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Commitment Schemes



Commitments - Informal Idea

Imagine two partiesAand B
= A makes some (secret) decision m
= Awants to later convince B that decision m was made

= Amust not be able to change m later on
m B must not be able to learn anything about m before
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Commitments - Informal Idea

Imagine two partiesAand B
= A makes some (secret) decision m
= Awants to later convince B that decision m was made

= Amust not be able to change m later on
m B must not be able to learn anything about m before

Real world analogy
= Awrites mon a piece of paper,

m  putsitinaboxand locks the box
= Ahands the locked box to B

m Later, A can give the key for the box to B
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Commitment Scheme

Commitment Scheme

Gen(1"): This probabilistic algorithm on input of , outputs (public) parameters
pPp.

Commit(pp, m): This (probabilistic) algorithm on input pp and message m € M,
outputs commitment C and opening information O.

Open(pp, C,0) : This deterministic algorithm on input pp C and O returns
meMU{L}.

= pp may be generated by a trusted third party (TTP) or one of the parties
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Security

Binding
= Recall: Amust not be able to change m later on

More formally: V PPT .4 3 negl. () such that

pp + Gen(1%),(C*,0%,0™) + A(pp),
; m < Open(pp, C*, 0*),
r
m’ < Open(pp, C*,0™*) :

m#m Am#1L Am#L
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Security Il
Hiding
= Recall: Bmust not be able to learn anything about m

More formally: V PPT A 3 negl. ¢(-) such that

pp + Gen(1%), (my, my, state) < A(pp),
Pr b <~{0,1},Cy <= Commit(pp, mp),
b* « A(state,Cp) : b = b*
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Discrete Log Commitment

Gen(1") : Setpp < G" = (G, p,g) and return pp.
Commit(pp,m) : ReturnC < g™,0 « m

Open(pp, C,0) : If C = g™ return m and L otherwise.
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Discrete Log Commitment

Gen(1") : Setpp < G" = (G, p,g) and return pp.
Commit(pp,m) : ReturnC < g™,0 « m

Open(pp, C,0) : If C = g™ return m and L otherwise.

= Binding holds unconditional (only single m satisfies C = g")

= Hiding holds computational under DL (clearly, only for unpredictable messages)
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Pedersen Commitment

Gen(17) : Choose G* = (G, p,g), h <G and return pp < (G", h).
Commit(pp, m) : Choose r <*Z, and return C < g™h", 0 < (m,r)

Open(pp,C,0) : If C = g™h" return m and L otherwise.
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Pedersen Commitment

Gen(17) : Choose G* = (G, p,g), h <~G and return pp + (G*, h).
Commit(pp, m) : Choose r <*Z, and return C < g™h", 0 < (m,r)

Open(pp,C,0) : If C = g™h" return m and L otherwise.

= Binding holds under DL (recall first lecture & exercise)
= Hiding holds unconditional (VC Vm Juniquer : C = g™h")

= Who can generate the pp?
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Unconditional vs. Computational Security

There is no scheme (in the classical setting) providing
= unconditional hiding and
= unconditional binding

at the same time.
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Unconditional vs. Computational Security

There is no scheme (in the classical setting) providing
= unconditional hiding and
= unconditional binding

at the same time.

Why? (Recall exercises.)
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Commitments from Encryption Schemes

Assume an IND-CPA secure encryption scheme

= [1=(Gen,Enc,Dec)

Commitment Scheme from I

Gen(1") : Run (sk, pk) <— Gen(1") and return pk.
Commit(pp, m) : Randomly choose r and return C <— Enc(pk,m; r), 0 < (m,r)

Open(pp, C,0) : If C = Enc(pk, m; r) return m and L otherwise.
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Commitments from Encryption Schemes Il

= Binding follows from perfect correctness

m  Correctness states
V(sk, pk) < Gen(1"),¥m : m = Dec(sk, Enc(pk, m))

m  Breaking binding implies that
= Enc(pk, mo) = Enc(pk, m1), for a fixed pk
= Butthen we have m; = Dec(sk, Enc(pk, m))

10
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Commitments from Encryption Schemes Il

= Binding follows from perfect correctness

m  Correctness states
V(sk, pk) < Gen(1"),¥m : m = Dec(sk, Enc(pk, m))

m  Breaking binding implies that
= Enc(pk, mo) = Enc(pk, m1), for a fixed pk
= Butthen we have m; = Dec(sk, Enc(pk, m))

= Hiding follows from IND-CPA security

= Awho breaks hiding can be used to break IND-CPA

10
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Interactive Proofs
L o



Efficiently Verifiable Proofs

= NPisthe set of decision problems

where valid instances have efficiently verifiable proofs

®  For any such problem S there is a deterministic polynomial time verifier

such that for any instancex € S

there exists an algorithm (the prover) that provides a polynomial sized
witness w (NP witness)

such that the verifier accepts on input (x,w) iffx € S
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Example: Graph Isomorphism (Gl)

1

S

l G2

= Two graphs G; = (V4, E1) and G, = (V,, E;) are isomorphic if there is a bijection
m:Vi— Vst

{u,v} € By <= {n(u),n(v)} € E,

= Languagelg = {(G1,G,)|G1 = G, } isin NP (witness )
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Interactive Proofs

What if we allow the verifier to adaptively ask the prover?

= Does not give a benefit (we can define an equivalent non-interactive verifier
that takes a transcript)
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Allow an interactive verifier to be probabilistic?
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Interactive Proofs

= What if we allow the verifier to adaptively ask the prover?

= Does not give a benefit (we can define an equivalent non-interactive verifier
that takes a transcript)

= Allow an interactive verifier to be probabilistic?
m  Gives more power - yields the class ZP (ZP = PSPACE)

= Consider game between computationally bounded verifier V (PPT) and
computationally unbounded prover P

m  Prover convinces the verifier of the validity of some assertion (x € S)



Interactive Proofs: Formalization

Interactive Proof System (IPS)

An IPS for a language L is an interactive protocol between an unrestricted prover P
and a PPT verifier V such that on input x the following conditions hold:

Completeness: Vx € L: Pr[(P,V)(x) accepts] =1
Soundness: Vx ¢ L,YP*: Pr[(P*,V)(x) accepts] < 1
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Interactive Proofs: Formalization

Interactive Proof System (IPS)

An IPS for a language L is an interactive protocol between an unrestricted prover P
and a PPT verifier V such that on input x the following conditions hold:

Completeness: Vx € L: Pr[(P,V)(x) accepts] =1
Soundness: Vx ¢ L,YP*: Pr[(P*,V)(x) accepts] < 1

= Perfect completeness (imperfect may have error probability)
= Interactive arguments: computational soundness (P* is PPT)

= Reduce soundness error by sequential/parallel repetition
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Example: Graph Non-Isomorphism (GNI)

Loy = {(G1, Gy)| |G1| = |G2l, G1 2 Ga}
Unknown if Ly, € NP (clearly in co-NP), but it is in ZP
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Example: Graph Non-Isomorphism (GNI)

= Loy = {(G1,G2)||G1] = |Ga|,G1 2 Ga}
= Unknown if Lgy, € NP (clearly in co-N"P), butitisin ZP

IP for LGNI

Let x = (G1, G2) be the common input
V: Picki &{1,2}, randomly permute vertices of G; and send to P
P: Findb € {1,2} s.t. G; = G, and send b (note that P is unbounded)
V: Acceptifb =i
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Example: Graph Non-Isomorphism (GNI)

= Loy = {(G1,G2)||G1] = |Ga|,G1 2 Ga}
= Unknown if Lgy, € NP (clearly in co-N"P), butitisin ZP

IP for LGNI

Let x = (G1, G2) be the common input
V: Pick i £-{1,2}, randomly permute vertices of G; and send to P
P: Findb € {1,2} s.t. G; = G, and send b (note that P is unbounded)
V: Acceptifb =i

. If G; 2 Gy, any permutation of G; uniquely determines

= |f G; = Gy, distribution of G; independent of i
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Zero-Knowledge Proofs
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Zero-Knowledge Proofs

= Does proving the validity of an assertion always require giving away extra
knowledge?

= No, captured by zero-knowledge
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= No adversary can gain anything from a prover (beyond being convinced of the
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Zero-Knowledge Proofs

= Does proving the validity of an assertion always require giving away extra
knowledge?

= No, captured by zero-knowledge

= No adversary can gain anything from a prover (beyond being convinced of the
validity of an assertion)

= How to model this requirement?

m  Allan adversarial verifier can learn from interacting with the prover can be
learned based on the assertion itself

m  Transcripts of real interactions not distinguishable from "simulated"
interactions (on only public input)
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Story of Ali Baba

= Alice knows a secret word to open a magic doorin a cave
= Alices wants to convince Bob that she knows the secret

= ButAlice does not want to reveal the secret word, nor
for anyone else to find out about her skills (paparazzi)
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Story of Ali Baba

http://en.wikipedia.org/

1. Alice randomly chooses path A or B, while Bob waits outside.
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1. Alice randomly chooses path A or B, while Bob waits outside.
2. Bob chooses an exit path.

3. Alice reliably appears at the exit Bob names.
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Story of Ali Baba

http://en.wikipedia.org/

Alice randomly chooses path A or B, while Bob waits outside.
Bob chooses an exit path.

Alice reliably appears at the exit Bob names.

A

An observer Otto won’t be convinced - prior agreement?
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Zero-Knowledge Proofs: Formalization

Perfect Zero-Knowledge

An IPS for a language L is said to provide perfect zero-knowledge, if for every PPT V*
there exists a PPT simulator S s.t.

(P,V*)(x) = S(x), foreveryx € S
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Zero-Knowledge Proofs: Formalization

Perfect Zero-Knowledge

An IPS for a language L is said to provide perfect zero-knowledge, if for every PPT V*
there exists a PPT simulator S s.t.

(P,V*)(x) = S(x), foreveryx € S

m  Statistical ZK: distributions are statistically close

= Computational ZK: distributions cannot be told apart by efficient distinguishers -
computationally indistinguishable
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Zero-Knowledge Proofs: Formalization

= ZK

m  We do not know how V* exactly behaves
®m S needs to exist for arbitrary V*

= So, we consider black-box access to V* in the simulation

m  Honest-verifier ZK

= We assume V* behaves honestly
m  Consequently, S ignores V* in the simulation

20
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Example: ZK Proof for Gl

ZKP for Gl

Let the common input be a pair of graphs G; = (V1, E1) and G, = (V», E2) and let ¢ be an arbitrary
isomorphism between them

P: Choose random permutation 7 and send G' = (V, E) with
E={(n(u),n(v))|{u,v} € Ex} to V (if G1 = G, this graph is isomorphic to both)
V: Choose b £-{1,2} and ask P to reveal an isomorphism between G’ and G,
P: Ifb=2send vy «+ ,otherwise send ) <+ moptoV
V: If received 1 is isomorphism between G’ and G, output accept and reject otherwise

21/29



Example: ZK Proof for Gl

ZKP for Gl

Let the common input be a pair of graphs G; = (V1, E1) and G, = (V», E2) and let ¢ be an arbitrary
isomorphism between them

P: Choose random permutation 7 and send G' = (V, E) with
E={(n(u),n(v))|{u,v} € Ex} to V (if G1 = G, this graph is isomorphic to both)
V: Choose b £-{1,2} and ask P to reveal an isomorphism between G’ and G,
P: Ifb=2send vy «+ ,otherwise send ) <+ moptoV
V: If received 1 is isomorphism between G’ and G, output accept and reject otherwise

= Honest prover always succeeds; cheating prover will succeed with prob. 1/2
(correctly guess the bit of V)
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Example: ZK Proof for Gl

m  The Gl protocol is honest-verifier ZK

m S chooses b and ¢ uniformly at random and outputs (G', b, 1)) with G’ being ¢
applied to G,
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Example: ZK Proof for Gl

m  The Gl protocol is honest-verifier ZK

m S chooses b and ¢ uniformly at random and outputs (G', b, 1)) with G’ being ¢
applied to G,

®  The Gl protocol is perfect ZK
m  Letb* be the random choice of V*
= Sselects b <*{1,2} (hoping V* selects b* = b)
= S constructs G’ by permuting G, under random

m If b* #£ b, S restarts, otherwise output (G, b, 1))

m  Qutput of Sis perfectly indistinguishable from real (note b* is independent of
b) and we expect a valid transcript every two runs (poly time S)
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Zero-Knowledge for NP

ZK proofs exist forall L € NP
Recall N'P-completeness

= Aproblem is AP complete if it is in NP

= and every problem in NP is poly time reducible to it
ZK proof for N'P-complete language L (e.g., graph 3-coloring)

m  Reducel to L (and the witness)

®  Run ZK proof for L
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Proofs of Knowledge

= ZKPs only interested in the validity of the assertion itself

= Proofs of knowledge (PoKs) capture IPs where P asserts knowledge of some
object (e.g., a particular isomorphism)
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Proofs of Knowledge

= ZKPs only interested in the validity of the assertion itself

= Proofs of knowledge (PoKs) capture IPs where P asserts knowledge of some
object (e.g., a particular isomorphism)

= What does it mean for a machine M to know something?

m  There exists an efficient machine &£, which, given black-box access to M can
extract M’s "knowledge" (a string)

m  PoK: Whenever there is a P* that convinces V to know something, we can extract
this string from P*

= Stronger notion of soundness
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Proofs of Knowledge: Formalization

= Consider an NP relation R = {(x,w)| W(x,w) = accept} where W is a PT
algorithm deciding membership in R

=  Wecanwritelg = {x| 3w st. (x,w) € R}
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Proofs of Knowledge: Formalization

= Consider an NP relation R = {(x,w)| W(x,w) = accept} where W is a PT
algorithm deciding membership in R

=  Wecanwritelg = {x| 3w st. (x,w) € R}

Proof of Knowledge (PoK)

Let (P, V) be an IPS for Lg. Then, (P, V) is a PoK with knowledge error p if there
exists a PPT knowledge extractor £ such that for any x € Lg and any PPT P* with
d = Pr[(P*,V)(x) accepts] > p, we have that

Priw + €7 (x) : R(x,w) = accept] > poly(§ — p)

25/29



Some Notes

= Non-interactive ZK (Single message)

m  Inthe common reference string model
m  General constructions very inefficient
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Some Notes

= Non-interactive ZK (Single message)

m  Inthe common reference string model
m  General constructions very inefficient

= Witness indistinguishability (Relaxation of ZK)

= For NP relation R no V* can distinguish if P uses witness w; or w, to x with
(x,w;) € Rfori € {1,2}

= Public coin (e.g., Gl) vs. private coin (e.g., GNI - our version is not ZK - but a slightly
modified one)

= What we have seen so far is mainly of theoretical interest

= Will see (NI)-ZKPoKs that are useful and efficient
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Questions?
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