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Public Key Encryption - The Setting

(sk, pk)

m <+ Dec(c, sk)

pk,c
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Formal Definition

Public Key Encryption

A PKE scheme is a tuple of PPT algorithms:

KeyGen(1"): This probabilistic algorithm takes a security parameter  and outputs a pair of keys
(sk, pk) (pk fixes plaintext space M and ciphertext space C).

Enc(m, pk): This (probabilistic) algorithm takes a message m € M and a public key pk and outputs
a ciphertext ¢ < Enc(m, pk) € C.

Dec(c,sk): This deterministic algorithm takes a ciphertext ¢ € C and a private key sk and outputs
m < Dec(c,sk) e MU {L}.
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Security
V(sk, pk) < KeyGen(1"™) : Pr[Dec(Enc(m, pk),sk) = m] =1 — ¢(x)
How to define when a scheme is secure?
= Given c and pk it should be hard to find m?
m  Very weak guarantees...

= We will gradually develop the idea of security for PKE
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Overview of Target and Attacks

Targets (hardest to easiest)

= One-wayness (OW): hard to invert

=  Semantically secure (Indistinguishable - (IND)): no information about the message
in Enc(m, pk) is leaked

= Non-malleable (NM): for any non-trivial relation R it is hard to compute
Enc(R(m), pk) from Enc(m, pk)
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Overview of Target and Attacks

Attacks (weak to strong)

m  Passive attacks: Chosen plaintext attack (CPA)

= Active attacks: Chosen ciphertext attacks (CCA)
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Overview of Target and Attacks

Attacks (weak to strong)

m  Passive attacks: Chosen plaintext attack (CPA)

= Active attacks: Chosen ciphertext attacks (CCA)

Highest security guarantees if strongest attacker can not even achieve the weakest
target: NM-CCA2 (IND-CCA2)
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Textbook RSA Encryption

Use a trapdoor one-way function for encryption (e.g., RSA, Rabin)

KeyGen(1"): Pick two random &-bit primes p, g, set N = pg, pick e s.t. gcd(e, p(N)) = 1, compute
d < e mod (N) output (sk, pk) < ((d, N), (e, N))

Enc(m, pk): Oninputm € Zjy and pk = (e, N), compute and output ¢ < m® (mod N)
Dec(c, sk): Oninputcand sk = (d,N), compute and output m + c? mod N
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Security of Textbook RSA

= How hard is it to recover m given c and pk = (e, N)

m  This has been formalized as the RSA problem and is assumed to be hard
®m  Assumes that ¢ (and thus m) is a random element of Zy

= Very strong assumption for a secure PKE



Security of Textbook RSA

= How hard is it to recover m given c and pk = (e, N)

m  This has been formalized as the RSA problem and is assumed to be hard
®m  Assumes that ¢ (and thus m) is a random element of Zy

= Very strong assumption for a secure PKE
= Some of the problems of textbook RSA

= RSAencryption is deterministic: Small message space M’ C M, just test any
me M

m  RSA encryption function is a homomorphism:

Enc(mo, pk) - Enc(my, pk) = mg - m$ = (mqo - m1)® = Enc(mg - m1, pk)
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One-Wayness

For all PPT adversaries A and security parameters x there is a negligible function e such that:

(sk, pk) < KeyGen(1%),m &M,
m™ < A(pk, Enc(m,pk)) : m* =m

:| < €(k).
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One-Wayness

For all PPT adversaries A and security parameters x there is a negligible function e such that:

: (sk, pk) < KeyGen(1%),m &M,
m™ < A(pk, Enc(m,pk)) : m* =m

:| < €(k).
= Not meaningful for most applications of PKE (but okay for RSA-KEM)
= A may still compute some information about m

= How to formalize "does not leak any information"?
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More Powerful Passive Adversaries (CPA)

Experiment Exp]>, “():

Adversary A

Challenger C
(sk, pk) + KeyGen(1")

b+ {0,1}
¢* + Enc(myp, pk)

if b* = b return 1;
else return 0;

/39



IND-CPA Security

= We can define the advantage of adversary A for the IND-CPA experiment for
scheme [l as

AdVIND CPA( ) Pr[EprND CPA( ): 1] _ -

1k

!

= Forasecure scheme, the advantage is negligible as a function of  for any PPT A

IND-CPA

For all PPT adversaries .4 and security parameters « there is a negligible function e such that:

(pk, sk) < KeyGen(1"), ((mo, m1), state) + A(pk), 1 e(n).
b « {0,1},c « Enc(my, pk),b" + A(state,c) : b* =b 2 e
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IND-CPA Security With RSA

= Textbook RSA is obviously not IND-CPA secure

= |tis deterministic: A simply computes ¢’ < Enc(myg, pk) and outputs 0 if
¢’ = cand 1 otherwise

m  Leaks Jacobi symbol

m [fe=3andm< N%, thenm = ¢3 (in the integers)

= No deterministic PKE scheme can be IND-CPA secure: encryption has to be
randomized
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IND-CPA Security With RSA

= Hard-core bit for RSA and IND-CPA security

= Modify RSA assumption to output z such that z is least significant bit (LSB) of m
= If you can compute LSB, then you can invert RSA

= LSBis hardest bit to compute in RSA (a hard-core bit)
= Can be used for encryption, but inefficient (bitwise)

Enc(m, pk) := (LSB(x) @ m,x* mod N) form € {0,1} and x &£Zy

Dec((c1, ), sk) := LSB(c§ mod N) @ ¢,
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IND-CPA Security With RSA

= More efficiency with random oracles (RSA-CPA)

m letH:Zy — {0,1}¢ be arandom oracle

Enc(m, pk) := (H(x) @ m,x° mod N) form € {0,1}" and x £Zy

Dec((c1, 2), sk) := H(c§ mod N) &

= [ND-CPA secure in the random oracle model



RSA-CPA IND-CPA Proof Idea

= To obtain information about m from (H(x) & m,x¢ (mod N)), one has to learn
some information about H(x)

= AsHisarandom oracle, the only way to learn any information about H(x) is to
evaluate H at x

®  Anadversary who learns anything about m thus knows x
m  The adversary thus can break the RSA assumption

= [f adversary does not query H(x), then challenge ciphertext c is independent from
myp
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Concrete vs. Asymptotic Security

= Asymptotic security does not care about the runtime of the reduction (as long as
polynomial time)

= Concrete security relates runtime t and success probability ¢ of adversary to t’ and
¢’ of reduction

= Reductionistightife ~ € andt ~ t' (£ ~ )

)

t/ t . . .
= 5 >do- ., WhereOissome oracle (RO, signing, etc.)

= Non-ightift < t' orife > € (tightness gap is &

= Tightness relates security of the scheme to the problem



RSA-CPA IND-CPA Proof

If there exists an (t, gu, €) IND-CPA adversary against RSA-CPA, then thereis a (¢, ¢’)
solver for the RSA assumption with ¢’ > 2eand t' <t + (g7 + qu - texp)-
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RSA-CPA IND-CPA Proof

If there exists an (t, gu, €) IND-CPA adversary against RSA-CPA, then thereis a (¢, ¢’)
solver for the RSA assumption with ¢’ > 2eand t' <t + (g7 + qu - texp)-

Proof (by Reduction):
= Reduction B obtains RSA challenge (e, y, N) (want to find x s.t. y = x¢ (mod N))
= Bruns.Aonpk = (e,N) and obtains challenge (mg, m;)

= Bgives ciphertext (r,y) to A forr <£{0,1}* and RSA challenge y (as long as x s.t.
y = x° (mod N) not queried to H, challenge ciphertext information theoretically
hidden)
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0 No b WwWwN =

e
N = O

RSA-CPA IND-CPA Proof (ctd.)

Simulation of the random oracle H (maintainig a list Q of tuples (x;, h;) - initially empty)
H(x)

z < x{ (mod N)
if z=y then
output x; and B aborts // solved RSA challenge
else
if x; in Q then
return h;
else
hy <0, 1}*
store (x,h;) in Q
return h;
end if
end if




RSA-CPA IND-CPA Proof (ctd.)

= [/ event that A wins the IND-CPA game (with prob. % + €); Q event that A queries
H(x)st.y = x¢ (mod N).
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RSA-CPA IND-CPA Proof (ctd.)

= [/ event that A wins the IND-CPA game (with prob. % + €); Q event that A queries
H(x)st.y = x¢ (mod N).

Pr{W] = Pr{WIQ] - Pr[Q] + PrW|~Q] - Pr[Q]
< Prl0] + 3 - Prl~Q]
= PrlQ] + 5(1~ PriQ)

+3 - Prl0]

+

N =
+
\/\
NH—-

- Pr[Q]

\/\
h NH—-NH—'
S

|mA\{



RSA-CPA IND-CPA Proof (ctd.)

= [/ event that A wins the IND-CPA game (with prob. % + €); Q event that A queries
H(x)st.y = x¢ (mod N).

PrW] = PrWIQ] - PriQ] + PrlW|~Q] - PrI~Q]
< Prl0] + 3 - Prl~Q]

= PrlQ] + 5 (1~ PrlC)
=242 g
22
i< iilopg
2 -2 2
2¢ < Pr[Q].
~—

<el

= Ifenon-negl., sois €’; contradicting RSA assumption. O
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RSA-CPA IND-CPA Proof (ctd.)

W event that A wins the IND-CPA game (with prob. % + €); Q event that A queries
H(x)st.y = x¢ (mod N).

PrW] = PrWIQ] - PriQ] + PrlW|~Q] - PrI~Q]
< Prl0] + 3 - Prl~Q]

= PrlQ] + 5 (1~ PrlC)
=242 g
22
i< iilopg
2 -2 2
2¢ < Pr[Q].
~—

<el

If e non-negl., so is €; contradicting RSA assumption. O

t' <t+ (g4 + gu - texp) (search in Q and one exp. per call)
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Tightness of the Reduction

m  RSA-CPA has a tight reduction (additive factor)

= RSA-FDH has no tight reduction (multiplicative factor)

Bellare et al.’s proof looses a factor of g4
Coron’s proof only looses a factor of gs
It is often assumed that g4 < 2%° and g5 < 2%°

Assume RSA with 80 bit security: 1248 bit modulus (ECRYPT II)

To obtain this security level w.r.t. Bellare et al.’s analysis we at least require
4000 bit RSA!
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Encrypting With Diffie-Hellman

Let G be a group of prime order p and g a generator
No trapdoor known to invert discrete exponentiation function

How to encrypt?
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Encrypting With Diffie-Hellman

= Let G be a group of prime order p and g a generator
= No trapdoor known to invert discrete exponentiation function

=  How to encrypt? X =g

Alice

Use DH key as pad

Y —gY (X =g" )
@ m<+m-Z/Y"

DH key

£
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ElGamal Encryption Scheme

KeyGen(1%): Pick group G = (g) with |G| = p ~ 2 prime, pick x <~Z, and output
(sk, pk) « (X = g)

Enc(m, pk): Letm € G, picky <*Z, and output (¢1,¢2) < (¢¥,m - X)

Dec(c, sk): Letc = (c1,¢2), compute and output m < ¢, /c}
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ElGamal Encryption Scheme (ctd.)

Recall: DDH Assumption

Let G = (g) with |G| = p prime, log, p = &, then V PPT A
IPrix,y &7, - A(g",¢,g%) = 1]—
Prix,y,z<Zp : A(g",9",9°) = 1]| < e(x)

and let us denote this probability as Adve’y', (A).

If DDH assumption holds, ElGamal is IND-CPA.
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ElGamal IND-CPA Proof
Proof (by Game Hopping):

In future Lecture!

Need to first look at constructing proofs via Game Hopping!
= Basicldea:

m  Write down scheme as algorithm
m  Transform algorithm by changing it slightly

= Argue that Adversary cannot distinguish between old and new algorithm
m  Repeat until we arrive at one algorithm that cannot be broken

= e.g.,itdoes not have access to the secret key at all



ElGamal and DDH

= Careful with choice of groups

= InZj for p prime DDH is not hard (take prime order g subgroup, e.g.,
p=2q+1)
® |n symmetric pairings no DDH; in the XDH setting DDH is not hard in G,

= Can switch to Linear ElGamal (DLIN)
DLIN Assumption
Let G with |G| = p, log, p = kand u, v, h € G, thenV PPT A

[Prx,y &7y : AWV, R = 1]—
Prix,y,z &2 - AU, VY, ) = 1]| < e(k)
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Linear ElGamal

Linear ElGamal

KeyGen(1%): Pick group G = (g) with |G| = p ~ 2" prime, pick u,v £-Zp, h £-G, set
(U,V,h) < (h'/,h*", h) and output (sk, pk) < ((u, V), (U, V, h)
Enc(m, pk): Letm € G, picky,z £7, and output (c1,c2,c3) + (U, V2, m - B*7)

Dec(c, sk): Letc = (c1,c2,¢3), compute and output m +— c3/(cf - ¢3)

If DLIN assumption holds, Linear ElGamal is IND-CPA.
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Problems With IND-CPA Security

Malleability: Adversary may change a ciphertext such that plaintexts are related

RSA-CPA:
(H(x) ®m & m’,x® mod N)

ElGamal:
(g,\/o’mo)()/o)*(gh’mlxyl) — (g}’o-l-yl, (mo . ml)XyO+yl)

Sometimes desired (computing on encrypted data)

Sometimes problematic (e.g., Bleichenbacher)
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Active Adversaries (CCA)

How to formalize malleability (NM)? Dolev et al. have done this back in 1993 with a
simulation-based notion

Bellare et al. have shown that NM implies the IND notion

®=  The strongest notion NM-CCA2 is equivalent to IND-CCA2

= [IND notion is more convenient to use
Idea of a stronger IND notion
m  Give the adversary access to a decryption oracle

IND-CCA2 automatically yields security in universal composabability (UC)
framework



Active Adversaries (CCA)

Oracle 0P (-, sk)

oo

Oracle O9e(, sk)

pk

(mo,m1)

b*

Challenger C

(sk, pk) +— KeyGen(1%)

b4 0,1}
c* « Enc(my, pk)

if b* = b return 1;
else return 0;
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Active Adversaries (CCA)

= [ND-CCA1 (lunchtime attacks)

= Aonly access to OP¢¢ (before seeing the challenge ciphertext)

m  Best we can get for homomorphic schemes (within our notions)



Active Adversaries (CCA)

= [ND-CCA1 (lunchtime attacks)

= Aonly access to OP¢¢ (before seeing the challenge ciphertext)

m  Best we can get for homomorphic schemes (within our notions)
= |IND-CCA2

= A also has access to O¢¢ (after seeing the challenge)
m [snotallowed to submit c¢*
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IND-CCA2 Schemes?

In the random oracle model

= RSA-OAEP(+) (RSA)
= Hybrid ElGamal (strong DH)
m  Twin Hybrid ElGamal (DH)

Without random oracles

m  Hash proof system (e.g., Cramer-Shoup)
= From CPA secure IBE schemes

= Twin-encryption using non-interactive zero-knowledge

Conversion from IND-CPA (e.g., Fujisaki-Okamoto)
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Theory vs. Practice

= Many "pure" PKES not useful for content encryption
= Use of hybrid encryption (KEM/DEM) approach

m  Combine PKE with symmetric encryption (and MAC or RO)

m  Generic conversions follow this approach
= Plain PKE schemes still very useful

= Homomorphic encryption
m  Threshold encryption

= Zero-knowledge proofs of knowledge (plaintext equality, inequality)
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Relation Among Notions

NM-CPA <—— NM-CCA1 =—, - NM-CCA2

|ND-CPA>\|N D-CCAL < IND-CCA2



Additional Security Notions for PKE

= Replayable CCA (RCCA)

= IND-CPA too weak and IND-CCA2 often too strong

= Capture schemes that are CCA2-secure except for allowing re-randomization
of ciphertexts

= Altering ciphertext is "ok", if it decrypts to original message
= Circular Security

m  Encrypt a secret key under the corresponding public key (1-cycle)
= Important for fully homomorphic encryption (bootstrapping)

= Homomorphically evaluating decryption function on ciphertext (use encryption of secret
key)



Additional Security Notions for PKE

= Key Dependent Message (KDM) security

m  Generalization of circular security

m  Encrypted messages might depend on arbitrary function of secret keys
= Security under leakage

m  Leak a bounded number of bits of secret key
m Leak an adversarially chosen function of secret key
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What you should know...

= Security models for PKE

m  Active and passive adversaries

m  “Games” for different Adversaries
= Asymptotic vs. concrete security

®=  Basic Idea of (Random) Oracles



Questions?
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