Ty,

SCIENCE
PASSION
TECHNOLOGY

Modern Public Key Cryptography

Commitments and Zero-Knowledge

Daniel Kales
based on slides by Sebastian Ramacher and David Derler

> www.iaik.tugraz.at

Outline

B Commitment Schemes

= |nteractive Proofs

© Zero-Knowledge Proofs

29

Commitment Schemes

Commitments - Informal Idea

Imagine two partiesAand B
= A makes some (secret) decision m
= Awants to later convince B that decision m was made

= Amust not be able to change m later on
m B must not be able to learn anything about m before

2/29

Commitments - Informal Idea

Imagine two partiesAand B
= A makes some (secret) decision m
= Awants to later convince B that decision m was made

= Amust not be able to change m later on
m B must not be able to learn anything about m before

Real world analogy
= Awrites mon a piece of paper,

m putsitinaboxand locks the box
= Ahands the locked box to B

m Later, A can give the key for the box to B

2/29

Commitment Scheme

Commitment Scheme

Gen(1"): This probabilistic algorithm on input of , outputs (public) parameters
pPp.

Commit(pp, m): This (probabilistic) algorithm on input pp and message m € M,
outputs commitment C and opening information O.

Open(pp, C,0) : This deterministic algorithm on input pp C and O returns
meMU{L}.

= pp may be generated by a trusted third party (TTP) or one of the parties

/29

Security

Binding
= Recall: Amust not be able to change m later on

More formally: V PPT .4 3 negl. () such that

pp + Gen(1%),(C*,0%,0™) + A(pp),
; m < Open(pp, C*, 0*),
r
m’ < Open(pp, C*,0™*) :

m#m Am#1L Am#L

29

Security Il
Hiding
= Recall: Bmust not be able to learn anything about m

More formally: V PPT A 3 negl. ¢(-) such that

pp + Gen(1%), (my, my, state) < A(pp),
Pr b <~{0,1},Cy <= Commit(pp, mp),
b* « A(state,Cp) : b = b*

5/29

Discrete Log Commitment

Gen(1") : Setpp < G" = (G, p,g) and return pp.
Commit(pp,m) : ReturnC < g™,0 « m

Open(pp, C,0) : If C = g™ return m and L otherwise.

6/29

Discrete Log Commitment

Gen(1") : Setpp < G" = (G, p,g) and return pp.
Commit(pp,m) : ReturnC < g™,0 « m

Open(pp, C,0) : If C = g™ return m and L otherwise.

= Binding holds unconditional (only single m satisfies C = g")

= Hiding holds computational under DL (clearly, only for unpredictable messages)

/29

Pedersen Commitment

Gen(17) : Choose G* = (G, p,g), h <G and return pp < (G", h).
Commit(pp, m) : Choose r <*Z, and return C < g™h", 0 < (m,r)

Open(pp,C,0) : If C = g™h" return m and L otherwise.

7/29

Pedersen Commitment

Gen(17) : Choose G* = (G, p,g), h <~G and return pp + (G*, h).
Commit(pp, m) : Choose r <*Z, and return C < g™h", 0 < (m,r)

Open(pp,C,0) : If C = g™h" return m and L otherwise.

= Binding holds under DL (recall first lecture & exercise)
= Hiding holds unconditional (VC Vm Juniquer : C = g™h")

= Who can generate the pp?

/29

Unconditional vs. Computational Security

There is no scheme (in the classical setting) providing
= unconditional hiding and
= unconditional binding

at the same time.

3/29

Unconditional vs. Computational Security

There is no scheme (in the classical setting) providing
= unconditional hiding and
= unconditional binding

at the same time.

Why? (Recall exercises.)

3/29

Commitments from Encryption Schemes

Assume an IND-CPA secure encryption scheme

= [1=(Gen,Enc,Dec)

Commitment Scheme from I

Gen(1") : Run (sk, pk) <— Gen(1") and return pk.
Commit(pp, m) : Randomly choose r and return C <— Enc(pk,m; r), 0 < (m,r)

Open(pp, C,0) : If C = Enc(pk, m; r) return m and L otherwise.

/29

Commitments from Encryption Schemes Il

= Binding follows from perfect correctness

m Correctness states
V(sk, pk) < Gen(1"),¥m : m = Dec(sk, Enc(pk, m))

m Breaking binding implies that
= Enc(pk, mo) = Enc(pk, m1), for a fixed pk
= Butthen we have m; = Dec(sk, Enc(pk, m))

10

29

Commitments from Encryption Schemes Il

= Binding follows from perfect correctness

m Correctness states
V(sk, pk) < Gen(1"),¥m : m = Dec(sk, Enc(pk, m))

m Breaking binding implies that
= Enc(pk, mo) = Enc(pk, m1), for a fixed pk
= Butthen we have m; = Dec(sk, Enc(pk, m))

= Hiding follows from IND-CPA security

= Awho breaks hiding can be used to break IND-CPA

10

29

Interactive Proofs
L o

Efficiently Verifiable Proofs

= NPisthe set of decision problems

where valid instances have efficiently verifiable proofs

® For any such problem S there is a deterministic polynomial time verifier

such that for any instancex € S

there exists an algorithm (the prover) that provides a polynomial sized
witness w (NP witness)

such that the verifier accepts on input (x,w) iffx € S

11/29

Example: Graph Isomorphism (Gl)

1

S

l G2

= Two graphs G; = (V4, E1) and G, = (V,, E;) are isomorphic if there is a bijection
m:Vi— Vst

{u,v} € By <= {n(u),n(v)} € E,

= Languagelg = {(G1,G,)|G1 = G, } isin NP (witness)

12/29

Interactive Proofs

What if we allow the verifier to adaptively ask the prover?

= Does not give a benefit (we can define an equivalent non-interactive verifier
that takes a transcript)

3/29

Interactive Proofs

What if we allow the verifier to adaptively ask the prover?

= Does not give a benefit (we can define an equivalent non-interactive verifier
that takes a transcript)

Allow an interactive verifier to be probabilistic?

m Gives more power - yields the class ZP (ZP = PSPACE)

3/29

Interactive Proofs

= What if we allow the verifier to adaptively ask the prover?

= Does not give a benefit (we can define an equivalent non-interactive verifier
that takes a transcript)

= Allow an interactive verifier to be probabilistic?
m Gives more power - yields the class ZP (ZP = PSPACE)

= Consider game between computationally bounded verifier V (PPT) and
computationally unbounded prover P

m Prover convinces the verifier of the validity of some assertion (x € S)

Interactive Proofs: Formalization

Interactive Proof System (IPS)

An IPS for a language L is an interactive protocol between an unrestricted prover P
and a PPT verifier V such that on input x the following conditions hold:

Completeness: Vx € L: Pr[(P,V)(x) accepts] =1
Soundness: Vx ¢ L,YP*: Pr[(P*,V)(x) accepts] < 1

14/29

Interactive Proofs: Formalization

Interactive Proof System (IPS)

An IPS for a language L is an interactive protocol between an unrestricted prover P
and a PPT verifier V such that on input x the following conditions hold:

Completeness: Vx € L: Pr[(P,V)(x) accepts] =1
Soundness: Vx ¢ L,YP*: Pr[(P*,V)(x) accepts] < 1

= Perfect completeness (imperfect may have error probability)
= Interactive arguments: computational soundness (P* is PPT)

= Reduce soundness error by sequential/parallel repetition

14/29

Example: Graph Non-Isomorphism (GNI)

Loy = {(G1, Gy)| |G1| = |G2l, G1 2 Ga}
Unknown if Ly, € NP (clearly in co-NP), but it is in ZP

5/29

Example: Graph Non-Isomorphism (GNI)

= Loy = {(G1,G2)||G1] = |Ga|,G1 2 Ga}
= Unknown if Lgy, € NP (clearly in co-N"P), butitisin ZP

IP for LGNI

Let x = (G1, G2) be the common input
V: Picki &{1,2}, randomly permute vertices of G; and send to P
P: Findb € {1,2} s.t. G; = G, and send b (note that P is unbounded)
V: Acceptifb =i

15/29

Example: Graph Non-Isomorphism (GNI)

= Loy = {(G1,G2)||G1] = |Ga|,G1 2 Ga}
= Unknown if Lgy, € NP (clearly in co-N"P), butitisin ZP

IP for LGNI

Let x = (G1, G2) be the common input
V: Pick i £-{1,2}, randomly permute vertices of G; and send to P
P: Findb € {1,2} s.t. G; = G, and send b (note that P is unbounded)
V: Acceptifb =i

. If G; 2 Gy, any permutation of G; uniquely determines

= |f G; = Gy, distribution of G; independent of i

15/29

Zero-Knowledge Proofs

(2]

Zero-Knowledge Proofs

= Does proving the validity of an assertion always require giving away extra
knowledge?

= No, captured by zero-knowledge

16/29

Zero-Knowledge Proofs

= Does proving the validity of an assertion always require giving away extra
knowledge?

= No, captured by zero-knowledge

= No adversary can gain anything from a prover (beyond being convinced of the
validity of an assertion)

16/29

Zero-Knowledge Proofs

= Does proving the validity of an assertion always require giving away extra
knowledge?

= No, captured by zero-knowledge

= No adversary can gain anything from a prover (beyond being convinced of the
validity of an assertion)

= How to model this requirement?

m Allan adversarial verifier can learn from interacting with the prover can be
learned based on the assertion itself

m Transcripts of real interactions not distinguishable from "simulated"
interactions (on only public input)

16/29

Story of Ali Baba

= Alice knows a secret word to open a magic doorin a cave
= Alices wants to convince Bob that she knows the secret

= ButAlice does not want to reveal the secret word, nor
for anyone else to find out about her skills (paparazzi)

17/29

Story of Ali Baba

http://en.wikipedia.org/

1. Alice randomly chooses path A or B, while Bob waits outside.

18/29

http://en.wikipedia.org/

Story of Ali Baba

http://en.wikipedia.org/

1. Alice randomly chooses path A or B, while Bob waits outside.

2. Bob chooses an exit path.

18/29

http://en.wikipedia.org/

Story of Ali Baba

http://en.wikipedia.org/

1. Alice randomly chooses path A or B, while Bob waits outside.
2. Bob chooses an exit path.

3. Alice reliably appears at the exit Bob names.

18/29

http://en.wikipedia.org/

Story of Ali Baba

http://en.wikipedia.org/

Alice randomly chooses path A or B, while Bob waits outside.
Bob chooses an exit path.

Alice reliably appears at the exit Bob names.

A

An observer Otto won’t be convinced - prior agreement?

18/29

http://en.wikipedia.org/

Zero-Knowledge Proofs: Formalization

Perfect Zero-Knowledge

An IPS for a language L is said to provide perfect zero-knowledge, if for every PPT V*
there exists a PPT simulator S s.t.

(P,V*)(x) = S(x), foreveryx € S

19/29

Zero-Knowledge Proofs: Formalization

Perfect Zero-Knowledge

An IPS for a language L is said to provide perfect zero-knowledge, if for every PPT V*
there exists a PPT simulator S s.t.

(P,V*)(x) = S(x), foreveryx € S

m Statistical ZK: distributions are statistically close

= Computational ZK: distributions cannot be told apart by efficient distinguishers -
computationally indistinguishable

19/29

Zero-Knowledge Proofs: Formalization

= ZK

m We do not know how V* exactly behaves
®m S needs to exist for arbitrary V*

= So, we consider black-box access to V* in the simulation

m Honest-verifier ZK

= We assume V* behaves honestly
m Consequently, S ignores V* in the simulation

20

29

Example: ZK Proof for Gl

ZKP for Gl

Let the common input be a pair of graphs G; = (V1, E1) and G, = (V», E2) and let ¢ be an arbitrary
isomorphism between them

P: Choose random permutation 7 and send G' = (V, E) with
E={(n(u),n(v))|{u,v} € Ex} to V (if G1 = G, this graph is isomorphic to both)
V: Choose b £-{1,2} and ask P to reveal an isomorphism between G’ and G,
P: Ifb=2send vy «+ ,otherwise send) <+ moptoV
V: If received 1 is isomorphism between G’ and G, output accept and reject otherwise

21/29

Example: ZK Proof for Gl

ZKP for Gl

Let the common input be a pair of graphs G; = (V1, E1) and G, = (V», E2) and let ¢ be an arbitrary
isomorphism between them

P: Choose random permutation 7 and send G' = (V, E) with
E={(n(u),n(v))|{u,v} € Ex} to V (if G1 = G, this graph is isomorphic to both)
V: Choose b £-{1,2} and ask P to reveal an isomorphism between G’ and G,
P: Ifb=2send vy «+ ,otherwise send) <+ moptoV
V: If received 1 is isomorphism between G’ and G, output accept and reject otherwise

= Honest prover always succeeds; cheating prover will succeed with prob. 1/2
(correctly guess the bit of V)

21/29

Example: ZK Proof for Gl

m The Gl protocol is honest-verifier ZK

m S chooses b and ¢ uniformly at random and outputs (G', b, 1)) with G’ being ¢
applied to G,

22/29

Example: ZK Proof for Gl

m The Gl protocol is honest-verifier ZK

m S chooses b and ¢ uniformly at random and outputs (G', b, 1)) with G’ being ¢
applied to G,

® The Gl protocol is perfect ZK
m Letb* be the random choice of V*
= Sselects b <*{1,2} (hoping V* selects b* = b)
= S constructs G’ by permuting G, under random

m If b* #£ b, S restarts, otherwise output (G, b, 1))

m Qutput of Sis perfectly indistinguishable from real (note b* is independent of
b) and we expect a valid transcript every two runs (poly time S)

22/29

Zero-Knowledge for NP

ZK proofs exist forall L € NP
Recall N'P-completeness

= Aproblem is AP complete if it is in NP

= and every problem in NP is poly time reducible to it
ZK proof for N'P-complete language L (e.g., graph 3-coloring)

m Reducel to L (and the witness)

® Run ZK proof for L

3/29

Proofs of Knowledge

= ZKPs only interested in the validity of the assertion itself

= Proofs of knowledge (PoKs) capture IPs where P asserts knowledge of some
object (e.g., a particular isomorphism)

24/29

Proofs of Knowledge

= ZKPs only interested in the validity of the assertion itself

= Proofs of knowledge (PoKs) capture IPs where P asserts knowledge of some
object (e.g., a particular isomorphism)

= What does it mean for a machine M to know something?

m There exists an efficient machine &£, which, given black-box access to M can
extract M’s "knowledge" (a string)

m PoK: Whenever there is a P* that convinces V to know something, we can extract
this string from P*

= Stronger notion of soundness

24/29

Proofs of Knowledge: Formalization

= Consider an NP relation R = {(x,w)| W(x,w) = accept} where W is a PT
algorithm deciding membership in R

= Wecanwritelg = {x| 3w st. (x,w) € R}

5/29

Proofs of Knowledge: Formalization

= Consider an NP relation R = {(x,w)| W(x,w) = accept} where W is a PT
algorithm deciding membership in R

= Wecanwritelg = {x| 3w st. (x,w) € R}

Proof of Knowledge (PoK)

Let (P, V) be an IPS for Lg. Then, (P, V) is a PoK with knowledge error p if there
exists a PPT knowledge extractor £ such that for any x € Lg and any PPT P* with
d = Pr[(P*,V)(x) accepts] > p, we have that

Priw + €7 (x) : R(x,w) = accept] > poly(§ — p)

25/29

Some Notes

= Non-interactive ZK (Single message)

m Inthe common reference string model
m General constructions very inefficient

26/29

Some Notes

= Non-interactive ZK (Single message)

m Inthe common reference string model
m General constructions very inefficient

= Witness indistinguishability (Relaxation of ZK)

= For NP relation R no V* can distinguish if P uses witness w; or w, to x with
(x,w;) € Rfori € {1,2}

26/29

Some Notes

= Non-interactive ZK (Single message)

m Inthe common reference string model
m General constructions very inefficient

= Witness indistinguishability (Relaxation of ZK)

= For NP relation R no V* can distinguish if P uses witness w; or w, to x with
(x,w;) € Rfori € {1,2}

= Public coin (e.g., Gl) vs. private coin (e.g., GNI - our version is not ZK - but a slightly
modified one)

26/29

Some Notes

= Non-interactive ZK (Single message)

m Inthe common reference string model
m General constructions very inefficient

= Witness indistinguishability (Relaxation of ZK)

= For NP relation R no V* can distinguish if P uses witness w; or w, to x with
(x,w;) € Rfori € {1,2}

= Public coin (e.g., Gl) vs. private coin (e.g., GNI - our version is not ZK - but a slightly
modified one)

= What we have seen so far is mainly of theoretical interest

26/29

Some Notes

= Non-interactive ZK (Single message)

m Inthe common reference string model
m General constructions very inefficient

= Witness indistinguishability (Relaxation of ZK)

= For NP relation R no V* can distinguish if P uses witness w; or w, to x with
(x,w;) € Rfori € {1,2}

= Public coin (e.g., Gl) vs. private coin (e.g., GNI - our version is not ZK - but a slightly
modified one)

= What we have seen so far is mainly of theoretical interest

= Will see (NI)-ZKPoKs that are useful and efficient

26/29

Questions?

Further Reading |

[1] Mihir Bellare and Oded Goldreich.
On defining proofs of knowledge.
In Advances in Cryptology - CRYPTO 92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 16-20, 1992, Proceedings, pages 390-420, 1992.
[2] Ronald Cramer, lvan Damgard, and Philip D. MacKenzie.
Efficient zero-knowledge proofs of knowledge without intractability assumptions.
In Public Key Cryptography, Third International Workshop on Practice and Theory in Public Key Cryptography, PKC 2000,
Melbourne, Victoria, Australia, January 18-20, 2000, Proceedings, pages 354-373, 2000.
[3] Ivan Damgard.
On X-protocols.

http://cs.au.dk/~ivan/Sigma.pdf.

[4] Juan A. Garay, Philip D. MacKenzie, and Ke Yang.
Strengthening zero-knowledge protocols using signatures.

J. Cryptology, 19(2):169-209, 2006.

28/29

http://cs.au.dk/~ivan/Sigma.pdf

Further Reading Il

[5] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi.
Zkboo: Faster zero-knowledge for boolean circuits.

In USENIX Security, 2016.

[6] Oded Goldreich.
Computational Complexity - A Conceptual Perspective.

Cambridge University Press, 2008.

[7] Jens Groth and Amit Sahai.
Efficient non-interactive proof systems for bilinear groups.
Cryptology ePrint Archive, Report 2007/155, 2007.

http://eprint.iacr.org/2007/155.

[8] Yuvallshai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge from secure multiparty computation.

In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages
21-30, 2007.

29/29

http://eprint.iacr.org/2007/155

	Commitment Schemes
	
	Interactive Proofs
	
	Zero-Knowledge Proofs
	

