficient

- Non-interactive ZK (Single message)
 - In the common reference string model
 - General constructions very inefficient
- Witness indistinguishability (Relaxation of ZK)
 - For \mathcal{NP} relation R no \mathcal{V}^* can distinguish if \mathcal{P} uses witness w_1 or w_2 to x with $(x, w_i) \in R$ for $i \in \{1, 2\}$
- Public coin (e.g., GI) vs. private coin (e.g., GNI our version is not ZK but a slightly modified one)
- What we have seen so far is mainly of theoretical interest
- Will see (NI)-ZKPoKs that are useful and efficient

- Non-interactive ZK (Single message)
 - In the common reference string model
 - General constructions very inefficient
- Witness indistinguishability (Relaxation of ZK)
 - For \mathcal{NP} relation R no \mathcal{V}^* can distinguish if \mathcal{P} uses witness w_1 or w_2 to x with $(x, w_i) \in R$ for $i \in \{1, 2\}$
- Public coin (e.g., GI) vs. private coin (e.g., GNI our version is not ZK but a slightly modified one)
- What we have seen so far is mainly of theoretical interest
- Will see (NI)-ZKPoKs that are useful and efficient

- Non-interactive ZK (Single message)
 - In the common reference string model
 - General constructions very inefficient
- Witness indistinguishability (Relaxation of ZK)
 - For \mathcal{NP} relation R no \mathcal{V}^* can distinguish if \mathcal{P} uses witness w_1 or w_2 to x with $(x, w_i) \in R$ for $i \in \{1, 2\}$
- Public coin (e.g., GI) vs. private coin (e.g., GNI our version is not ZK but a slightly modified one)
- What we have seen so far is mainly of theoretical interest
- Will see (NI)-ZKPoKs that are useful and efficient

- Non-interactive ZK (Single message)
 - In the common reference string model
 - General constructions very inefficient
- Witness indistinguishability (Relaxation of ZK)
 - For \mathcal{NP} relation R no \mathcal{V}^* can distinguish if \mathcal{P} uses witness w_1 or w_2 to x with $(x, w_i) \in R$ for $i \in \{1, 2\}$
- Public coin (e.g., GI) vs. private coin (e.g., GNI our version is not ZK but a slightly modified one)
- What we have seen so far is mainly of theoretical interest
- Will see (NI)-ZKPoKs that are useful and efficient

Questions?

Further Reading I

[1] Mihir Bellare and Oded Goldreich.

On defining proofs of knowledge.

In Advances in Cryptology - CRYPTO '92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings, pages 390–420, 1992.

[2] Ronald Cramer, Ivan Damgård, and Philip D. MacKenzie.

Efficient zero-knowledge proofs of knowledge without intractability assumptions.

In Public Key Cryptography, Third International Workshop on Practice and Theory in Public Key Cryptography, PKC 2000, Melbourne, Victoria, Australia, January 18-20, 2000, Proceedings, pages 354–373, 2000.

[3] Ivan Damgard.

On Σ -protocols.

http://cs.au.dk/~ivan/Sigma.pdf.

[4] Juan A. Garay, Philip D. MacKenzie, and Ke Yang.

Strengthening zero-knowledge protocols using signatures.

J. Cryptology, 19(2):169–209, 2006.

Further Reading II

- [5] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi.
 Zkboo: Faster zero-knowledge for boolean circuits.
 In USENIX Security, 2016.
- [6] Oded Goldreich.

Computational Complexity - A Conceptual Perspective.

Cambridge University Press, 2008.

[7] Jens Groth and Amit Sahai.

Efficient non-interactive proof systems for bilinear groups.

Cryptology ePrint Archive, Report 2007/155, 2007.

http://eprint.iacr.org/2007/155.

[8] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.

Zero-knowledge from secure multiparty computation.

In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 21–30, 2007.