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Commitment Schemes
ö



Commitments - Informal Idea

Imagine two parties A and B

Amakes some (secret) decisionm

Awants to later convince B that decisionmwas made

Amust not be able to changem later on
Bmust not be able to learn anything aboutm before

Real world analogy

Awritesm on a piece of paper,

puts it in a box and locks the box

A hands the locked box to B

Later, A can give the key for the box to B
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Commitment Scheme

Commitment Scheme

Gen(1κ): This probabilistic algorithm on input of κ, outputs (public) parameters
pp.

Commit(pp,m): This (probabilistic) algorithm on input pp and messagem ∈M,
outputs commitment C and opening information O.

Open(pp, C,O) : This deterministic algorithm on input pp C and O returns
m ∈ M ∪ {⊥}.

pp may be generated by a trusted third party (TTP) or one of the parties
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Security

Binding

Recall: Amust not be able to changem later on

More formally: ∀ PPTA∃ negl. ϵ(·) such that

Pr


pp← Gen(1κ), (C∗,O∗,O′∗)← A(pp),

m← Open(pp, C∗,O∗),

m′ ← Open(pp, C∗,O′∗) :

m ̸= m′ ∧ m ̸= ⊥ ∧ m′ ̸= ⊥

 ≤ ϵ(κ).
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Security II

Hiding

Recall: Bmust not be able to learn anything aboutm

More formally: ∀ PPTA∃ negl. ϵ(·) such that

Pr

 pp← Gen(1κ), (m0,m1, state)← A(pp),

b←R {0, 1}, Cb ← Commit(pp,mb),

b∗ ← A(state, Cb) : b = b∗

 ≤ 1
2
+ ϵ(κ).
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Discrete Log Commitment

Scheme

Gen(1κ) : Set pp← Gκ = (G, p, g) and return pp.

Commit(pp,m) : Return C← gm, O← m

Open(pp, C,O) : If C = gm returnm and⊥ otherwise.

Binding holds unconditional (only singlem satisfies C = gm)

Hiding holds computational under DL (clearly, only for unpredictable messages)

6 / 29



Discrete Log Commitment

Scheme

Gen(1κ) : Set pp← Gκ = (G, p, g) and return pp.

Commit(pp,m) : Return C← gm, O← m

Open(pp, C,O) : If C = gm returnm and⊥ otherwise.

Binding holds unconditional (only singlem satisfies C = gm)

Hiding holds computational under DL (clearly, only for unpredictable messages)

6 / 29



Pedersen Commitment

Scheme

Gen(1κ) : Choose Gκ = (G, p, g), h←R G and return pp← (Gκ, h).

Commit(pp,m) : Choose r←R Zp and return C← gmhr, O← (m, r)

Open(pp, C,O) : If C = gmhr returnm and⊥ otherwise.

Binding holds under DL (recall first lecture & exercise)

Hiding holds unconditional (∀C ∀m ∃unique r : C = gmhr)

Who can generate the pp?
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Unconditional vs. Computational Security

There is no scheme (in the classical setting) providing

unconditional hiding and

unconditional binding

at the same time.

Why? (Recall exercises.)
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Commitments from Encryption Schemes

Assume an IND-CPA secure encryption scheme

Π = (Gen, Enc,Dec)

Commitment Scheme from Π

Gen(1κ) : Run (sk, pk)← Gen(1κ) and return pk.

Commit(pp,m) : Randomly choose r and return C← Enc(pk,m; r),O← (m, r)

Open(pp, C,O) : If C = Enc(pk,m; r) returnm and⊥ otherwise.

9 / 29



Commitments from Encryption Schemes II

Binding follows from perfect correctness

Correctness states

∀(sk, pk)← Gen(1κ),∀m : m = Dec(sk, Enc(pk,m))

Breaking binding implies that
Enc(pk,m0) = Enc(pk,m1), for a fixed pk
But then we havem1 = Dec(sk, Enc(pk,m0))

Hiding follows from IND-CPA security

Awho breaks hiding can be used to break IND-CPA
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Interactive Proofs
�



Efficiently Verifiable Proofs

NP is the set of decision problems

where valid instances have efficiently verifiable proofs

For any such problem S there is a deterministic polynomial time verifier

such that for any instance x ∈ S
there exists an algorithm (the prover) that provides a polynomial sized
witnessw (NP witness)
such that the verifier accepts on input (x,w) iff x ∈ S
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Example: Graph Isomorphism (GI)

4

1

3

2

G1

∼=

3

1

4

2

G2

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a bijection
π : V1 7→ V2 s.t.

{u, v} ∈ E1 ⇐⇒ {π(u),π(v)} ∈ E2

Language LGI = {(G1,G2)|G1 ∼= G2} is inNP (witness π)
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Interactive Proofs

What if we allow the verifier to adaptively ask the prover?

Does not give a benefit (we can define an equivalent non-interactive verifier
that takes a transcript)

Allow an interactive verifier to be probabilistic?

Gives more power - yields the class IP (IP = PSPACE)

Consider game between computationally bounded verifier V (PPT) and
computationally unbounded proverP

Prover convinces the verifier of the validity of some assertion (x ∈ S)
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Interactive Proofs: Formalization

Interactive Proof System (IPS)

An IPS for a language L is an interactive protocol between an unrestricted proverP
and a PPT verifier V such that on input x the following conditions hold:

Completeness: ∀x ∈ L: Pr[(P ,V)(x) accepts] = 1

Soundness: ∀x ̸∈ L,∀P∗: Pr[(P∗,V)(x) accepts] ≤ 1
2

Perfect completeness (imperfect may have error probability)

Interactive arguments: computational soundness (P∗ is PPT)

Reduce soundness error by sequential/parallel repetition
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Example: Graph Non-Isomorphism (GNI)

LGNI = {(G1,G2)| |G1| = |G2|,G1 ̸∼= G2}

Unknown if LGNI ∈ NP (clearly in co-NP), but it is in IP

IP for LGNI
Let x = (G1,G2) be the common input

V : Pick i←R {1, 2}, randomly permute vertices of Gi and send toP
P : Find b ∈ {1, 2} s.t. Gi ∼= Gb and send b (note thatP is unbounded)
V : Accept if b = i

If G1 ̸∼= G2, any permutation of Gi uniquely determines i

If G1 ∼= G2, distribution of Gi independent of i
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Zero-Knowledge Proofs
?



Zero-Knowledge Proofs

Does proving the validity of an assertion always require giving away extra
knowledge?

No, captured by zero-knowledge

No adversary can gain anything from a prover (beyond being convinced of the
validity of an assertion)

How to model this requirement?

All an adversarial verifier can learn from interacting with the prover can be
learned based on the assertion itself
Transcripts of real interactions not distinguishable from "simulated"
interactions (on only public input)
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Story of Ali Baba

Alice knows a secret word to open a magic door in a cave

Alices wants to convince Bob that she knows the secret

But Alice does not want to reveal the secret word, nor
for anyone else to find out about her skills (paparazzi)
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Story of Ali Baba

http://en.wikipedia.org/

1. Alice randomly chooses path A or B, while Bob waits outside.

2. Bob chooses an exit path.

3. Alice reliably appears at the exit Bob names.

4. An observer Otto won’t be convinced – prior agreement?
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Zero-Knowledge Proofs: Formalization

Perfect Zero-Knowledge

An IPS for a language L is said to provide perfect zero-knowledge, if for every PPT V∗
there exists a PPT simulator S s.t.

(P ,V∗)(x) ≡ S(x), for every x ∈ S

Statistical ZK: distributions are statistically close

Computational ZK: distributions cannot be told apart by efficient distinguishers -
computationally indistinguishable
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Zero-Knowledge Proofs: Formalization

ZK

We do not know how V∗ exactly behaves
S needs to exist for arbitrary V∗

So, we consider black-box access to V∗ in the simulation

Honest-verifier ZK

We assume V∗ behaves honestly
Consequently, S ignores V∗ in the simulation
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Example: ZK Proof for GI

ZKP for GI
Let the common input be a pair of graphs G1 = (V1, E1) and G2 = (V2, E2) and let φ be an arbitrary
isomorphism between them

P : Choose random permutation π and send G′ = (V2, E) with
E = {(π(u),π(v))|{u, v} ∈ E2} to V (if G1 ∼= G2 this graph is isomorphic to both)

V : Choose b←R {1, 2} and askP to reveal an isomorphism between G′ and Gb
P : If b = 2 send ψ ← π, otherwise send ψ ← π ◦ φ to V
V : If received ψ is isomorphism between G′ and Gb output accept and reject otherwise

Honest prover always succeeds; cheating prover will succeed with prob. 1/2
(correctly guess the bit of V)
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Example: ZK Proof for GI

The GI protocol is honest-verifier ZK

S chooses b and ψ uniformly at random and outputs (G′, b,ψ) with G′ being ψ
applied to Gb

The GI protocol is perfect ZK

Let b∗ be the random choice of V∗

S selects b←R {1, 2} (hoping V∗ selects b∗ = b)
S constructs G′ by permuting Gb under random ψ

If b∗ ̸= b, S restarts, otherwise output (G′, b,ψ)
Output of S is perfectly indistinguishable from real (note b∗ is independent of
b) and we expect a valid transcript every two runs (poly time S)
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Zero-Knowledge forNP

ZK proofs exist for all L ∈ NP

RecallNP-completeness

A problem isNP complete if it is inNP
and every problem inNP is poly time reducible to it

ZK proof forNP-complete language L (e.g., graph 3-coloring)

Reduce L to L (and the witness)
Run ZK proof for L
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Proofs of Knowledge

ZKPs only interested in the validity of the assertion itself

Proofs of knowledge (PoKs) capture IPs whereP asserts knowledge of some
object (e.g., a particular isomorphism)

What does it mean for a machineM to know something?

There exists an efficient machine E , which, given black-box access toM can
extractM’s "knowledge" (a string)

PoK: Whenever there is aP∗ that convinces V to know something, we can extract
this string fromP∗

Stronger notion of soundness

24 / 29



Proofs of Knowledge

ZKPs only interested in the validity of the assertion itself

Proofs of knowledge (PoKs) capture IPs whereP asserts knowledge of some
object (e.g., a particular isomorphism)

What does it mean for a machineM to know something?

There exists an efficient machine E , which, given black-box access toM can
extractM’s "knowledge" (a string)

PoK: Whenever there is aP∗ that convinces V to know something, we can extract
this string fromP∗

Stronger notion of soundness

24 / 29



Proofs of Knowledge: Formalization

Consider anNP relation R = {(x,w)|W(x,w) = accept}whereW is a PT
algorithm deciding membership in R

We can write LR = {x| ∃w s.t. (x,w) ∈ R}

Proof of Knowledge (PoK)

Let (P ,V) be an IPS for LR. Then, (P ,V) is a PoK with knowledge error ρ if there
exists a PPT knowledge extractor E such that for any x ∈ LR and any PPTP∗ with
δ = Pr[(P∗,V)(x) accepts] > ρ, we have that

Pr[w← EP∗(x) : R(x,w) = accept] ≥ poly(δ − ρ)
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Some Notes

Non-interactive ZK (Single message)

In the common reference string model
General constructions very inefficient

Witness indistinguishability (Relaxation of ZK)

ForNP relation R no V∗ can distinguish ifP uses witnessw1 orw2 to x with
(x,wi) ∈ R for i ∈ {1, 2}

Public coin (e.g., GI) vs. private coin (e.g., GNI - our version is not ZK - but a slightly
modified one)

What we have seen so far is mainly of theoretical interest

Will see (NI)-ZKPoKs that are useful and efficient
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Questions?
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