

SCIENCE PASSION TECHNOLOGY

Modern Public Key Cryptography

Provable Security

Lukas Helminger partially based on slides by S. Ramacher April 14th, 2021

Outline

Sequences of Games

Hybrid Encryption

Game-based Security

- Models security as game between an adversary A and a challenger C (which takes on role of all honest parties)
- Interactions between A and C well-defined
 - Modeled as oracles that *A* can query
 - e.g. *A* can query oracle for signatures on arbitrary messages
- At the end, *A* required to output "something" (e.g. a message-signature pair)
 - Winning condition specifies what A must output to win game (e.g. unqueried, valid message-signature pair)

Game-based Security: Example

Experiment $\mathbf{Exp}_{\Sigma}^{\text{EUF-CMA}}(\cdot)$:

Why another proof technique?

- Reductionist proofs are often very complex ~ hard to verify
- Idea: What if we slowly "converge" to our solution?
 - We start with original game $G = G_0$, (i.e. security definition)
 - modify it in series of small steps ($G_0 \rightarrow G_1 \rightarrow G_2 \rightarrow ...$)
 - until we end up in game *G_n*, which allows to prove the statement
- For each game hop, we have to justify distribution changes of values visible to A!

Sequences of Games (ctd)

- Let S_i be event that A wins game G_i
 - e.g. outputs signature forgery in game G_i
- We relate $Pr[S_i]$ and $Pr[S_{i+1}]$ for i = 0, ..., n-1
- If $Pr[S_n]$ is (negligibly close to) "target probability" *c*, then scheme secure
 - Proof gives bound on success probability of A:
 - Bound on $Pr[S_n]$ gives bound on $Pr[S_0]$
 - \Rightarrow If $Pr[S_n]$ negligible, then $Pr[S_0]$ negligible as well!

Game Hopping

Three different ways to justify game change:

- 1. Indistinguishability
 - Computational: If an efficient algorithm can distinguishing *G_i* from *G_{i+1}*, then contradiction to underlying hardness assumption.
 - Statistical distance negligible
- 2. Failure Event: G_i and G_{i+1} identical unless some failure event F occurs
 - $Pr[S_{i+1}] = Pr[S_i] Pr[\neg F]$
 - if Pr[F] negligible $\Rightarrow Pr[S_{i+1}] \approx Pr[S_i]$
 - but *Pr*[*F*] can also be non-negligible
- 3. Bridging: "Equivalent transformation" to prepare next hop (improves readability) $\Rightarrow Pr[S_i] = Pr[S_{i+1}]$

Sequence of Games Proof of RSA-FDH: Outline

- We will prove RSA-FDH secure using a game series, using
 - bridging steps, and
 - failure events
- Basically, same as before but slower and better readable

Sequence of Games Proof of RSA-FDH: G₀

Game G₀ (original EUF-CMA game)

```
(\mathsf{sk},\mathsf{pk}) = (d, (N, e)) \leftarrow KeyGen(1^{\kappa})

m_0 \leftarrow \mathcal{A}(\emptyset,\mathsf{pk})

h_0 \leftarrow^{\mathcal{R}} \mathbb{Z}_N^*

\sigma_i \leftarrow h_i^d \mod N

return (m^*, \sigma^*) \leftarrow \mathcal{A}((m_0, h_0, \sigma_0), \mathsf{pk})
```

Let S_0 be event that $m^* \neq m_0$ and $\sigma^e = H(m)$.

Sequence of Games Proof of RSA-FDH: G₀

Game G₀ (original EUF-CMA game)

```
(\mathsf{sk},\mathsf{pk}) = (d, (N, e)) \leftarrow KeyGen(1^{\kappa})
for i = 1, ..., q do
m_i \leftarrow \mathcal{A}((m_j, h_j, \sigma_j)_{j=1}^{i-1}, \mathsf{pk})
h_i \stackrel{\mathcal{R}}{\leftarrow} \mathbb{Z}_N^*
\sigma_i \leftarrow h_i^d \mod N
return (m^*, \sigma^*) \leftarrow \mathcal{A}((m_i, h_i, \sigma_i)_{i=1}^q, \mathsf{pk})
```

Let S_0 be event that $m^* \neq m_i$ for i = 1, ..., q and $Verify(m^*, \sigma^*, pk) = 1$ in G_0

Sequence of Games Proof of RSA-FDH: G₁

Now, we change game to work without access to sk.

Game G₁ $(\cdot,\mathsf{pk}) = (\cdot,(N,e)) \leftarrow KeyGen(1^{\kappa})$ for $i = 1, \dots, q$ do $m_i \leftarrow \mathcal{A}((m_i, h_i, \sigma_i)_{i=1}^{i-1}, \mathsf{pk})$ $r_i \leftarrow \mathbb{Z}_{N}^*$ $h_i \leftarrow r_i^e \mod N$ $\sigma_i \leftarrow r_i$ return $(m^*, \sigma^*) \leftarrow \mathcal{A}((m_i, h_i, \sigma_i)_{i=1}^q, \mathsf{pk})$

From \mathcal{A} 's view G_0 and G_1 identical (bridging step): $Pr[S_0] = Pr[S_1]$

Sequence of Games Proof of RSA-FDH: G₂

Include RSA instance (N, e, c) with some probability 1 - p

Game G₂ (simplified: sim. + game combined)

```
pk \leftarrow (N, e), L \leftarrow \emptyset
for i = 1, \dots, q do
          m_i \leftarrow \mathcal{A}((m_i, h_i, \sigma_i)_{i=1}^{i-1}, \mathsf{pk})
          r_i \leftarrow \mathbb{Z}_N^*
        h_{i} \leftarrow \begin{cases} r_{i}^{e} \mod N & \text{with probability } p \\ c \cdot r_{i}^{e} \mod N & \text{with probability } (1-p) \end{cases}
\sigma_{i} \leftarrow \begin{cases} r_{i} & \text{if } h_{i} = r_{i}^{e} \mod N \\ \text{abort} & \text{otherwise} \end{cases}
L[m_{i}] \leftarrow (h_{i}, r_{i})
(m^*, \sigma^*) \leftarrow \mathcal{A}((m_i, h_i, \sigma_i)_{i=1}^q, \mathsf{pk}), (h^*, r^*) \leftarrow L[m^*]
return (m^*, \sigma^*) if h^* \neq (r^*)^e \mod N, else abort =0
```

Sequence of Games Proof of RSA-FDH: Remarks 2

Remarks

- L is just a list (not visible to A) to store important values
- Experiment aborts if
 - simulation impossible
 - in such cases, reduction would already have to break RSA problem by itself
 - result of "no value"
 - In this case, result is value that reduction can compute itself

Sequence of Games Proof of RSA-FDH: $G_1 \rightarrow G_2$

Transition $G_1 \rightarrow G_2$

Let *F* be failure event that an abort happens in G_2 .

$$Pr[F] = 1 - Pr[Forgery good \land Simulation ok] =$$

1 - Pr[Forgery good | Simulation ok] $\cdot Pr[Simulation ok] =$
1 - (1 - p) $\cdot p^q$

Thus, we have $Pr[F] = 1 - (1 - p) \cdot p^q$ and get

 $Pr[S_2] = Pr[\neg F] \cdot Pr[S_1] = (1-p)p^q \cdot Pr[S_1]$

Sequence of Games Proof of RSA-FDH: G₃

Here, we assume that no abort will happen

Game G₃ (simplified: sim. + game combined)

 $pk \leftarrow (N, e), \rho \xleftarrow{R} R$ for i = 1, ..., q do $m_i \leftarrow \mathcal{A}((m_j, h_j, \sigma_j)_{j=1}^{i-1}, pk; \rho)$ $r_i \xleftarrow{R} \mathbb{Z}_N^*$ $h_i \leftarrow \begin{cases} r_i^e \mod N & \text{with probability } p \\ c \cdot r_i^e \mod N & \text{with probability } (1-p) \\ \sigma_i \leftarrow r_i \end{cases}$ return $(m^*, c^d \cdot r^*) \leftarrow \mathcal{A}((m_i, h_i, \sigma_i)_{i=1}^q, pk; \rho)$

We have $Pr[S_2] = Pr[S_3]$ (bridging step) and can compute c^d

Sequence of Games Proof of RSA-FDH: Analysis

Analysis

Now, for S_3 (i.e. A outputs "useful" forgery (m^*, σ^*)) we have as "target probability"

 $Pr[S_3] = \mathsf{Adv}^{\mathsf{OW}}_{\mathsf{RSA}}(\mathcal{R})$

Combined:

$$\mathbf{Adv}_{\mathsf{RSA}}^{\mathsf{OW}}(\mathcal{R}) = \Pr[S_3] = \Pr[S_2] = (1-p)p^q \cdot \Pr[S_1] = \\ = (1-p)p^q \cdot \Pr[S_0] = (1-p)p^q \cdot \mathbf{Adv}_{\mathsf{RSA-FDH}}^{\mathsf{EUF-CMA}}(\mathcal{A})$$

Same result as before

Key Encapsulation Mechanism

Definition (KEM, [KL14])

A key-encapsulation mechanism (KEM) is a tuple of PPT algorithm (KGen, Encaps, Decaps) such that:

- 1. Algorithm KGen takes as input the security parameter 1ⁿ and outputs the key public-/private-key pair (pk, sk).
- 2. Algorithm Encaps takes as input a public key pk and the security parameter 1^n . It outputs a ciphertext *c* and a key $k \in \{0, 1\}^{l(n)}$, where l(n) is the key length.
- 3. Algorithm Decaps takes as input a private key sk and a ciphertext *c*, and outputs a key *k* or a special symbol \perp denoting failure.

It is required that with all but negligible probability over (sk, pk) output by $KGen(1^n)$, if $Encaps_{pk}(1^n)$ outputs (c, k), then $Decaps_{sk}(c)$ outputs k.

KEM/DEM Paradigm

Let $\Pi = (KGen, Encaps, Decaps)$ be a KEM with key length n, and let $\Pi' = (KGen', Enc', Dec')$ be a private-key encryption scheme. Construct a public-key encryption scheme $\Pi^{hy} = (KGen^{hy}, Enc^{hy}, Dec^{hy})$ as follows:

KGen ^{hy} (1 ⁿ)		Enc ^{hy} (pk, <i>m</i>)	$Dec^{hy}(sk, (c, c'))$
1:	$\textbf{return}(pk,sk) \gets_{\!\!\!\text{s}} KGen(1^n)$	$(c,k) \leftarrow_{ extsf{s}} Encaps_{pk}(1^n)$	$(k) \leftarrow_{ extsf{sb}} Decaps_{sk}(c)$
		$c' \leftarrow \operatorname{sEnc}_k'(m)$	$m \leftarrow_{ extsf{s}} Dec_k'(c')$
		return (c, c')	return <i>m</i>

Efficiency

Fix *n*.

 α ... cost of encapsulating (Encaps) an *n*-bit key β ... cost of encryption (Enc') per bit of plaintext Assume |m| > n (why?).

What is the cost per bit of plaintext using Π^{hy} ?

 $etapprox lpha imes 10^{-5}$, $m=10^6$

Ciphertext Length

Fix *n*.

```
L... length of ciphertext output by Encaps
Ciphertext Enc'(m) has length n + |m|.
Assume |m| > n (why?).
```

What is the ciphertext length of Π^{hy} ?

Security

Definition

(KEM Game)

1. $(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{KGen}(1^n)$. Then $(c,k) \leftarrow \mathsf{Encaps}_{\mathsf{pk}}(1^n)$, with $k \in \{0,1\}^n$.

2.
$$b \leftarrow \{0, 1\}$$
. $\hat{k} = k$ if $b = 0$, else $\hat{k} \leftarrow \{0, 1\}^n$.

3.
$$b' \leftarrow \mathcal{A}(\mathsf{pk}, c, \hat{k})$$
. Winning game if $b = b'$.

A KEM is IND-CPA-secure if there exists no adversary that wins with more than 1/2 + negl(n) probability.

Further Reading I

[KL14] Jonathan Katz and Yehuda Lindell.

Introduction to Modern Cryptography, Second Edition. CRC Press, 2014.

[Sho04] Victor Shoup.

Sequences of games: a tool for taming complexity in security proofs.

IACR Cryptology ePrint Archive, 2004:332, 2004.