AIKTY

Mobile Security Research

Mobile Security 2022

Florian Draschbacher
florian.draschbacher@iaik.tugraz.at

Some slides based on material by Yanick Fratantonio

Practicals

e You should have started already!
e Deadline 8th of June

e Questions?
— Ask now
— Send me an email

Introduction

What's this presentation about?

e You developed an intuition about the security of mobile systems
— How can you use that knowledge in actual security research?
— Systematically analyze attack surfaces
— ldentify and classify vulnerabilities

e Why?
— Improve the security of mobile ecosystems
— Develop new attack methods and corresponding defenses
— Find and eliminate malware
— Earn some bug bounties or academic title along the way!

Who is joining the hunt?
e Security Research Community

— Universities
— Companies

e Device Manufacturers

e Gray markets
— State Actors
= Military, intelligence services
— Companies
= Selling exploitation kits as products

— Black Hat Hackers
= Ransoms, selling stolen data, ...

Bug Bounty Programs

e Manufacturers realised they are competing with exploit gray markets

e E.g. Zerodium pays up to 2.5m$
— Sells exploits to governments

Z e r E I U I I r HOME BOUNTIES FAQ SUBMIT EVENTS CONTACT v

H * 001 N
ZERODIUM Payouts for Mobiles :
Up to Android FCP
$2,500,000 Zero Click
FCP: Full Chain with Persistence . i0S —
RCE: Remote Code Execution I Android 1002 h |
LPE: Local Privilege Escalation . Any OS .
Up to SBX: Sandbox Escape or Bypass iOS FCP
$2,000,000 Zero Click
108
2,00 N 2002 A}
Upto WhatsApp iMessage
s15:o,ooo RCE+LPE RCE+LPE
Zero Click Zero Click
10S/Androk 108
2,003 2004 N
Up to WhatsApp SMS/MMS
$1,000,000 RCE+LPE RCE+LPE
10S/Androk 10S/Androki
2,001 W 2.005 N 2008 2007 2008 2009 2010 N 400 N +.002 Al
) Up to T WeChat iMessage FB Messenger Signal Telegram Email App Chrome Safari
Source: zerodium.com $500,000 RCE+LPE rce+LPE |l RCE+LPE W RCE+LPE Wl RCE+LPE Ml RCE+LPE [l RCE+LPE RCE+LPE I
108 10S /Androld 10S 10S/Androld 10S /Androld 10S/Androld’ 108 /Androld | Androkd G razm

108

https://zerodium.com/program.html

= @& Developer

Bug Bounty Programs sy

Example Payouts

Bounty payments are determined by the level of

e Incentivize white hat hackers to invest their time
— Convince black hat hackers to join the good side e oot ot o et o

unique to designated developer or public betas,
including regressions, can result in a 50% additional

bonus if the issues were previously unknown to
Apple. All security issues with significant impact to

e In theory: Clearly specified scope and payout levels ST

payment, even if they do not fit the published bounty

— E.g. Meta: Social Engineering Attacks are out of scope categories

Unauthorized iCloud Account Access

e In practice: Companies are still reluctant to pay bounty
$25,000. Limited unauthorized control of an iCloud

SKIP TO MAIN CONTENT account.
$100,000. Broad unauthorized control of an iCloud
account.

MAYBE START ACKNOWLEDGING THESE, IDK —

Three ios O-days revealed by researCher Physical Access to Device: Lock Screen
frustrated with Apple’s bug bounty Bypass |

Source: developer.apple.com

Public disclosure comes in wake of other grumblings about Apple's bug bounty behavior.

JIM SALTER - 9/24/2021, 8:25 PM

IAIK T

Source: arstechnica.com
Grazm

https://arstechnica.com/information-technology/2021/09/three-ios-0-days-revealed-by-researcher-frustrated-with-apples-bug-bounty/
https://developer.apple.com/security-bounty/payouts/

Play Store Bug Bounty

e Google even offers bug bounties for the most popular apps on Play Store

o
Google Play Security Reward Program LD DEEme gy A
Cotogory | gy yuberstlesee eppiscontouedina Mo st

R u I e S interaction installed non-default way)

Arbitrary
code $20,000 $10,000 $4,000 $1,000
The Google Play Security Reward Program (GPSRP) is a vulnerability reward program offered by Google Play in execution

collaboration with the developers of certain popular Android apps. It recognizes the contributions of security Theﬁff
sensitive

researchers who invest their time and effort to help make apps on Google Play more secure. s

Organization/Developer Package Name(s) Source: bughunters.google.com

8bit Solutions LLC com.x8bit.bitwarden Scope

Airbnb com.airbnb.android Only applications developed by Google, by participating developers (in the

. . . list below), or with 100 million or more installs are in scope. Only
Alibaba com.alibaba.aliexpresshd . _ _ _
vulnerabilities that work on Android 6.0 devices (with the most up-to-date

Amazon com.amazon.mShop.android.shopping, com.amazon.avod.thirdpartyclient, com.ar [l Patches) and higher will ualify.

Ayopop com.ayopop

Coinbase com.coinbase.android, org.toshi, com.coinbase.pro

delight.im im.delight.letters

IAIK T

Dropbox com.dropbox.android, com.dropbox.paper Grazs

https://bughunters.google.com/about/rules/5604090422493184/google-play-security-reward-program-rules

Legal aspects (Austria)

e Legal to analyse / modify services or products for identifying security bugs?
— Very difficult question!

e General questions
— Which jurisdiction applies?
= User country!
— What services / products / parts are covered?
= Very imprecise formulation of ‘computer program’

= |n general: Sequence of computer instructions and corresponding source code
e Plus: Material that supported the development process

= What about the application package?

IAIKggfaTU

Legal aspects (Austria)

e Strafgesetzbuch / Legal Code
— Compromising a computer system (§118a): 6 months of imprisonment
— Using hacking tools (§126c): 6 months of imprisonment

— Malicious intent is crucial!
= Stealing sensitive data, preventing operation, ...

e Urheberrecht / Copyright law
— Assuming you are entitled to the use of some software:
— Decompilation only allowed for ensuring interoperability (§40e)
= Exception for matters affecting public safety (§41)
= Decision by EU Court of Justice: Decompilation also for fixing bugs (source: lexclogy.com)
— Modifications without redistribution allowed! (§40d)
— Violation: 6 months of imprisonment

IAIKggfaTU

https://www.ris.bka.gv.at/eli/bgbl/1974/60/P118a/NOR40173635
https://www.ris.bka.gv.at/eli/bgbl/1974/60/P126c/NOR40239798
https://ris.bka.gv.at/eli/bgbl/1936/111/P40e/NOR12036608
https://www.ris.bka.gv.at/eli/bgbl/1936/111/P41/NOR40041614
https://www.lexology.com/library/detail.aspx?g=f5b1193c-f423-4f96-bca5-03f5145ecf15
https://ris.bka.gv.at/eli/bgbl/1936/111/P40d/NOR12036607

Legal aspects (Austria

13:53 »-0%)

° < Back Licence
e End User License Ag reements (EFUL A) associating il other breinstallea AppS on your
Device. By choosing to associate the Preinstalled
Apps with your App Store account, you agree that
f H h H h I Apple may transmit, collect, maintain, process and
- O ten StrICter t an CO pyrlg t aws use both the Apple ID used by your App Store
account and a unique hardware identifier collected

° ° M ° from your Device, as unique account identifiers for
— Only legally binding if shown prior to purchase / download
request and providing you access to the Preinstalled
Apps through the App Store. If you do not wish to

= Inthose cases: Considered part of the purchase contract use 2 reistalied App, you can delte i from your

Device at any time.
Source: l INUX"MagaZ n'de (d)}ou may not, and you agree not to or enable
others to, copy (except as expressly permitted by
this License), decompile, reverse engineer,
disassemble, attempt to derive the source code of,
e Gesetz gegen unlauteren Wettbewerb (~Trade Secret Law) |aiimeivocinmemmane
Apple Softwarjor any services provided by the
. . . . Apple Software’or any part thereof (except as and
— R - f d I I 2 6 d only to the extent any foregoing restriction is
everse englneerlng Or eXtraCtIng tra e Secrets IS ega (§_) prohibited by applicable law or by licensing terms
governing use of open-source components that
may be included with the Apple Software). You
agree not to remove, obscure, or alter any
proprietary notices (including trademark and

e Datenschutzgesetz (Data Protection Law) comsined wit e Appl Sotare.

(e) The Apple Software may be used to reproduce
- Illegal to extract personal data materials so long as such use is limited to

reproduction of non-copyrighted materials,
materials in which you own the copyright, or
materials you are authorized or legally permitted to
reproduce. Title and intellectual property rights in

e Information on foreign jurisdictions:

accessed throu g to the

— E.g. from Electronic Frontier Foundation iOS License Agreement
IAIK T

Grazm

https://www.linux-magazin.de/ausgaben/2007/03/ich-seh-dich-nicht/
https://www.ris.bka.gv.at/eli/bgbl/1984/448/P26d/NOR40212410
https://www.eff.org/issues/coders/reverse-engineering-faq

Want to be on the safe side in your research?

e Obtain permission from the service / product provider

e Join bug bounty programs

Safe Harbor Provisions

* We consider these terms to provide you authorisation, including under the Computer Fraud and Abuse Act (CFAA),
to test the security of the products and systems identified as in-scope below. These terms do not give you
authorisation to intentionally access company data or data from another person's account without their express
consent, including (but not limited to) personally identifiable information or data relating to an identified or
identifiable natural person.

* |f Meta determines in its sole discretion that you have complied in all respects with these Bug Bounty Programme
Terms in reporting a security issue to Meta, we will not initiate a complaint to law enforcement or pursue a civil
action against you, to include civil actions under the CFAA in connection with the research underlying your report
and DMCA claims against you for circumventing the technological measures that we have used to protect the
applications in scope. Meta will also not pursue legal action against you for clear accidental or good faith violations
of its policy or these terms.

Source: www.facebook.com/whitehat |A|K T

Grazm

https://www.facebook.com/whitehat

Systematizations

or
A Graphical Intuition on Security

IT Security

We generally concentrate on protecting or attacking assets
Specifically, their

e Confidentiality: Prevent leakage
e Integrity: Prevent modification

e Availability: Prevent destruction

Assets

e User Data
Passwords, Credentials, Activity Logs, Location, Input data, ...

e Application Data
Firmware, Private Keys, Certificates, APl Endpoints, Copyrighted material

e Computing Resources
Keep the system / service operational even in face of an attacker

Security Vulnerabilities

Question: What is a security vulnerability?

Answer: A weakness that allows an attacker to perform actions that
e Were not meant to be possible

e Have negative security repercussions

e Some vulnerabilities are much more important than others
e Various aspects to take into account

Exploit

A vulnerability is only a theoretical problem until someone finds an exploit
e Make use of the vulnerability for elevating privileges

Vulnerable
Protection

2

soba|lAld

MAMMMINS

Exploits

e Intuitively, we are looking for vulnerabilities that allow exploits that
— Maximize the impact (the privilege gain)
— Minimise our efforts (the complexity)

A ? A @—
é
é
v % v 7
: Ny = s 2
2
7
/

Complexity Complexity

Types of Exploits

In principle: Exploiting any vulnerability allows Elevation of Privilege (EOP)
e E.g. Attacker with root execution = TEE OS code execution

More specific terms for common types
e Remote Code Execution (RCE)

e Denial of Service (DOS)

e Information Disclosure (ID)

Threat Model

e When thinking about a specific exploit, we need to consider the threat model

e “How much can the attacker legitimately do already?”

soba|IAld
AR TR

Threat Model

The threat model is a list of assumptions about the attacker

e For attacks: Assume an attacker that is not more powerful than X
e For defense: Assume an attacker that is at least as powerful as X

e E.g. “Attacker can install & run a malicious app as root”
— The attacker can get all permissions

— The attacker cannot run code in the TEE

e Only a way to elevate permission beyond threat model qualifies as exploit
— Usually requires some background knowledge on target platform!
— The assumed threat model is essential for describing an exploit!

IAIKggfaTU

Attacker Model

A simplified notion for common threat models

e Remote attacker

— Attacker can lure victim to visit web page, reading email, receive SMS
— Attacker can send a message to WhatsApp, Messenger, etc

e Proximal attacker

— Attacker is physically in the environment of the victim
— Same WiFi network, can send malformed Wifi / Bluetooth packets

e Local attacker

— Attacker can run code on the victim’s device (via installed app)
— Attacker has physical access to the device

Source: source.android.com

https://source.android.com/security/overview/updates-resources.html

Attack Surface

The parts of a system that can be reached by some attacker
e Parts that process data from user, file, network, IPC, ...

Bug Picture: Goodle / Apache 2.0

https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html

Attack Surface and Attacker Model

Total attack surface is composed from different types of attack surfaces

AN Local Attack Surfaces S/
N * File system 4
S * Sockets 7
N « Binder /

Proximal Attack Surfaces Physical Attack Surfaces

o Wifi » Take the device apart
* Bluetooth - USB
« NFC - ADB
R Remote Attack Surfaces ~~ _
o7 * Network stack S
e « SMS/MMS AN

Pid « Browser S

Bug Picture: Google / Apache 2.0

https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html

Attack Surfaces and Attacker Model

Different attack surface types reachable with different attacker / threat model

- \ . //
N N Proximal Attacker p
N\
\

N N g

\
‘ 8> °
O N\ <C
. £ ~
Proximal Attacker 3 E
¥ 3
()
ﬁ j
< 5
5) &
S .~ Physical Attacker o
> @

P s Remote Attack Surface <
Pid RN
7’ s ~
Ve ~
7’ ~ ~
“ ' Remote Attacker S

Note: Keep attacker model and attack surface separate despite correspondence!

IAIKggfaTU

https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html

Attack Vector

Specific path an attack takes through the attack surface to exploit a vulnerability

‘

Attacker Model

Bug Picture: Goodle / Apache 2.0

https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html

Example Scenario

e Threat Model:
Remote Attacker who knows victim’'s phone number

e Attack Surface:
Media parser library - Part of remote attack surface due to automated MMS parsing

e Attack Vector:
Sending a maliciously crafted image file

e Vulnerability:
Buffer overflow due to lack of input sanity checks

e Exploit Type:
Remote Code Execution (RCE)

Threat Modelling

Offers a structured answer for “what could possibly go wrong”

Analyse system to identify

e All assets

e Possible attack surfaces

e Relevant threat models and attack vectors

Picture: Gooale / Apache 2.0

Multiple uses

e Part of design and implementation phase
e Good starting point for research as well!
e Helps evaluate impact or effectiveness of attacks or defenses

https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html

Finding and exploiting
vulnerabilities

Locating Vulnerabilities

o h b=

Now that we know what vulnerabilities are, how can we find them?
— Requires creativity and perseverence!

Get inspiration

Decide on attacker & threat model
Enumerate reachable attack surfaces
Reconnaisance

Exploit vulnerability

Chain multiple exploits?

Getting inspiration

e Study recent research publications
— Conferences, Journals, Blogs, Websites, Twitter

e Study Android Security Bulletin / iOS Release Notes
— Contain references to fixed CVEs

e Keep track of new technological advancements
— Newest iOS / Android versions
— Covid Contact Tracing, ...

Enumerating attack surfaces

e Consider all layers of the system
— User, Apps, System, TEE, Hardware

e Sort all identified attack surfaces to obtain a prioritized list
— Start with lowest requirements in terms of practicality
— High privileges (e.g. running in kernel space)
— Non-memory-safe programming languages (C/C++)
— Complex data formats / state machines
— Hasn't been in the spotlight before

Reconnaisance

Now that you know where to look, how to actually find a bug?

e Manual Analysis

— Find code that is used, accessible and vulnerable!
e Automated Analysis
— Taint Tracking
= Find code paths between a specified source and sink
— Symbolic Execution
= What input is needed for getting to specific output / execution point?
— Requires some sort of manual a priori decision
= Specific vulnerability class, target APls, ...

Fuzzing

Idea: Automatically feed random input to target process and provoke crashes

e How to generate data?

— Mutation from some valid input data
— Random mutations = dumb fuzzing
— From some format specification = smart fuzzing

e How to feed data to target?
— Easy for e.g. file viewers or cmd tools, not so much for GUI

e How to identify exploitable bugs?

Chaining Exploits
e Attackers can take different bugs and ,chain” them

e Example of a chain
— RCE bug to go from ,remote attacker” = ,code execution in unprivileged app”
— EOP bug in kernel = Root code execution
— EOP bug in a TEE's interface only visible to root = TEE code execution

e AlliOS jailbreaks are complex exploit chains

e [nteresting read: Chainspotting: Building Exploit Chains with Logic Bugs
— Chain of 11 bugs across 6 unique applications

— Net effect: Remote attacker can install and run arbitrary APKs
Source: |abs.f-secure.com |A|Kﬂ'|;rla_!-

https://labs.f-secure.com/archive/chainspotting-building-exploit-chains-with-logic-bugs/

Vulnerability Disclosure

Vulnerability Disclosure

Now that you've discovered a vulnerability, how do your ethically report it?

e Write a report and/or minimal exploit
— Ensure the vulnerability is clearly described and can be reproduced

e Responsible / Coordinated disclosure:
— Report the find to the vendor and give them time to triage the issue
— Only disclose publicly if vulnerability is fixed and/or ~90 days passed

e Many big vendors have at least an information page on reporting bugs
— Find out whom to contact

More information: OWASP: Vulnerability Disclosure Cheat Sheet
IAIKﬂ'I;rLa!_

https://cheatsheetseries.owasp.org/cheatsheets/Vulnerability_Disclosure_Cheat_Sheet.html

The story of an Android bug (after submission)

Triaging

Assignment of severity score

Working on a fix

Fix is committed and tested

Patch is released as part of Android Security Bulletin

Bug can be tracked via its CVE number
— Common vulnerabilities and exposures
— Assigned by vendor for “serious” vulnerabilities
7. Bug bounty is paid

ok owbd -~

Android Security Bulletin

Monthly AOSP updates fix reported security vulnerabilities

e Every update comes with a bulletin describing the fixes
— Detailed vulnerability list including CVE and references to fix commits

e Device manufacturers integrate fixes to release security patches
— Android Security Patch Level on device tells about most recent security update

e Device-specific bulletins also available for some manufacturers

Source: source.android.com

https://source.android.com/security/bulletin

Preventing Vulnerabilities
& Exploitation

Preventing vulnerabilities & exploitation

Computer programs are designed and constructed by humans
e They will always contain some flaws

Still, we can

e Use tools to prevent certain kinds of implementation bugs
e Make it hard to exploit vulnerabilities

e Build defenses against known kinds of attacks

Vulnerability Prevention

e Write code in memory-safe languages
— Java over C/C++, Kotlin over Java!

e Use compiler-assisted protections
— Integer overflow sanitizations, Java lint checkers, ...

e Integrate security testing into Cl pipelines
— Automatic fuzzing as part of build process

e Use common sense!
— Read documentation, don’t rely on stackoverflow or self-proclaimed experts™

IAIKggfaTU

Preventing Exploitation

Techniques that do not remove / fix vulnerabilities, but make exploitation harder

e Stack canaries
— Ensure return pointer hasn't been overwritten

e Address Space Layout Randomization (ASLR)
— Interesting target functions are at different addresses for every run

e Pointer Authentication (PAC)
— Guard against manipulation of pointers

Defense in Depth

Traditionally, we only use defenses that restrict what attacker could do without it
e In theory, anything else would be useless, right?

For example:

e Why use EncryptedSharedPreferences source developerandroid.con
— Defense against root attackers?
— We could simply hook the ESP reads/writes using root!

e When app’s private folder is already encrypted with File Based Encryption
— Defense against cold-boot attackers

e And app’s private folder is not accessible to other apps
— Defense against local non-root attackers

https://developer.android.com/reference/androidx/security/crypto/EncryptedSharedPreferences

Defense in Depth

Implementing redundant defense mechanisms
e Redundancy is still useful as long as different mechanisms are used

e Even if a bug in one mechanism is found, the other keeps protection in place
— It's less likely to find a bug that affects both mechanisms

e Example: App sandbox is implemented using Linux UID and SELinux policy

Conclusion

Mobile Security

In this course, you learned about

Key and Data Storage on Mobile devices
iOS Platform Security

iOS Application Security

Android Platform Security

Android Application Security

Mobile Hardware Security

Mobile Security Research

All slides are available on the course website
Lecture recordings are available from TeachCenter

Further Resources 1

e Documentation
— Android developer documentation
— Android platform documentation and source code
— Apple Platform Security

e Books
— Jonathan Levin: MacOS and iOS Internals

— Jonathan Levin: Android Internals
— Aditya Gupta: The loT Hacker's Handbook

IAIK T

Grazm

https://developer.android.com/
https://source.android.com/
https://support.apple.com/en-gb/guide/security/welcome/web

Further Resources 2

e Online Courses

— Mobile Systems and Smartphone Security
= Includes 21 CTF-style challenges!

e Scientific Publications
— dblp.org computer science bibliography
— Google Scholar

— Conference Proceedings
= Usenix Security, NDSS, ACM CCS, IEEE S&P

e Vulnerability Writeups
— Google Project Zero
— NowSecure

IAIKggfaTU

https://mobisec.reyammer.io/
https://dblp.org/
https://googleprojectzero.blogspot.com/
https://www.nowsecure.com/mobile-app-breach-news/

What's next? M

e Congrats, you're a mobile security researcher now © g j{,

e How can you find interesting new challenges in the domain?
— Contribute in real-world security research
— Deepen your knowledge

e Join IAIK!
— Master theses
— Research and teaching

Send me an email!
florian.draschbacher@iaik.tugraz.at

IAIK T

Grazm

mailto:florian.draschbacher@iaik.tugraz.at

03.06.2022

— Q&A for Assignment 2
10.06.2022
— Assignment 2 Presentations
noWw
24.06.2022, 15:00-17:00, HS i2 qyation O°%"
— Exam option 1 gxam red

01.07.2022, 10:00-12:00, HS i12
— Exam option 2

