
IAIK

IAIK

Mobile Hardware Security
Mobile Security 2022

Florian Draschbacher
florian.draschbacher@iaik.tugraz.at



IAIK

● Start now!

● Deadline 8th of June

● Questions?
- Ask now
- Send me an email

Practicals



Introduction



IAIK

● What?
Airplay key extracted 
from AirPort Express 
Firmware

● Consequences
Unauthorized 
implementations of 
AirPlay receivers now 
possible

Motivation

Source: macrumours.com

https://www.macrumors.com/2011/04/11/apple-airplay-private-key-exposed-opening-door-to-airport-express-emulators/


IAIK

● Mobile Security is not just concerned with smartphones and their OS

● Many more devices that
- Are highly connected (“Internet of Things”)
- Contain or process sensitive information
- Are not obviously computers to average consumers

● Mobile = Embedded computers
- Embedded Linux
- Microcontrollers

What’s this presentation about?



IAIK

● Low-level mobile systems
- Device interfaces and peripherals
- Data and tamper protections

● Communication protocols
- How is sensitive data exchanged?
- How are these connections secured?
- Ties back to smartphones!

What’s this presentation about?



IAIK

● User Data
- Passwords
- Credentials
- Activity logs
- Location, …

● Device Data
- Firmware (Security through obscurity!)
- Burnt-in credentials

§Protocol keys
§Copyrighted material (games)
§Algorithms, …

What is sensitive data here?



IAIK

Scenarios



IAIK

● Reduced computing environment
- Low processing power, memory and storage capacity
- No MMU = No real process separation
- Low power consumption
- Very fast boot

● Bare-bones firmware
- Highly task-specific program or using some real-time OS

● Highly connected
- Wifi, Bluetooth, USB, Ethernet
- Serial, I2C, SPI, CAN
- Debugger interface!

Microcontrollers



IAIK

● Bare-Bones OS on lightweight CPU
- Mediocre processing power, memory, storage
- MMU ➔ Capable of Process Separation
- Higher power consumption, longer boot time

● Running fully-featured OS kernel or bare-bones OS
- Embedded Linux

● Even higher degree of connectedness

Embedded Computers (~ IoT devices)



IAIK

● Secure Elements / Enclaves
- Smartphones, Laptops

● Controllers
- Memory controllers, Keyboard controllers, …

● Access Control
- Possession of some token as a factor for authentication

● Systems than involve DRM or some form of lock-down
- Prevent unauthorized ecosystem access

● Lots of others, new device categories emerge all the time
- Item Finders, Smart Locks, Drones, Smart Health devices…

Security-sensitive Embedded Applications



IAIK

● Google Titan M2 (Google Pixel 6)
- RISC-V Microcontroller
- Special Vulnerability Assessment
- Connects to main SoC through SPI
- Involved in boot process, file encryption, key management, device unlock, …

● Apple T2 Security Chip
- Full-fledged additional ARMv8 SoC in Intel Mac computers
- Runs bridgeOS kernel derived from iOS, same secure boot chain
- Additional ARMv7 CPU acts as Secure Enclave Processor (SEP)
- Connects to main CPU through USB-attached Ethernet port
- Involved in boot process, file encryption, key management, device unlock, 

§Touch Bar, Speech Recognition, …

Secure Elements / Enclaves
Source: security.googleblog.com

Source: Davidov et al.: Inside the Apple T2

https://security.googleblog.com/2021/10/pixel-6-setting-new-standard-for-mobile.html
https://i.blackhat.com/USA-19/Thursday/us-19-Davidov-Inside-The-Apple-T2.pdf


IAIK

● Many peripherals contain reprogrammable microcontrollers
- Even some sensors are reprogrammable!

● Exploit Firmware Updates in USB Peripherals e.g. for keylogging
Source: Maskiezicz et al.: Mouse Trap: Exploiting Firmware Updates in USB Peripherals 

● SD Cards can be arbitrarily reprogrammed!
Source: Huang et al.: On Hacking MicroSD Cards

● Multiple exploited reprogrammable modules of a system can collude
- Wifi controller broadcasts keys logged by keyboard controller

Source: 8051enthusiast.github.io

Controllers

https://www.usenix.org/system/files/conference/woot14/woot14-maskiewicz.pdf
https://www.bunniestudios.com/blog/?p=3554
https://8051enthusiast.github.io/2021/07/05/002-wifi_fun.html


IAIK

Embedded devices are used for controlling access to (real-world) resources

● Smart Cards, USB Tokens
- Use the embedded key material for solving some cryptographic challenge
- E.g. Yubico Yubikey 5 Neo: Special security MC from Infineon Source: hexview.com

● Hardware Crypto Wallets
- Store private keys for crypto ledgers on hardware device
- E.g. Ledger Nano S: Secure Element + MCU for display and USB Source: saleemrachid.com

● Car Keys
- Microcontroller in key fob communicates with car via simple radio protocol
- Rolling Code System: Fresh key after every unlock, same algorithm in car and fob

Access Control

http://www.hexview.com/~scl/neo5/
https://saleemrashid.com/2018/03/20/breaking-ledger-security-model/


IAIK

● PS4 Controllers
- Only allow gamers to use original or licensed controllers
- Controllers contain MCU that performs handshake with PS4
- Involves signing challenge with private key stored in controller firmware
- Cortex-M3 ARM MCU
Source: fail0verflow.com

● Apple (iOS) Lightning cables contain authentication chip
- Only allow charging with official or licensed (MFi) cables
- Not technically an MCU: EPROM
Sources: nyansatan.github.io, techinsights.com

DRM and Ecosystem Lockdown

https://fail0verflow.com/blog/2018/ps4-ds4/
https://nyansatan.github.io/lightning/
https://www.techinsights.com/blog/apple-lightning-cable-teardown


IAIK

Low-Level Interfaces



IAIK

● Even embedded devices usually do not consist of just the MCU/CPU

● Peripheral devices
- External Storage
- Sensors
- Displays
- Coprocessors
- …

● Also: MCU firmware needs to be debugged during development
● All of these can be used for physical attacks

Low-level Interfaces



IAIK

Most common protocols:

● Many more (device specific, vendor specific)

● Security was no concern during design of these protocols!
- Easy to mount MITM attacks with some soldering

Low-level Interface Protocols

Protocol Name Wires Speed Synchronous Bus

Serial/UART 2 (RX, TX) Low No No

I2C 2 Low Yes Yes

SPI 4+ High Yes Yes 
(1 select line per slave) 



IAIK

● Intercept all communication by just connecting additional RX line

● Many devices have an unpopulated UART header
- Debug logging
- Sometimes even exposes root shell / bootloader shell!

Exploiting Serial / UART

Source: konukoii.com

https://konukoii.com/blog/2018/02/16/5-min-tutorial-root-via-uart/


IAIK

● Simple bus: All messages visible to all bus participants
- They filter by the address contained in message

● Trivial to intercept
- Just ignore address

● Dedicated hardware tools
- Bus Pirate
- Attify Badge

Exploiting I2C

Picture: dangerousprototypes.com / CC BY-SA

http://dangerousprototypes.com/docs/images/5/57/BPv4-f.jpg


IAIK

● Intercept SPI communication between master (MCU) and slave
- Gain insights into exchanged data

● Connect to SPI EEPROM directly to extract or modify its contents
- May contain firmware!
- Sometimes encrypted – We need access to the MCU!

Exploiting SPI

Source: twitter.com/ghidraninja, also see video 

https://twitter.com/ghidraninja/status/1326855097083686917
https://www.youtube.com/watch?v=Rsi8p5gbaps


IAIK

● Most MCUs and many CPUs have some low-level debugging interface
- Single-step execution, inspect registers & memory, … during development

● Usually disabled for production
- E.g. ARM Cortex-M: Firmware can disable SWD (~JTAG)

§Can we simply flash a modified firmware?
- Readout Protection (RDP): Prevent reading out flash contents (firmware)

§Completely lock flash (even to MCU) while a debugger is connected

● Various physical attacks for working around these protections
- Assemble flash content from incremental SRAM snapshots 

(Source: Obermaier et al.: Shedding too much Light on a Microcontroller’s Firmware Protection)

- Voltage Fault Injection to make MCU bootloader skip RDP check
(Source: Bozzato et al.: Shaping the Glitch: Optimizing Voltage Fault Injection Attacks)

Debugging Interfaces (e.g. JTAG)

https://www.usenix.org/system/files/conference/woot17/woot17-paper-obermaier.pdf
https://www.semanticscholar.org/paper/Shaping-the-Glitch%3A-Optimizing-Voltage-Fault-Bozzato-Focardi/4c01a7514deacc2c02d010bb14c4fb58d1712adc?p2df


IAIK

Observation: RAM retains content for short duration after power loss

Can be exploited if
● We can remove the RAM and read it from another machine
● We can load another OS/FW that we have full control over

- E.g. if bootloader is unlocked
● Mitigations: e.g. HW-based encryption, evicting keys from memory

Lots of other hardware-based side-channel attacks also affect mobile devices!

Cold Boot Attacks



IAIK

Some devices include physical means to detect and prevent tampering

Tamper Prevention
● Use security screws
● Encapsulate PCB in chemical-resistant resin

Tamper Detection
● Sensors (Heat, Temperature, Light, Voltage, …)
● Switches that detect case opening

Tamper Detection & Prevention



IAIK

Higher Level Interfaces



IAIK

● More sophisticated interfaces are available
- Higher speeds
- Wireless connections
- More complex protocols
- Some security mechanisms

● But still
- More complex ➔ More prone to implementation flaws
- Wireless or long-distance protocols ➔ Remote attacks

High-Level Interfaces



IAIK

● Multiple ~remotely exploitable flaws have been uncovered
- 2017: KRACK – Breaking WPA2 by forcing nonce reuse (Source: krackattacks.com)

On some Linux and Android versions: Force all-zero encryption key!

- 2021: BrakTooth – Flaws in BT stacks used by multiple vendors (Source: asset-group.github.io)

Arbitary Code Execution on some IoT devices

● More generic attacks:
- Relay attacks on Bluetooth (Low Energy) possible
- Evil Twin attacks on open Wifi access points

Wifi & Bluetooth

https://www.krackattacks.com/
https://asset-group.github.io/disclosures/braktooth/


IAIK

● Particularly critical communication interface of many mobile devices
- Mobile phones, cars, alarm systems, ATMs, …
- Provides essential services to these devices
- Also gets access to sensitive data from these devices

● Large number of influencing factors for design and operation
- Regulatory bodies
- Backwards compatibility
- Cost-effectiveness
- Security?

Cellular Connections



IAIK

● State actors legally get access
- Providers are legally required to collect data for authorities
- Location profile, connection log, …

● IMSI Catchers
- GSM clients blindly trust the cellular network

§Mostly fixed in 3G (but GSM interoperability)
- Fake cell network station that can collect IMSI identifiers
- Acting as a MitM, it can dictate the encryption used for the connection

● Encryption flaws
- Some legacy encryption (GSM) algorithms are broken
- Still used in some countries!

Cellular Communication Attacks



IAIK

● Simple publish-subscribe protocol for IoT devices, usually over TCP
● Star-shape topology: All communication routed via broker
● Popular in Smart Home gadgets

Problems
● Original version sent credentials in clear

- Fixed by adding TLS layer
● Real-world MQTT brokers rarely (35%) even use password authentication 

Source: blog.avast.com

● Distinction between clients is the responsibility of broker implementation

MQTT (MQ Telemetry Transport)

https://blog.avast.com/mqtt-vulnerabilities-hacking-smart-homes


IAIK

Firmware



IAIK

● Usually either based on open-source OS kernel or custom implementation
- Both options are interesting research targets!

● Open-source: Big impact for any vulnerability discovered
- BadAlloc: Bug in FreeRTOS enabled RCE on millions of devices

Source: msrc-blog.microsoft.com

● Custom implementation: Security usually not primary concern
- Or no external security audit

Embedded Firmware

https://msrc-blog.microsoft.com/2021/04/29/badalloc-memory-allocation-vulnerabilities-could-affect-wide-range-of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/


IAIK

● Obtain firmware image from vendor website
- Embedded Linux: Commonly squashfs root filesystem

● Dump from external EEPROM/Flash chip
- Some devices run off of (micro) SD cards!

● Use binwalk for identifying image type

● Entropy can tell you about encryption

Firmware Extraction



IAIK

● Static analysis using e.g. open-source Ghidra tool
- Support for many instruction-sets (ARM Cortex-A, Cortex-M, …)

● Embedded Linux:
- Analyse init procedure, kernel modules, userspace libraries & programs
- Device tree, configuration files

● Microcontroller:
- Low-level firmware difficult to understand

§Accesses to arbitary memory-mapped IO locations = HW registers
- Construct memory region map from datasheet

Reverse-Engineering Firmware



IAIK

In some cases, it is helpful to execute extracted firmware in a virtual device

● Embedded Linux
- QEMU for virtualising CPU on a system / per-process level
- chroot for running extracted rootfs (if same CPU architecture as host)
- LD_PRELOAD for adding compatibility shims

● Microcontrollers
- QEMU also supports common MCU architectures (e.g. Cortex-M3)
- Needs definitions for virtual peripherals

Testing Firmware



IAIK

● 20.05.2022
- Mobile Security Research

● 10.06.2022
- Assignment 2 Presentations

Outlook


