

Modern Public Key Cryptography

Commitments and Zero-Knowledge

Daniel Kales based on slides by Sebastian Ramacher and David Derler

Graz, April 28, 2021

Outline

Commitment Schemes

← Interactive Proofs

Commitment Schemes

Commitments - Informal Idea

Imagine two parties A and B

- A makes some (secret) decision m
- A wants to later convince B that decision m was made
 - A must not be able to change m later on
 - B must not be able to learn anything about m before

Real world analogy

- A writes m on a piece of paper,
 - puts it in a box and locks the box
- A hands the locked box to E
 - Later, A can give the key for the box to B

Commitments - Informal Idea

Imagine two parties A and B

- A makes some (secret) decision m
- A wants to later convince B that decision m was made
 - A must not be able to change m later on
 - *B* must not be able to learn anything about *m* before

Real world analogy

- A writes m on a piece of paper,
 - puts it in a box and locks the box
- A hands the locked box to B
 - Later, A can give the key for the box to B

Commitment Scheme

Commitment Scheme

 $Gen(1^{\kappa})$: This probabilistic algorithm on input of κ , outputs (public) parameters pp.

Commit(pp, m): This (probabilistic) algorithm on input pp and message $m \in \mathcal{M}$, outputs commitment C and opening information O.

Open(pp, C, O): This deterministic algorithm on input pp C and O returns $m \in M \cup \{\bot\}$.

pp may be generated by a trusted third party (TTP) or one of the parties

Security

Binding

Recall: A must not be able to change m later on

More formally: \forall PPT $\mathcal{A} \exists$ negl. $\epsilon(\cdot)$ such that

$$\Pr\left[\begin{array}{c} \mathsf{pp} \leftarrow \mathit{Gen}(1^\kappa), (\mathit{C}^*, \mathit{O}^*, \mathit{O}'^*) \leftarrow \mathcal{A}(\mathsf{pp}), \\ m \leftarrow \mathit{Open}(\mathsf{pp}, \mathit{C}^*, \mathit{O}^*), \\ m' \leftarrow \mathit{Open}(\mathsf{pp}, \mathit{C}^*, \mathit{O}'^*) : \\ m \neq m' \ \land \ m \neq \bot \ \land \ m' \neq \bot \end{array}\right] \leq \epsilon(\kappa).$$

Security II

Hiding

Recall: B must not be able to learn anything about m

More formally: \forall PPT $\mathcal{A} \exists$ negl. $\epsilon(\cdot)$ such that

$$\mathsf{Pr}\left[egin{array}{l} \mathsf{pp} \leftarrow \mathit{Gen}(1^\kappa), (m_0, m_1, \mathsf{state}) \leftarrow \mathcal{A}(\mathsf{pp}), \ b \stackrel{\scriptscriptstyle{\kappa}}{\leftarrow} \{0, 1\}, \mathcal{C}_b \leftarrow \mathit{Commit}(\mathsf{pp}, m_b), \ b^* \leftarrow \mathcal{A}(\mathsf{state}, \mathcal{C}_b) : b = b^* \end{array}
ight] \leq rac{1}{2} + \epsilon(\kappa).$$

Discrete Log Commitment

Scheme

```
Gen(1^{\kappa}): Set pp \leftarrow \mathcal{G}^{\kappa} = (\mathbb{G}, p, g) and return pp.
```

Commit(pp, m): Return $C \leftarrow g^m, O \leftarrow m$

Open(pp, C, O): If $C = g^m$ return m and \bot otherwise.

- Binding holds unconditional (only single m satisfies $C = g^m$)
- Hiding holds computational under DL (clearly, only for unpredictable messages)

Discrete Log Commitment

Scheme

```
Gen(1^{\kappa}): Set pp \leftarrow \mathcal{G}^{\kappa} = (\mathbb{G}, p, g) and return pp.
```

Commit(pp, m): Return $C \leftarrow g^m, O \leftarrow m$

Open(pp, C, O): If $C = g^m$ return m and \bot otherwise.

- Binding holds unconditional (only single m satisfies $C = g^m$)
- Hiding holds computational under DL (clearly, only for unpredictable messages)

Pedersen Commitment

Scheme

$$Gen(1^{\kappa})$$
: Choose $\mathcal{G}^{\kappa} = (\mathbb{G}, p, g), h \stackrel{\kappa}{\leftarrow} \mathbb{G}$ and return pp $\leftarrow (\mathcal{G}^{\kappa}, h)$.

$$Commit(pp, m)$$
: Choose $r \stackrel{R}{\leftarrow} \mathbb{Z}_p$ and return $C \leftarrow g^m h^r$, $O \leftarrow (m, r)$

Open(pp, C, O): If $C = g^m h^r$ return m and \bot otherwise.

- Binding holds under DL (recall first lecture & exercise)
- Hiding holds unconditional ($\forall C \forall m \exists unique \ r : C = g^m h^r$)
- Who can generate the pp?

Pedersen Commitment

Scheme

```
Gen(1^{\kappa}): Choose \mathcal{G}^{\kappa} = (\mathbb{G}, p, g), h \stackrel{\scriptscriptstyle{\kappa}}{\leftarrow} \mathbb{G} and return pp \leftarrow (\mathcal{G}^{\kappa}, h).
```

Commit(pp, m): Choose $r \stackrel{R}{\leftarrow} \mathbb{Z}_p$ and return $C \leftarrow g^m h^r$, $O \leftarrow (m, r)$

Open(pp, C, O): If $C = g^m h^r$ return m and \bot otherwise.

- Binding holds under DL (recall first lecture & exercise)
- Hiding holds unconditional ($\forall C \forall m \exists unique r : C = g^m h^r$)
- Who can generate the pp?

Unconditional vs. Computational Security

There is no scheme (in the classical setting) providing

- unconditional hiding and
- unconditional binding

at the same time.

Why? (Recall exercises.)

Unconditional vs. Computational Security

There is no scheme (in the classical setting) providing

- unconditional hiding and
- unconditional binding

at the same time.

Why? (Recall exercises.)

Commitments from Encryption Schemes

Assume an IND-CPA secure encryption scheme

 \blacksquare $\Pi = (Gen, Enc, Dec)$

Commitment Scheme from Π

```
Gen(1^{\kappa}): Run (sk, pk) \leftarrow Gen(1^{\kappa}) and return pk.
```

Commit(pp, m): Randomly choose r and return $C \leftarrow Enc(pk, m; r), O \leftarrow (m, r)$

Open(pp, C, O): If C = Enc(pk, m; r) return m and \bot otherwise.

Commitments from Encryption Schemes II

- Binding follows from perfect correctness
 - Correctness states

$$\forall (\mathsf{sk}, \mathsf{pk}) \leftarrow \mathit{Gen}(1^{\kappa}), \forall m : m = \mathit{Dec}(\mathsf{sk}, \mathit{Enc}(\mathsf{pk}, m))$$

- Breaking binding implies that
 - $Enc(pk, m_0) = Enc(pk, m_1)$, for a fixed pk
 - But then we have $m_1 = Dec(sk, Enc(pk, m_0))$
- Hiding follows from IND-CPA security
 - lacksquare $\mathcal A$ who breaks hiding can be used to break IND-CPA

Commitments from Encryption Schemes II

- Binding follows from perfect correctness
 - Correctness states

$$\forall (\mathsf{sk}, \mathsf{pk}) \leftarrow \mathit{Gen}(1^{\kappa}), \forall m : m = \mathit{Dec}(\mathsf{sk}, \mathit{Enc}(\mathsf{pk}, m))$$

- Breaking binding implies that
 - $Enc(pk, m_0) = Enc(pk, m_1)$, for a fixed pk
 - But then we have $m_1 = Dec(sk, Enc(pk, m_0))$
- Hiding follows from IND-CPA security
 - lacksquare $\mathcal A$ who breaks hiding can be used to break IND-CPA

Efficiently Verifiable Proofs

- \mathcal{NP} is the set of decision problems
 - where valid instances have efficiently verifiable proofs
- For any such problem S there is a deterministic polynomial time verifier
 - such that for any instance $x \in S$
 - there exists an algorithm (the prover) that provides a polynomial sized witness w (\mathcal{NP} witness)
 - such that the verifier accepts on input (x, w) iff $x \in S$

Example: Graph Isomorphism (GI)

Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there is a bijection $\pi: V_1 \mapsto V_2$ s.t. $\{u, v\} \in E_1 \iff \{\pi(u), \pi(v)\} \in E_2$

• Language $L_{GI} = \{(G_1, G_2) | G_1 \cong G_2\}$ is in \mathcal{NP} (witness π)

- What if we allow the verifier to adaptively ask the prover?
 - Does not give a benefit (we can define an equivalent non-interactive verifier that takes a transcript)
- Allow an interactive verifier to be probabilistic?
 - Gives more power yields the class IP (IP = PSPACE)
- Consider game between computationally bounded verifier V (PPT) and computationally unbounded prover P
 - Prover convinces the verifier of the validity of some assertion $(x \in S)$

- What if we allow the verifier to adaptively ask the prover?
 - Does not give a benefit (we can define an equivalent non-interactive verifier that takes a transcript)
- Allow an interactive verifier to be probabilistic?
 - Gives more power yields the class \mathcal{IP} ($\mathcal{IP} = PSPACE$)
- Consider game between computationally bounded verifier V (PPT) and computationally unbounded prover P
 - Prover convinces the verifier of the validity of some assertion ($x \in S$)

- What if we allow the verifier to adaptively ask the prover?
 - Does not give a benefit (we can define an equivalent non-interactive verifier that takes a transcript)
- Allow an interactive verifier to be probabilistic?
 - Gives more power yields the class \mathcal{IP} ($\mathcal{IP} = \mathsf{PSPACE}$)
- \blacksquare Consider game between computationally bounded verifier $\mathcal V$ (PPT) and computationally unbounded prover $\mathcal P$
 - Prover convinces the verifier of the validity of some assertion ($x \in S$)

Interactive Proofs: Formalization

Interactive Proof System (IPS)

An IPS for a language L is an interactive protocol between an unrestricted prover \mathcal{P} and a PPT verifier \mathcal{V} such that on input x the following conditions hold:

Completeness:
$$\forall x \in L$$
: $\Pr[(\mathcal{P}, \mathcal{V})(x) \text{ accepts}] = 1$

Soundness:
$$\forall x \notin L, \forall \mathcal{P}^* : \Pr[(\mathcal{P}^*, \mathcal{V})(x) \text{ accepts}] \leq \frac{1}{2}$$

- Perfect completeness (imperfect may have error probability)
- Interactive arguments: computational soundness (\mathcal{P}^* is PPT)
- Reduce soundness error by sequential/parallel repetition

Interactive Proofs: Formalization

Interactive Proof System (IPS)

An IPS for a language L is an interactive protocol between an unrestricted prover \mathcal{P} and a PPT verifier \mathcal{V} such that on input x the following conditions hold:

Completeness:
$$\forall x \in L$$
: $\Pr[(\mathcal{P}, \mathcal{V})(x) \text{ accepts}] = 1$

Soundness:
$$\forall x \notin L, \forall \mathcal{P}^* : \Pr[(\mathcal{P}^*, \mathcal{V})(x) \text{ accepts}] \leq \frac{1}{2}$$

- Perfect completeness (imperfect may have error probability)
- Interactive arguments: computational soundness (\mathcal{P}^* is PPT)
- Reduce soundness error by sequential/parallel repetition

Example: Graph Non-Isomorphism (GNI)

- $L_{GNI} = \{(G_1, G_2) | |G_1| = |G_2|, G_1 \not\cong G_2\}$
- Unknown if $L_{GNI} \in \mathcal{NP}$ (clearly in co- \mathcal{NP}), but it is in \mathcal{IP}

IF IOI LGN

```
Let x=(G_1,G_2) be the common input \mathcal{V}\colon \operatorname{Pick} i \overset{\mathcal{R}}{\leftarrow} \{1,2\}, randomly permute vertices of G_i and send to \mathcal{P} \mathcal{P}\colon \operatorname{Find} b\in \{1,2\} s.t. G_i\cong G_b and send b (note that \mathcal{P} is unbounded \mathcal{V}\colon \operatorname{Accept} \mathrm{if} b=i
```

- If $G_1 \ncong G_2$, any permutation of G_i uniquely determines i
- If $G_1 \cong G_2$, distribution of G_i independent of i

Example: Graph Non-Isomorphism (GNI)

- $L_{GNI} = \{(G_1, G_2) | |G_1| = |G_2|, G_1 \not\cong G_2\}$
- Unknown if $L_{GNI} \in \mathcal{NP}$ (clearly in co- \mathcal{NP}), but it is in \mathcal{IP}

IP for *L_{GNI}*

Let $x = (G_1, G_2)$ be the common input

 \mathcal{V} : Pick $i \stackrel{R}{\leftarrow} \{1, 2\}$, randomly permute vertices of G_i and send to \mathcal{P}

 \mathcal{P} : Find $b \in \{1, 2\}$ s.t. $G_i \cong G_b$ and send b (note that \mathcal{P} is unbounded)

 \mathcal{V} : Accept if b = i

- If $G_1 \not\cong G_2$, any permutation of G_i uniquely determines i
- If $G_1 \cong G_2$, distribution of G_i independent of i

Example: Graph Non-Isomorphism (GNI)

- $L_{GNI} = \{(G_1, G_2) | |G_1| = |G_2|, G_1 \not\cong G_2\}$
- Unknown if $L_{GNI} \in \mathcal{NP}$ (clearly in co- \mathcal{NP}), but it is in \mathcal{IP}

IP for *L_{GNI}*

Let $x = (G_1, G_2)$ be the common input

 \mathcal{V} : Pick $i \stackrel{R}{\leftarrow} \{1, 2\}$, randomly permute vertices of G_i and send to \mathcal{P}

 \mathcal{P} : Find $b \in \{1, 2\}$ s.t. $G_i \cong G_b$ and send b (note that \mathcal{P} is unbounded)

 \mathcal{V} : Accept if b = i

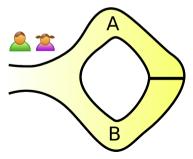
- If $G_1 \not\cong G_2$, any permutation of G_i uniquely determines i
- If $G_1 \cong G_2$, distribution of G_i independent of i

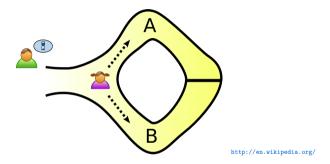
- Does proving the validity of an assertion always require giving away extra knowledge?
 - No, captured by zero-knowledge
- No adversary can gain anything from a prover (beyond being convinced of the validity of an assertion)
- How to model this requirement?
 - All an adversarial verifier can learn from interacting with the prover can be learned based on the assertion itself
 - Transcripts of real interactions not distinguishable from "simulated" interactions (on only public input)

- Does proving the validity of an assertion always require giving away extra knowledge?
 - No, captured by zero-knowledge
- No adversary can gain anything from a prover (beyond being convinced of the validity of an assertion)
- How to model this requirement?
 - All an adversarial verifier can learn from interacting with the prover can be learned based on the assertion itself
 - Transcripts of real interactions not distinguishable from "simulated" interactions (on only public input)

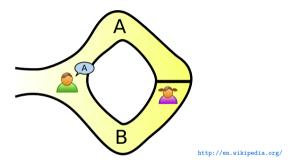
- Does proving the validity of an assertion always require giving away extra knowledge?
 - No, captured by zero-knowledge
- No adversary can gain anything from a prover (beyond being convinced of the validity of an assertion)
- How to model this requirement?
 - All an adversarial verifier can learn from interacting with the prover can be learned based on the assertion itself
 - Transcripts of real interactions not distinguishable from "simulated" interactions (on only public input)

- Alice knows a secret word to open a magic door in a cave
- Alices wants to convince Bob that she knows the secret
- But Alice does not want to reveal the secret word, nor for anyone else to find out about her skills (paparazzi)

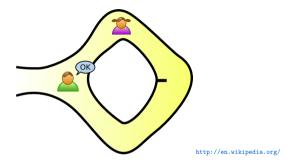




- 1. Alice randomly chooses path A or B, while Bob waits outside.
- 2. Bob chooses an exit path.
- 3. Alice reliably appears at the exit Bob names.
- 4. An observer Otto won't be convinced prior agreement?

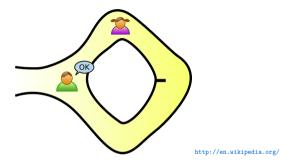


- 1. Alice randomly chooses path A or B, while Bob waits outside.
- 2. Bob chooses an exit path.
- 3. Alice reliably appears at the exit Bob names.
- 4. An observer Otto won't be convinced prior agreement?



- 1. Alice randomly chooses path A or B, while Bob waits outside.
- 2. Bob chooses an exit path.
- 3. Alice reliably appears at the exit Bob names.
- 4. An observer Otto won't be convinced prior agreement?

Story of Ali Baba



- 1. Alice randomly chooses path A or B, while Bob waits outside.
- 2. Bob chooses an exit path.
- 3. Alice reliably appears at the exit Bob names.
- 4. An observer Otto won't be convinced prior agreement?

Zero-Knowledge Proofs: Formalization

Perfect Zero-Knowledge

An IPS for a language L is said to provide perfect zero-knowledge, if for every PPT \mathcal{V}^* there exists a PPT simulator \mathcal{S} s.t.

$$(\mathcal{P}, \mathcal{V}^*)(x) \equiv \mathcal{S}(x)$$
, for every $x \in S$

- Statistical ZK: distributions are statistically close
- Computational ZK: distributions cannot be told apart by efficient distinguishers computationally indistinguishable

Zero-Knowledge Proofs: Formalization

Perfect Zero-Knowledge

An IPS for a language L is said to provide perfect zero-knowledge, if for every PPT \mathcal{V}^* there exists a PPT simulator \mathcal{S} s.t.

$$(\mathcal{P}, \mathcal{V}^*)(x) \equiv \mathcal{S}(x)$$
, for every $x \in S$

- Statistical ZK: distributions are statistically close
- Computational ZK: distributions cannot be told apart by efficient distinguishers computationally indistinguishable

Zero-Knowledge Proofs: Formalization

- ZK
 - We do not know how \mathcal{V}^* exactly behaves
 - \mathcal{S} needs to exist for arbitrary \mathcal{V}^*
 - So, we consider black-box access to \mathcal{V}^* in the simulation
- Honest-verifier ZK
 - We assume \mathcal{V}^* behaves honestly
 - Consequently, S ignores V^* in the simulation

ZKP for GI

Let the common input be a pair of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ and let φ be an arbitrary isomorphism between them

- \mathcal{P} : Choose random permutation π and send $G' = (V_2, E)$ with $E = \{(\pi(u), \pi(v)) | \{u, v\} \in E_2\}$ to \mathcal{V} (if $G_1 \cong G_2$ this graph is isomorphic to both)
- \mathcal{V} : Choose $b \overset{R}{\leftarrow} \{1,2\}$ and ask \mathcal{P} to reveal an isomorphism between G' and G_b
- \mathcal{P} : If b=2 send $\psi \leftarrow \pi$, otherwise send $\psi \leftarrow \pi \circ \varphi$ to \mathcal{V}
- \mathcal{V} : If received ψ is isomorphism between G' and G_b output accept and reject otherwise
- Honest prover always succeeds; cheating prover will succeed with prob. 1/2 (correctly guess the bit of V)

ZKP for GI

Let the common input be a pair of graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ and let φ be an arbitrary isomorphism between them

- \mathcal{P} : Choose random permutation π and send $G'=(V_2,E)$ with $E=\{(\pi(u),\pi(v))|\{u,v\}\in E_2\}$ to \mathcal{V} (if $G_1\cong G_2$ this graph is isomorphic to both)
- \mathcal{V} : Choose $b \stackrel{R}{\leftarrow} \{1,2\}$ and ask \mathcal{P} to reveal an isomorphism between G' and G_b
- \mathcal{P} : If b=2 send $\psi \leftarrow \pi$, otherwise send $\psi \leftarrow \pi \circ \varphi$ to \mathcal{V}
- \mathcal{V} : If received ψ is isomorphism between G' and G_b output accept and reject otherwise
- Honest prover always succeeds; cheating prover will succeed with prob. 1/2 (correctly guess the bit of \mathcal{V})

- The GI protocol is honest-verifier ZK
 - S chooses b and ψ uniformly at random and outputs (G',b,ψ) with G' being ψ applied to G_b
- The GI protocol is perfect ZK
 - Let b^* be the random choice of \mathcal{V}^*
 - S selects $b \leftarrow \{1, 2\}$ (hoping V^* selects $b^* = b$)
 - lacksquare S constructs G' by permuting G_b under random ψ
 - If $b^* \neq b$, S restarts, otherwise output (G', b, ψ)
 - Output of S is perfectly indistinguishable from real (note b^* is independent of b) and we expect a valid transcript every two runs (poly time S)

- The GI protocol is honest-verifier ZK
 - S chooses b and ψ uniformly at random and outputs (G', b, ψ) with G' being ψ applied to G_b
- The GI protocol is perfect ZK
 - Let b^* be the random choice of \mathcal{V}^*
 - \mathcal{S} selects $b \stackrel{\scriptscriptstyle R}{\leftarrow} \{1,2\}$ (hoping \mathcal{V}^* selects $b^* = b$)
 - $\mathcal S$ constructs $\mathcal G'$ by permuting $\mathcal G_b$ under random ψ
 - If $b^* \neq b$, \mathcal{S} restarts, otherwise output (G', b, ψ)
 - Output of S is perfectly indistinguishable from real (note b^* is independent of b) and we expect a valid transcript every two runs (poly time S)

Zero-Knowledge for \mathcal{NP}

- **ZK** proofs exist for all $L \in \mathcal{NP}$
- Recall \mathcal{NP} -completeness
 - A problem is \mathcal{NP} complete if it is in \mathcal{NP}
 - lacksquare and every problem in \mathcal{NP} is poly time reducible to it
- **ZK** proof for \mathcal{NP} -complete language **L** (e.g., graph 3-coloring)
 - Reduce *L* to **L** (and the witness)
 - Run ZK proof for L

Proofs of Knowledge

- ZKPs only interested in the validity of the assertion itself
- Proofs of knowledge (PoKs) capture IPs where \mathcal{P} asserts knowledge of some object (e.g., a particular isomorphism)
- What does it mean for a machine M to know something?
 - There exists an efficient machine \mathcal{E} , which, given black-box access to M can extract M's "knowledge" (a string)
- PoK: Whenever there is a \mathcal{P}^* that convinces \mathcal{V} to know something, we can extract this string from \mathcal{P}^*
- Stronger notion of soundness

Proofs of Knowledge

- ZKPs only interested in the validity of the assertion itself
- Proofs of knowledge (PoKs) capture IPs where \mathcal{P} asserts knowledge of some object (e.g., a particular isomorphism)
- What does it mean for a machine M to know something?
 - There exists an efficient machine \mathcal{E} , which, given black-box access to M can extract M's "knowledge" (a string)
- PoK: Whenever there is a \mathcal{P}^* that convinces \mathcal{V} to know something, we can extract this string from \mathcal{P}^*
- Stronger notion of soundness

Proofs of Knowledge: Formalization

- Consider an \mathcal{NP} relation $R = \{(x, w) | W(x, w) = \mathtt{accept}\}$ where W is a PT algorithm deciding membership in R
- We can write $L_R = \{x | \exists w \text{ s.t. } (x, w) \in R\}$

Proof of Knowledge (PoK)

Let $(\mathcal{P}, \mathcal{V})$ be an IPS for L_R . Then, $(\mathcal{P}, \mathcal{V})$ is a PoK with knowledge error ρ if there exists a PPT knowledge extractor \mathcal{E} such that for any $x \in L_R$ and any PPT \mathcal{P}^* with $\delta = \Pr[(\mathcal{P}^*, \mathcal{V})(x) \text{ accepts}] > \rho$, we have that

$$\mathsf{Pr}[w \leftarrow \mathcal{E}^{P^*}(x) : R(x,w) = \mathsf{accept}] \geq \mathsf{poly}(\delta -
ho)$$

Proofs of Knowledge: Formalization

- Consider an \mathcal{NP} relation $R = \{(x, w) | W(x, w) = \mathtt{accept}\}$ where W is a PT algorithm deciding membership in R
- We can write $L_R = \{x | \exists w \text{ s.t. } (x, w) \in R\}$

Proof of Knowledge (PoK)

Let $(\mathcal{P}, \mathcal{V})$ be an IPS for L_R . Then, $(\mathcal{P}, \mathcal{V})$ is a PoK with knowledge error ρ if there exists a PPT knowledge extractor \mathcal{E} such that for any $x \in L_R$ and any PPT \mathcal{P}^* with $\delta = \Pr[(\mathcal{P}^*, \mathcal{V})(x) \text{ accepts}] > \rho$, we have that

$$\Pr[w \leftarrow \mathcal{E}^{P^*}(x) : R(x, w) = \texttt{accept}] \ge \mathsf{poly}(\delta - \rho)$$

- Non-interactive ZK (Single message)
 - In the common reference string model
 - General constructions very inefficient
- Witness indistinguishability (Relaxation of ZK)
 - For \mathcal{NP} relation R no \mathcal{V}^* can distinguish if \mathcal{P} uses witness w_1 or w_2 to x with $(x, w_i) \in R$ for $i \in \{1, 2\}$
- Public coin (e.g., GI) vs. private coin (e.g., GNI our version is not ZK but a slightly modified one)
- What we have seen so far is mainly of theoretical interest
- Will see (NI)-ZKPoKs that are useful and efficient

- Non-interactive ZK (Single message)
 - In the common reference string model
 - General constructions very inefficient
- Witness indistinguishability (Relaxation of ZK)
 - For \mathcal{NP} relation R no \mathcal{V}^* can distinguish if \mathcal{P} uses witness w_1 or w_2 to x with $(x, w_i) \in R$ for $i \in \{1, 2\}$
- Public coin (e.g., GI) vs. private coin (e.g., GNI our version is not ZK but a slightly modified one)
- What we have seen so far is mainly of theoretical interest
- Will see (NI)-ZKPoKs that are useful and efficient

- Non-interactive ZK (Single message)
 - In the common reference string model
 - General constructions very inefficient
- Witness indistinguishability (Relaxation of ZK)
 - For \mathcal{NP} relation R no \mathcal{V}^* can distinguish if \mathcal{P} uses witness w_1 or w_2 to x with $(x, w_i) \in R$ for $i \in \{1, 2\}$
- Public coin (e.g., GI) vs. private coin (e.g., GNI our version is not ZK but a slightly modified one)
- What we have seen so far is mainly of theoretical interes
- Will see (NI)-ZKPoKs that are useful and efficien

- Non-interactive ZK (Single message)
 - In the common reference string model
 - General constructions very inefficient
- Witness indistinguishability (Relaxation of ZK)
 - For \mathcal{NP} relation R no \mathcal{V}^* can distinguish if \mathcal{P} uses witness w_1 or w_2 to x with $(x, w_i) \in R$ for $i \in \{1, 2\}$
- Public coin (e.g., GI) vs. private coin (e.g., GNI our version is not ZK but a slightly modified one)
- What we have seen so far is mainly of theoretical interest
- Will see (NI)-ZKPoKs that are useful and efficient

- Non-interactive ZK (Single message)
 - In the common reference string model
 - General constructions very inefficient
- Witness indistinguishability (Relaxation of ZK)
 - For \mathcal{NP} relation R no \mathcal{V}^* can distinguish if \mathcal{P} uses witness w_1 or w_2 to x with $(x, w_i) \in R$ for $i \in \{1, 2\}$
- Public coin (e.g., GI) vs. private coin (e.g., GNI our version is not ZK but a slightly modified one)
- What we have seen so far is mainly of theoretical interest
- Will see (NI)-ZKPoKs that are useful and efficient

Questions?

Further Reading I

[1] Mihir Bellare and Oded Goldreich.

On defining proofs of knowledge.

In Advances in Cryptology - CRYPTO '92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings, pages 390–420, 1992.

[2] Ronald Cramer, Ivan Damgård, and Philip D. MacKenzie.

Efficient zero-knowledge proofs of knowledge without intractability assumptions.

In Public Key Cryptography, Third International Workshop on Practice and Theory in Public Key Cryptography, PKC 2000, Melbourne, Victoria, Australia, January 18-20, 2000, Proceedings, pages 354–373, 2000.

[3] Ivan Damgard.

On Σ -protocols.

http://cs.au.dk/~ivan/Sigma.pdf.

[4] Juan A. Garay, Philip D. MacKenzie, and Ke Yang.

Strengthening zero-knowledge protocols using signatures.

J. Cryptology, 19(2):169-209, 2006.

Further Reading II

[5] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi.

Zkboo: Faster zero-knowledge for boolean circuits.

In USENIX Security, 2016.

[6] Oded Goldreich.

Computational Complexity - A Conceptual Perspective.

Cambridge University Press, 2008.

[7] Jens Groth and Amit Sahai.

Efficient non-interactive proof systems for bilinear groups.

Cryptology ePrint Archive, Report 2007/155, 2007.

http://eprint.iacr.org/2007/155.

[8] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.

 $Zero-knowledge\ from\ secure\ multiparty\ computation.$

In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 21–30, 2007.