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Digital Signatures - The Setting

pk (sk, pk)

95 (m', 0’) (m, o) @

Verify(m/, o', pk) ~ true o + Sign(m,sk)

1/26



Formal Definition

Signature Scheme

KeyGen(1"): Given security parameter x, outputs a key pair (sk, pk) (pk fixes M,;)

Sign(m, sk): Given msg m € M,; and signing key sk, computes signature o on m using
sk and outputs o

Verify(m, o, pk): Given msgm € M,;, o and public key pk, returns 1 if (m, o) is a valid
msg-sig pair under pk and 0 otherwise

Algorithm Sign may also be stateful (not considered here)
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Security

Correctness

Vk, (sk, pk) < KeyGen(1"),m € M, :
Pr [Verify(m, Sign(m, sk), pk)] = 1 — €(x)

How to define when a scheme is secure?
= An adversary should not able to forge valid message/signature pairs

= Even when interacting with an honest signer in some way

=  What does forge and interacting mean?

m  We do not incorporate any semantics (e.g., what is a meaningful message?)
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Overview of Target and Attacks

Targets (hardest to easiest)

= Total break: Obtain the secret signing key
= Selective forgery: Produce signature for some selected message(s)

m  (Weak) Existential forgery: Produce at least one valid signature for a message
where no signature was previously requested

= Strong existential forgery: Produce a valid signature different from any previously
seen signature
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Overview of Target and Attacks

Attacks (weak to strong)

= No-message attack: Only access to the public key

= Random-message attack: Obtain signatures for random message (no control over
messages)

= Known-message attack: Access to a list of signatures (messages chosen before
seeing public key)

®  Chosen-message attack: Access to a list of signatures (messages chosen after
seeing the public key)

= Adaptively chosen-message attack: Obtain signatures for any message
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Overview of Target and Attacks

= Another dimension is the number of signatures accessible to an adversary

= Asingle signature (one-time)

= Unbounded number of signatures
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Overview of Target and Attacks

= Another dimension is the number of signatures accessible to an adversary
= Asingle signature (one-time)

= Unbounded number of signatures

= Highest security guarantees if strongest attacker can not even achieve easiest
target

m  Existential unforgeability under adaptively chosen message attacks (EUF-CMA)
m  Usually weak existential unforgeability
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EUF-CMA

Experiment Exp5% <" (-):

Oracle O5(-,sk)

Adv. A

Challenger C

(sk, pk) <— KeyGen(1*)

pk
) (m*,0*) R

if m* ¢ Q A Verify(m*, o*, pk) = true return 1;
else return 0;
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EUF-CMA

Definition (Existential Unforgeability Under Chosen Message Attacks (EUF-CMA))

The advantage Adviyrcua(+) of an adversary A in the EUF-CMA experiment as

(sk, pk) < KeyGen(1%), m* ¢ QS8 A

A _ .
AdVgye.cua (k) = Pr (m*,o*) « Asig(sk,~)(pk) " Verify(pk,m*,0*) =1 |’

where the environment maintains an initially empty list 9 and the oracles are
defined as follows:
Sig(sk,m) : Set Q% «— Q58 U {m} and return o < Sign(sk, m).

A signature scheme is secure against EUF-CMA attacks, if for every PPT adversary A,
AdVEr.cua(-) is negligible.
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What About Textbook RSA Signatures?

= Plain RSA: pk = (N, e) and sk = (N, d)

= Tosignm € Zy compute o < m? mod N
m  To verify given (m, o) check if 0 = m (mod N)

9/26



What About Textbook RSA Signatures?

Plain RSA: pk = (N, e) and sk = (N, d)

= Tosignm € Zy compute o < m? mod N
m  To verify given (m, o) check if 0 = m (mod N)

Choose o <£Zy and set m + o mod N

= The pair (m, o) is a valid signature!
= Existential forgery under no-message attack
m  Also other attacks (homomorphism)

Use of RSA-FDH/RSA-PSS
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RSA-Full-Domain Hash (RSA-FDH)

KeyGen(1"): Output public and private RSA keys (pk, sk) < ((N, e), d). Specify
function H : {0,1}* — Zj.
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RSA-Full-Domain Hash (RSA-FDH)

KeyGen(1"): Output public and private RSA keys (pk, sk) < ((N, e), d). Specify
function H : {0,1}* — Zj.

Sign(m, sk): Return signature o < (H(m))? mod N
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RSA-Full-Domain Hash (RSA-FDH)

KeyGen(1"): Output public and private RSA keys (pk, sk) < ((N, e), d). Specify
function H : {0,1}* — Zj.

Sign(m, sk): Return signature o < (H(m))? mod N

Verify(m, o, pk): Return [c€ == H(m)]

10/26



How to Prove RSA-FDH is EUF-CMA secure in the ROM?

= Suppose A breaks EUF-CMA security of RSA-FDH with non-negligible probability

=  Then, we try to build adversary A’ breaking the RSA assumption, i.e.,

given (N,e,c) trytofindc? =m mod N.
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How to Prove This? (ctd)

Recap: RSA Assumption (OW-RSA)
Given (N, e), itis hard to invert f(x) = x°* mod N
= j.e.giveny € Zjhardtofindx € Zjst.y =x* mod N

= (given that (N, e) fulfills usual criteria in this context (cf. last VO))
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Proof: RSA-FDH

Proof Sketch (Coron, 2000 [4])

A’ getsinput (N, e, c), starts A on pk « (N, e) and simulates RO and EUF-CMA
environment for A:

= When A queries RO for m, A’ picks r <*Zj, computes hash h + r® mod N with
probability pand h <— ¢ - r® mod N with probability 1 — p, stores (m, h,r) and
returns h

= When A queries signature for m, R gets (m, h,r) and returns rif h = r¢* mod N and
aborts otherwise

= If Areturns forgery (m*,0*) t st. Hm*) = h* = ¢ (r*) mod N,o* = ¢ - r*
mod N. A’ returns ¢ = o*/r* mod N

'Observe: to compute o*, A must have queried RO on m*
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Proof: RSA-FDH (ctd)

= Values h look random to A, making simulation of RO perfect, as

= valuesrrandom

= A has never seen c directly
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Proof: RSA-FDH (ctd)

= Values h look random to A, making simulation of RO perfect, as

= valuesrrandom

= A has never seen c directly

= Simulation of signatures perfect (according to previous observation)
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Proof: RSA-FDH (ctd)

Analysis (ctd)

= Simulation works with prob. p9 (for g signature queries)
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Proof: RSA-FDH (ctd)

Analysis (ctd)

= Simulation works with prob. p9 (for g signature queries)

= |f simulation ok, .A’ can use forgery with prob. 1 — p
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Proof: RSA-FDH (ctd)

Analysis (ctd)

= Simulation works with prob. p9 (for g signature queries)
= |f simulation ok, .A’ can use forgery with prob. 1 — p

= If A succeeds with non-negligible prob. ¢(x), R succeeds with non-negligible prob.
(1 — p)pe(x) and asymptotically: O(%‘))
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Proof: RSA-FDH (ctd)

Analysis (ctd)

Simulation works with prob. p9 (for g signature queries)
If simulation ok, A’ can use forgery with prob. 1 — p

If A succeeds with non-negligible prob. €(x), R succeeds with non-negligible prob.
(1 — p)pe(x) and asymptotically: O(%‘))

Reduction not always successful: Security loss by g
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Message Length Extension

= We have associated a message space M,, related to the security parameter x to any
scheme ©

= How can we extend the message space to (nearly) arbitrary message sizes?

= Block-wise signing (not efficient)

= Hash-then-sign paradigm (very efficient)
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Hash-Then-Sign Paradigm

= Let Y’ be: Use hash function H to map any arbitrary length message m to M,
before applying Sign of

If > is EUF-CMA secure and H is collision resistant, then X’ is EUF-CMA secure

Proof Sketch.

Let my, ..., m; be the messages queried by A and (m*, o*) the valid forgery
Casel. H(m™*) = H(m;)forsomei € [¢]: we have a collision for H

Case2. H(m™) # H(m;)foralli € [¢]: we have that (H(m™), ™) is a forgery for &
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Constructions

m  Constructions based on general assumption (not covered)

m  OWFsimply sEUF-CMA secure schemes

m  "Hash-based" signatures (post-quantum)
= Constructions in the ROM

m  Have already seen RSA-FDH
= Will look at pairing-based version

m  Constructionsin the SM

m  see "Further Reading"
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Generic Compilers for Strong Security

= CMA from RMA
= Split minto m; and mg for m; <*{0, l}" suchthatm = m; ® mp
= Sign r||m, and r||mg with two independent keys of ¥, where r <*{0, 1}

= CMA from KMA

m  LetY be a KMA-secure scheme, ¥’ be a KMA-secure one-time scheme.
Generate a long-term key-pair for

= For message m generate one-time key of ¥’ and sign m with one-time key.
Sign one-time public key using long-term signing key

= CMA from IBE
m  CMAin RO from ID schemes (Fiat-Shamir)

19/26



BLS Signatures

"Bilinear" analogue to RSA-FDH scheme. Let H : {0,1}* — G.

KeyGen(1"): Choose G" and x <*Z; and set sk - x and pk < y = g*
Sign(m, sk): Compute h = H(m) and output o < h*

Verify(m, o, pk): Return [e(o,g) = e(H(m),y)]

Very short signatures. Signature valid if (H(m), y, o) is DDH tuple

20/26



BLS Signatures

If CDH assumption holds in G and H is a random oracle, then BLS is SEUF-CMA
secure.

®  Proof nearly identical to RSA-FDH proof

= For non-tight reduction

= Obtain CDH instance (h, y)

m  Guessindexi € [gy] of RO query

= Embed hinto i" query and hope forgery (m*, o*) is for m;
m If m* = m; output o* as CDH solution

= Works also with Coron’s strategy (tighter reduction; see RSA-FDH proof)
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What you should know...

Security models for digital signature schemes
= Types of forgeries and attacks

= RSA-FDH proofidea

m  Message length extension (hash-then-sign)

= Generic compilers from RMA/KMA
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Questions?
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