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Public-Key Cryptography

Provable security idea:

Breaking encryption (RSA, ECC, ...)

as hard as solving hard problem (factoring, discrete logarithm)
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Everything is an Algorithm

Encryption scheme:

key ← KeyGeneration(·)

c← Encryption(m)

m← Decryption(c)
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Security Properties & Adversary

Properties:

Correctness
m = Decryption(Encryption(m)).

c =Encryption(m) does not leak "any" information.

unforgeability.

Adversary:

runtime (poly-time).

quantum
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Hard problems

No crypto system relies on a proven hard problem.
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Notation I

We denote

Z as the set of integers {... ,−2,−1, 0, 1, 2, ... }

N as the set of natural numbers {0, 1, 2, ... }

ZN as the set of integers modulo N

Z∗N as the set of invertible integers modulo N

P as the set of prime numbers

(xi)ni=1 := (x1, ... , xn)
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Notation II

We useG to denote a group.

WithG = 〈g〉, we denote that g generatesG

| G | denotes the order of a group

κ... security parameter (in bits), e.g., RSA: κ = 80 bit≈ 1024 bit modulus

With Gκ = (G, p, g), we denote the following setup:

p is a prime of bitlength κ, and

G = 〈g〉 is a group with | G |= p
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Discrete Probability Distributions

Definition

A discrete probability distribution is a probability distribution that can take on a
countable number of values.

Example: uniform distribution

x←R X denotes x is drawn uniformly at random from X
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Languages and Computational Problems

Definition Example

Σ be a finite alphabet {0, 1}
Σ∗ is set of all strings ofΣ {0, 1, 10, 11, 01, ... }
A formal language L is a subset ofΣ∗ strings of even length

Decision Problem: Let L ⊆ Σ∗ be a language. On the input of x ∈ Σ∗, output true if
x ∈ L and false otherwise.

Search Problem: Let R ⊆ Σ∗ × Σ∗ be a relation between inputs and outputs. On
the input of x ∈ Σ∗, output y ∈ Σ∗ such that (x, y) ∈ R.
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Oracle

Oracle

An oracleO is a black-box that can be used to solve a computational problem in one
computational step.

Note: No analysis or modification of internal computations.

LetA be an algorithm (TM). We useAO to denote thatA has access to oracleO, e.g.

SAT ∈ PSAT .
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Probabilistic Polynomial Time (PPT)

A PPT algorithmA canmake (polynomial many) random steps upon execution. The
output ofA is a random variable.

Find(k, a1, ... , an):

Pick i ∈ {1, ... , n} randomly and set x ← ai

Scan a1, ... , an and count the numberm of aj’s s.t. aj ≤ x.

Ifm = k output x.

Ifm > k copy all elements aj with aj ≤ x in a new array L and run Findk(k, L)

Ifm < k copy all elements aj with aj > x in a new array L and run Findk(k −m, L)
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Reductions

Instance p1

Solution s1

Problem P1

Reduction R

Problem P2

p1 → p2
p2

s2s1 ← s2

Algorithm
that solves

Wewrite P1 ≤ P2, i.e., P2 is at least as hard as P1.
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Algorithms in a Cryptographic Setting
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Reductionist Security

Prove security by reduction to specific hard problem:

Assume an PPT adversaryA breaking a crypto system

Show that there is an e�icient reductionR from the crypto system to the hard
problem

Goal: Crypto system is secure as long as factoring is hard.
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Negligible Functions

Definition

A function ε : N→ R is called negligible, if for every polynomial function p : N→ R,
there is an n0 ∈ N such that

ε(n) ≤ 1
p(n)

∀ n ≥ n0.

i.e. εmust be exponentially small ∀ n ≥ n0.
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Computational Hardness

Why: Information theoretically secure primitives are rare and o�en not very practical

Hard? Educated guess (heuristics).

Note

Assumptions can be analyzed independently of schemes.
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Discrete Logarithm Assumption

Let Gκ = (G, p, g).

The discrete logarithm (DL) assumption states that forall PPT adversariesA there is a
negligible function ε(·) such that

Pr [x←R Zp, x∗ ← A(Gκ, gx) : x = x∗] ≤ ε(κ).
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Commitment Scheme

0µm mµ
commit

r open

0 + r= m
µ
m

Hiding: Cannot learnm from Comm(m).

Binding: Cannot open Comm(m) to two di�erent messages.
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Example: Commitment1 under DL

Let Gκ = (G, p, g) and additionallyG = 〈h〉.

Commitment C to messagem ∈ Zp:

Choose r←R Z∗p
Compute C← gmhr

Binding: ∀ PPTA∃ negl. ε(·) such that

Pr

 (C,m0, r0,m1, r1)← A(Gκ, h) :
C = gm0hr0 ∧
C = gm1hr1 ∧

m0 6= m1

 ≤ ε(κ).

1Pedersen Commitment
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Example II

Prove binding by showing that an e�icient adversaryAbind against binding can be
used to construct an e�icient adversary against DL.

(G, p, g, gx) Reduction R
set h = gx

(G, p, g, h)

C,m0, r0,
m1, r1

Abind

Then, m0 + xr0 = m1 + xr1

→ x = m1−m0

r0−r1
x
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Computational Di�ie-Hellman Assumption

Let Gκ = (G, p, g).

The computational Di�ie-Hellman (CDH) assumption states that ∀ PPTA∃ negl. ε(·)
such that

Pr [x, y←R Zp, h← A(Gκ, gx, gy) : h = gxy] ≤ ε(κ).
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Decisional Di�ie-Hellman Assumption

Informally: Distinguish (gx, gy, gxy) from (gx, gy, r), r ∈R G.

Let Gκ = (G, p, g). The decisional Di�ie-Hellman (DDH) assumption states that ∀ PPT
A∃ negl. ε(·) such that

Pr


x, y, z←R Zp, b←R {0, 1},
b∗ ← A(Gκ, gx, gy, g(1−b)·z+b·xy) :

b = b∗

 ≤ 1/2 + ε(κ).
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Relations between Assumptions

Theorem

Fix Gκ = (G, p, g), then the following holds

DDH ≤P CDH ≤P DL.

Proof: Exercise.
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Bilinear Maps I

LetG1 = 〈g1〉 ,G2 = 〈g2〉 andGT be three groups of prime order p.

A bilinear pairing is a map e : G1 ×G2 → GT , with the following properties:

Bilinearity: e(ga1, gb2) = e(g1, g2)ab = e(gb1, ga2) ∀ a, b ∈ Zp

Non-degeneracy: e(g1, g2) 6= 1GT , i.e., e(g1, g2) generatesGT
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Digital Signature Scheme

KeyGen : Choose e : G×G→ GT where, |G|, and |GT | is a prime. Further, let g
generateG. Choose sk←R Zp and pk← gsk.

Sign(sk,m) : Output a signature σ ← msk.

Verify(pk,m,σ) : Check if:
e(m, pk) = e(σ, g).
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Example - Bilinear Maps I

Recall: Di�ie-Hellman key agreement

Gκ = (G, p, g)
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Example - Bilinear Maps II

Three party Di�ie-Hellman key agreement

BGκ = (e,G,GT , p, g)
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Bilinear Maps - Instantiations

E�icient instantiations using elliptic curve groups

Here,G1 andG2 are prime order p elliptic curve subgroups

with point addition as group operation, and

GT is the multiplicative order p subgroup of some extension field.

Thus, o�en additive notation used forG1 andG2, e.g., for
P ∈ G1, P′ ∈ G2, a, b ∈ Zp one would write

e(aP, bP′) = e(P, P′)ab = e(bP, aP′)
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Bilinear Assumptions

Counterparts of CDH, DDH in the pairing setting.

Let BGκ1 = (e,G1,GT , p, g1). Then, ∀ PPTA∃ negl. ε(·) such that

Computational bilinear Di�ie-Hellman assumption (CBDH):

Pr
[
x, y, z←R Zp, e(g1, g1)xyz = A(BGκ1 , gx1, gy1, gz1)

]
≤ ε(κ).

Decisional bilinear Di�ie-Hellman assumption (DBDH)

Pr


x, y, z,w←R Zp, b←R {0, 1},
b∗ ← A(BGκ1 , gx1, gy1, gz1,
e(g1, g1)(1−b)·w+b·xyz) :

b = b∗

 ≤ 1/2 + ε(κ).
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Assumptions in Hidden-Order Groups

Let p, q be two appropriately chosen primes such that N = pq is of bitlength κ. Then, ∀
PPTA∃ negl. ε(·) such that

Integer factorization assumption:

Pr [(p, q)← A(N) : N = p · q] ≤ ε(κ)

RSA assumption: Given e s.t. gcd(e,ϕ(N)) = 1

Pr [m← A(e, c,N) : me ≡ c (mod N)] ≤ ε(κ)

Strong RSA assumption (s-RSA):

Pr [(m, e)← A(c,N) : me ≡ c (mod N)] ≤ ε(κ)
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Relations of Hidden-Order Assumptions

It is easy to see that if one can factor, both RSA and s-RSA do not hold.

Open problem: Showwhether (s-)RSA is equivalent to factoring.
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What you should know...

Basic mathematical constructions: groups, generator, probability distribution

Basic complexity theory: language, oracle, PPT

High-level idea of reduction

Discrete logarithm assumption

Bilinear maps
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