
S C I E N C E
P A S S I O N

T E C H N O L O G Y

Modern Public Key Cryptography
Provable Security

Lukas Helminger partially based on slides by S. Ramacher

April 14th, 2021

www.iaik.tugraz.at

Outline

Sequences of Games

Hybrid Encryption

1 / 21

Game-based Security

Models security as game between an adversaryA and a challenger C (which takes
on role of all honest parties)

Interactions betweenA and C well-defined

Modeled as oracles thatA can query
e.g.A can query oracle for signatures on arbitrary messages

At the end,A required to output "something" (e.g. a message-signature pair)

Winning condition specifies whatAmust output to win game (e.g. unqueried,
valid message-signature pair)

2 / 21

Game-based Security: Example

Experiment ExpEUF-CMAΣ (·):

AdversaryA Challenger C
(sk, pk)← KeyGen(1κ)

OracleOS(·, sk)
Q← Q ∪ {mi}

pk

mi

σi

(m∗,σ∗)

Awins ifm∗ 6∈ Q∧
Verify(m∗,σ∗, pk) = 1

3 / 21

Why another proof technique?

Reductionist proofs are o�en very complex
 hard to verify

Idea: What if we slowly “converge” to our solution?

We start with original game G = G0, (i.e. security definition)

modify it in series of small steps (G0 → G1 → G2 → ...)

until we end up in game Gn, which allows to prove the statement

For each game hop, we have to justify distribution changes of values visible toA!

4 / 21

Sequences of Games (ctd)

Let Si be event thatAwins game Gi

e.g. outputs signature forgery in game Gi

We relate Pr[Si] and Pr[Si+1] for i = 0, ... , n− 1

If Pr[Sn] is (negligibly close to) "target probability" c, then scheme secure

Proof gives bound on success probability ofA:
Bound on Pr[Sn] gives bound on Pr[S0]

⇒ If Pr[Sn] negligible, then Pr[S0] negligible as well!

5 / 21

Game Hopping

Three di�erent ways to justify game change:

1. Indistinguishability

Computational: If an e�icient algorithm can distinguishing Gi from Gi+1, then
contradiction to underlying hardness assumption.
Statistical distance negligible

2. Failure Event: Gi and Gi+1 identical unless some failure event F occurs

Pr[Si+1] = Pr[Si] Pr[¬F]

if Pr[F] negligible⇒ Pr[Si+1] ≈ Pr[Si]
but Pr[F] can also be non-negligible

3. Bridging: "Equivalent transformation" to prepare next hop (improves readability)
⇒ Pr[Si] = Pr[Si+1]

6 / 21

Sequence of Games Proof of RSA-FDH: Outline

Wewill prove RSA-FDH secure using a game series, using

bridging steps, and

failure events

Basically, same as before but slower and better readable

7 / 21

Sequence of Games Proof of RSA-FDH: G0

Game G0 (original EUF-CMA game)

(sk,pk) = (d, (N, e))← KeyGen(1κ)

m0 ← A(∅,pk)

h0←R Z∗N
σi ← hdi mod N

return (m∗,σ∗)← A((m0, h0,σ0),pk)

Let S0 be event thatm∗ 6= m0 and σe = H(m).

8 / 21

Sequence of Games Proof of RSA-FDH: G0

Game G0 (original EUF-CMA game)

(sk,pk) = (d, (N, e))← KeyGen(1κ)

for i = 1, ... , q do

mi ← A((mj, hj,σj)i−1j=1,pk)

hi←R Z∗N
σi ← hdi mod N

return (m∗,σ∗)← A((mi, hi,σi)
q
i=1,pk)

Let S0 be event thatm∗ 6= mi for i = 1, ... , q and Verify(m∗,σ∗,pk) = 1 in G0

9 / 21

Sequence of Games Proof of RSA-FDH: G1

Now, we change game to work without access to sk.

Game G1
(·,pk) = (·, (N, e))← KeyGen(1κ)

for i = 1, ... , q do

mi ← A((mj, hj,σj)i−1j=1,pk)

ri←R Z∗N
hi ← rei mod N

σi ← ri
return (m∗,σ∗)← A((mi, hi,σi)

q
i=1,pk)

FromA’s view G0 and G1 identical (bridging step): Pr[S0] = Pr[S1]

10 / 21

Sequence of Games Proof of RSA-FDH: G2
Include RSA instance (N, e, c)with some probability 1− p

Game G2 (simplified: sim. + game combined)
pk← (N, e), L← ∅
for i = 1, ... , q do

mi ← A((mj, hj,σj)i−1j=1 ,pk)

ri←R Z∗N

hi ←

{
rei mod N with probability p
c · rei mod N with probability (1− p)

σi ←

{
ri if hi = rei mod N
abort otherwise

L[mi]← (hi, ri)

(m∗,σ∗)← A((mi, hi,σi)
q
i=1,pk), (h∗, r∗)← L[m∗]

return (m∗,σ∗) if h∗ 6= (r∗)e mod N, else abort =0

11 / 21

Sequence of Games Proof of RSA-FDH: Remarks 2

Remarks

L is just a list (not visible toA) to store important values

Experiment aborts if

simulation impossible
in such cases, reduction would already have to break RSA problem by itself

result of "no value"
in this case, result is value that reduction can compute itself

12 / 21

Sequence of Games Proof of RSA-FDH: G1 → G2

Transition G1 → G2

Let F be failure event that an abort happens in G2.

Pr[F] = 1− Pr[Forgery good ∧ Simulation ok] =

1− Pr[Forgery good | Simulation ok] · Pr[Simulation ok] =

1− (1− p) · pq

Thus, we have Pr[F] = 1− (1− p) · pq and get

Pr[S2] = Pr[¬F] · Pr[S1] = (1− p)pq · Pr[S1]

13 / 21

Sequence of Games Proof of RSA-FDH: G3
Here, we assume that no abort will happen

Game G3 (simplified: sim. + game combined)

pk← (N, e), ρ←R R
for i = 1, ... , q do

mi ← A((mj, hj,σj)i−1j=1 ,pk; ρ)

ri←R Z∗N

hi ←

{
rei mod N with probability p
c · rei mod N with probability (1− p)

σi ← ri
return (m∗, cd · r∗)← A((mi, hi,σi)

q
i=1,pk; ρ)

We have Pr[S2] = Pr[S3] (bridging step) and can compute cd

14 / 21

Sequence of Games Proof of RSA-FDH: Analysis

Analysis

Now, for S3 (i.e.A outputs "useful" forgery (m∗,σ∗)) we have as "target probability"

Pr[S3] = AdvOWRSA(R)

Combined:

AdvOWRSA(R) = Pr[S3] = Pr[S2] = (1− p)pq · Pr[S1] =

= (1− p)pq · Pr[S0] = (1− p)pq · AdvEUF-CMARSA-FDH (A)

Same result as before

15 / 21

Key Encapsulation Mechanism

Definition (KEM, [KL14])

A key-encapsulation mechanism (KEM) is a tuple of PPT algorithm
(KGen, Encaps,Decaps) such that:

1. Algorithm KGen takes as input the security parameter 1n and outputs the key
public-/private-key pair (pk, sk).

2. Algorithm Encaps takes as input a public key pk and the security parameter 1n. It
outputs a ciphertext c and a key k ∈ {0, 1}l(n), where l(n) is the key length.

3. Algorithm Decaps takes as input a private key sk and a ciphertext c, and outputs a
key k or a special symbol⊥ denoting failure.

It is required that with all but negligible probability over (sk,pk) output by
KGen(1n), if Encapspk(1n) outputs (c, k), then Decapssk(c) outputs k.

16 / 21

KEM/DEM Paradigm

LetΠ = (KGen, Encaps,Decaps) be a KEMwith key length n, and let
Π′ = (KGen′, Enc′,Dec′) be a private-key encryption scheme. Construct a public-key
encryption schemeΠhy = (KGenhy, Enchy,Dechy) as follows:

KGenhy(1n)

1 : return (pk, sk)←$KGen(1n)

Enchy(pk,m)

(c, k)←$ Encapspk(1
n)

c′←$ Enc′k(m)

return (c, c′)

Dechy(sk, (c, c′))

(k)←$Decapssk(c)
m←$Dec′k(c

′)

returnm

17 / 21

E�iciency

Fix n.

α... cost of encapsulating (Encaps) an n-bit key
β... cost of encryption (Enc′) per bit of plaintext
Assume |m| > n (why?).

What is the cost per bit of plaintext usingΠhy?

β ≈ α · 10−5,m = 106

18 / 21

Ciphertext Length

Fix n.

L... length of ciphertext output by Encaps
Ciphertext Enc′(m) has length n + |m|.
Assume |m| > n (why?).

What is the ciphertext length ofΠhy?

19 / 21

Security

Definition

(KEM Game)

1. (pk, sk)← KGen(1n). Then (c, k)← Encapspk(1n), with k ∈ {0, 1}n.

2. b←R {0, 1}. k̂ = k if b = 0, else k̂←R {0, 1}n.

3. b′ ← A(pk, c, k̂). Winning game if b = b′.

A KEM is IND-CPA-secure if there exists no adversary that wins with more than
1/2+ negl(n) probability.

20 / 21

Further Reading I

[KL14] Jonathan Katz and Yehuda Lindell.

Introduction to Modern Cryptography, Second Edition.

CRC Press, 2014.

[Sho04] Victor Shoup.

Sequences of games: a tool for taming complexity in security proofs.

IACR Cryptology ePrint Archive, 2004:332, 2004.

21 / 21

	Sequences of Games
	Hybrid Encryption

