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Digital Signatures - The Setting
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Formal Definition

Signature Scheme

KeyGen(1κ): Given security parameter κ, outputs a key pair (sk, pk) (pk fixesMκ)

Sign(m, sk): Given msgm ∈ Mκ and signing key sk, computes signature σ onm using
sk and outputs σ

Verify(m,σ, pk): Given msgm ∈ Mκ, σ and public key pk, returns 1 if (m,σ) is a valid
msg-sig pair under pk and 0 otherwise

Algorithm Sign may also be stateful (not considered here)
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Security

Correctness

∀κ, (sk, pk)← KeyGen(1κ),m ∈ Mκ :

Pr [Verify(m, Sign(m, sk), pk)] = 1− ε(κ)

How to define when a scheme is secure?

An adversary should not able to forge valid message/signature pairs

Even when interacting with an honest signer in some way

What does forge and interacting mean?
We do not incorporate any semantics (e.g., what is a meaningful message?)
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Overview of Target and Attacks

Targets (hardest to easiest)

Total break: Obtain the secret signing key

Selective forgery: Produce signature for some selected message(s)

(Weak) Existential forgery: Produce at least one valid signature for a message
where no signature was previously requested

Strong existential forgery: Produce a valid signature di�erent from any previously
seen signature

4 / 26



Overview of Target and Attacks

Attacks (weak to strong)

No-message attack: Only access to the public key

Random-message attack: Obtain signatures for random message (no control over
messages)

Known-message attack: Access to a list of signatures (messages chosen before
seeing public key)

Chosen-message attack: Access to a list of signatures (messages chosen a�er
seeing the public key)

Adaptively chosen-message attack: Obtain signatures for any message
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Overview of Target and Attacks

Another dimension is the number of signatures accessible to an adversary

A single signature (one-time)
Unbounded number of signatures

Highest security guarantees if strongest attacker can not even achieve easiest
target

Existential unforgeability under adaptively chosen message attacks (EUF-CMA)
Usually weak existential unforgeability

6 / 26



Overview of Target and Attacks

Another dimension is the number of signatures accessible to an adversary

A single signature (one-time)
Unbounded number of signatures

Highest security guarantees if strongest attacker can not even achieve easiest
target

Existential unforgeability under adaptively chosen message attacks (EUF-CMA)
Usually weak existential unforgeability

6 / 26



EUF-CMA

Experiment ExpEUF-CMA
Σ,A (·):
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EUF-CMA

Definition (Existential Unforgeability Under Chosen Message Attacks (EUF-CMA))

The advantage AdvAEUF-CMA(·) of an adversaryA in the EUF-CMA experiment as

AdvAEUF-CMA(κ) = Pr

[
(sk, pk)← KeyGen(1κ),
(m∗,σ∗)← ASig(sk,·)(pk)

:
m∗ /∈ QSig ∧

Verify(pk,m∗,σ∗) = 1

]
,

where the environment maintains an initially empty listQSig and the oracles are
defined as follows:

Sig(sk,m) : SetQSig ← QSig ∪ {m} and return σ ← Sign(sk,m).

A signature scheme is secure against EUF-CMA attacks, if for every PPT adversaryA,
AdvAEUF-CMA(·) is negligible.
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What About Textbook RSA Signatures?

Plain RSA: pk = (N, e) and sk = (N, d)

To signm ∈ ZN compute σ ← md mod N
To verify given (m,σ) check if σe ≡ m (mod N)

Choose σ←R ZN and setm← σe mod N

The pair (m,σ) is a valid signature!
Existential forgery under no-message attack
Also other attacks (homomorphism)

Use of RSA-FDH/RSA-PSS
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RSA-Full-Domain Hash (RSA-FDH)

Scheme

KeyGen(1κ): Output public and private RSA keys (pk, sk)← ((N, e), d). Specify
function H : {0, 1}∗ → Z∗N.

Sign(m, sk): Return signature σ ← (H(m))d mod N

Verify(m,σ, pk): Return [σe == H(m)]
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How to Prove RSA-FDH is EUF-CMA secure in the ROM?

Outline

SupposeA breaks EUF-CMA security of RSA-FDH with non-negligible probability

Then, we try to build adversaryA′ breaking the RSA assumption, i.e.,

given (N, e, c) try to find cd = m mod N.
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How to Prove This? (ctd)

Recap: RSA Assumption (OW-RSA)

Given (N, e), it is hard to invert f(x) = xe mod N

i.e. given y ∈ Z∗N hard to find x ∈ Z∗N s.t. y = xe mod N

(given that (N, e) fulfills usual criteria in this context (cf. last VO))
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Proof: RSA-FDH

Proof Sketch (Coron, 2000 [4])

A′ gets input (N, e, c), startsA on pk← (N, e) and simulates RO and EUF-CMA
environment forA:

WhenA queries RO form,A′ picks r←R Z∗N, computes hash h← re mod Nwith
probability p and h← c · re mod Nwith probability 1− p, stores (m, h, r) and
returns h

WhenA queries signature form, R gets (m, h, r) and returns r if h = re mod N and
aborts otherwise

IfA returns forgery (m∗,σ∗) 1 s.t. H(m∗) = h∗ = c · (r∗)e mod N, σ∗ = cd · r∗
mod N.A′ returns cd = σ∗/r∗ mod N

1Observe: to compute σ∗,Amust have queried RO onm∗
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Proof: RSA-FDH (ctd)

Analysis

Values h look random toA, making simulation of RO perfect, as

values r random
A has never seen c directly

Simulation of signatures perfect (according to previous observation)
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Proof: RSA-FDH (ctd)

Analysis (ctd)

Simulation works with prob. pq (for q signature queries)

If simulation ok,A′ can use forgery with prob. 1− p

IfA succeeds with non-negligible prob. ε(κ), R succeeds with non-negligible prob.
(1− p)pqε(κ) and asymptotically: O( ε(κ)

q )

Reduction not always successful: Security loss by q
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Message Length Extension

We have associated a message spaceMκ related to the security parameter κ to any
scheme Σ

How can we extend the message space to (nearly) arbitrary message sizes?

Block-wise signing (not e�icient)
Hash-then-sign paradigm (very e�icient)
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Hash-Then-Sign Paradigm

Let Σ′ be: Use hash function H to map any arbitrary length messagem toMκ

before applying Sign of Σ

Theorem

If Σ is EUF-CMA secure and H is collision resistant, then Σ′ is EUF-CMA secure

Proof Sketch.
Letm1, ... ,m` be the messages queried by A and (m∗,σ∗) the valid forgery

Case 1. H(m∗) = H(mi) for some i ∈ [`]: we have a collision for H

Case 2. H(m∗) 6= H(mi) for all i ∈ [`]: we have that (H(m∗),σ∗) is a forgery for Σ
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Constructions

Constructions based on general assumption (not covered)

OWFs imply sEUF-CMA secure schemes
"Hash-based" signatures (post-quantum)

Constructions in the ROM

Have already seen RSA-FDH
Will look at pairing-based version

Constructions in the SM

see "Further Reading"
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Generic Compilers for Strong Security

CMA from RMA

Splitm intomL andmR formL←R {0, 1}k such thatm = mL ⊕mR

Sign r||mL and r||mR with two independent keys of Σ, where r←R {0, 1}k

CMA from KMA

Let Σ be a KMA-secure scheme, Σ′ be a KMA-secure one-time scheme.
Generate a long-term key-pair for Σ

For messagem generate one-time key of Σ′ and signmwith one-time key.
Sign one-time public key using long-term signing key

CMA from IBE

CMA in RO from ID schemes (Fiat-Shamir)
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BLS Signatures

"Bilinear" analogue to RSA-FDH scheme. Let H : {0, 1}k → G.

Scheme

KeyGen(1κ): Choose Gκ and x←R Z∗p and set sk← x and pk← y = gx

Sign(m, sk): Compute h = H(m) and output σ ← hx

Verify(m,σ, pk): Return [e(σ, g) = e(H(m), y)]

Very short signatures. Signature valid if (H(m), y,σ) is DDH tuple
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BLS Signatures

Theorem

If CDH assumption holds in G and H is a random oracle, then BLS is sEUF-CMA
secure.

Proof nearly identical to RSA-FDH proof

For non-tight reduction

Obtain CDH instance (h, y)

Guess index i ∈ [qH] of RO query
Embed h into ith query and hope forgery (m∗,σ∗) is formi

Ifm∗ = mi output σ∗ as CDH solution

Works also with Coron’s strategy (tighter reduction; see RSA-FDH proof)
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What you should know...

Security models for digital signature schemes

Types of forgeries and attacks

RSA-FDH proof idea

Message length extension (hash-then-sign)

Generic compilers from RMA/KMA
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Questions?
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