
IAIK

IAIK

Android Application Security
Mobile Security 2021

Johannes Feichtner
johannes.feichtner@iaik.tugraz.at

IAIK

● What happens on app installation?

● What is an Android app actually?

● Permissions?

Outline

IAIK

What?
20.000 trojanized apps with various
local root exploits: Memexploit,
Framaroot, ExynosAbuse

How?
● Repackaged > 1000 popular apps

● Distributed on 3rd party markets

Result
System applications with root

 Super-permissions to
break out of sandbox

Source: http://goo.gl/bRWWGw

http://goo.gl/bRWWGw

IAIK

What?
PlayStore listed fake
WhatsApp Messenger

How?
● Author added non-visible

Unicode character to
vendor name

● 1 to 5 Mio. downloads

Problem
● Ad-loaded wrapper app to

download whatsapp.apk

● Barely visible in app list:
blank icon, no text

Source: https://goo.gl/3F8JBG

https://goo.gl/3F8JBG

IAIK

Application Security

Android Application Security

Install
Confirmation

Google
Play Unknown

Sources
Warning

Verify Apps
Consent

Verify Apps
Warning

Runtime Security
Checks

Sandbox &
Permissions

Multiple Layers of Defense

Source: http://goo.gl/7xZ4cd

http://goo.gl/7xZ4cd

IAIK

1. Google Play or „Unknown Sources“ warning (requiring user confirmation)

2. Install confirmation shows user requested permissions

3. Verify app: check against DB of malware before installation since Android 4.2

Can be disabled by user!

4. Application sandbox and runtime checks

Weakest link in chain: The user!
Note: Google‘s defense layer protects Android, not your data!

App Installation Process

IAIK

● Pre-installed on (almost) all Android devices

● User needs Google account

 App retrieval limited by customer age and geographic location

● Developer needs Google account

 Personal data validated and exposed publicly

 Must not deploy app elsewhere  „non-compete clause“ in Distribution Agreement

Security mechanisms
● Control instrument for app distribution (review, stop dist., remove app)

● Google Bouncer: In-house malware detection system

● Applications have to be self-signed

 No modified app can be installed or updated

Google PlayStore

IAIK

In a nutshell…
● Dynamic & static runtime analysis of every uploaded app

● Emulated Android environment based on qemu

● Runs for 5 minutes

● Uses Google‘s infrastructure / IP addresses for external network access

Analysis
1. Explore app by emulating UI input, clicking, etc.

2. Check for known malware bugs

 Malware signatures, heuristics, similarities, source / developer, third-party reports

 If flagged malicious  Manual analysis by human being

 If deemed malicious  Goodbye Google account 

Google Bouncer

IAIK

● Remote connect-back shell by J. Oberheide and C. Miller

 https://www.youtube.com/watch?v=ZEIED2ZLEbQ

● Construct strings at runtime

 E.g. app with call to /system/bin/ls never executed dynamically

● Detect emulation through API calls (http://goo.gl/eAPIHz)

 TelephonyManager.getDeviceId() == 0  emulator!

 Build.HARDWARE == „goldfish“  emulator!

Conclusion: Dynamic app analysis is never perfect!

Playing with the Bouncer

https://www.youtube.com/watch?v=ZEIED2ZLEbQ
http://goo.gl/eAPIHz

IAIK

First visible layer of defense on device

● By default, no apps from 3rd party stores

 Amazon, F-Droid, Samsung

 Security checks?

● From file system

 If app available as .apk file

 Can be downloaded
from anywhere

Unknown Sources

IAIK

Second visible layer…

● Apps are verified / categorized prior to install

 Remote database with malware signatures

 Verification agents

With Google Play: Since Android 2.3

 For others: Since android 4.2

● Warn or block potentially harmful apps

Verify Apps

 Backdoors

 Fraudware

 Hostile downloaders

 Phishing apps

 Privilege Escalation apps

 Rooting apps

 Spyware

 Trojans / Trojanized apps

Can be disabled by user!

IAIK

Extended verification since Android 8

● Malware Scanning

 PlayStore service scans and reports apps on device

 Now also for unknown / side-loaded apps

● SafetyNet Verify Apps („Attestation“) API

 „Let developers understand if a device is tampered“

 App can request to be run in certain environment,
e.g. not-rooted, custom ROM, API hooking, etc.

 Send compatibility check request to Attestation API

 Can refuse to run if known „bad“ app or setting is found

Google Play Protect

IAIK

Android App Structure
com.example.app.apk
- assets/
- AndroidManifest.xml
- classes.dex
- resources.arsc
- lib/

- armeabi-v7a/
- libapp.so

- META-INF/
- CERT.RSA
- CERT.SF
- MANIFEST.MF

- res/
- drawable/
- layout/
- xml/

Code and resources (common)

/data/app/com.example.app/
- lib/arm/libapp.so
- oat/arm/base.odex
- base.apk

Data (per user)

/data/user/0/com.example.app/
- files/
- databases/
- shared_prefs/

/data/user/1/com.example.app/
- …

IAIK

Android App Structure
File / Folder Purpose

assets/ Raw asset files, e.g. textures for games. Identified by filename

AndroidManifest.xml Meta data about app: Required permissions, app components, …

classes.dex All classes in Dalvik bytecode

lib/
Compiled native code (C/C++) as shared-objects (.so)
Platform-specific versions, e.g. ARM („armeabi“), ARMv7, x86, MIPS

META-INF/

MANIFEST.MF Enumeration of all files in app package + SHA-1 checksums

CERT.SF Signature file. Digest of manifest file + individual digests per app file

CERT.RSA Digital signature over CERT.SF + developer‘s signing certificate

res/ App resources, e.g. GUI layouts in XML format, graphics, colors, …

resources.arsc Resource meta data (binary format). Listing of all uses resources

IAIK

Package Directories
ls –l /data/user/0/

drwxr-x--x bluetooth bluetooth com.android.bluetooth
drwxr-x--x system system com.android.keychain
drwxr-x--x u0_a4 u0_a4u com.android.providers.calendar
drwxr-x--x system system com.android.providers.settings
drwxr-x--x radio radio com.android.providers.telephony
drwxr-x--x u0_a5 u0_a5u com.android.providers.userdictionary
drwxr-x--x u0_a27 u0_a27u com.android.proxyhandler

● Updating system apps  /system partition usually not writable!

 /system/app/  /data/app/

● “Forward locking” = copy protection of apps. Default: world-readable .apk files

 World-readable resources (/data/app/) and code separate (/data/app-private/)

 Mainly for paid apps (DRM)

IAIK

Permission = Ability to perform particular operation

● Assignment
 Typically at install time (AndroidManifest.xml)

 Also at runtime since Android 6.0

● Enforced at different levels

 Kernel, e.g. INTERNET permission

 Native service level, e.g. READ_EXTERNAL_STORAGE for SD card access

 Framework level

 Dynamic: Check for permission in app while executing

 Static: Intents, Content Providers

Android Permissions

<uses-permission android:name=“android.permission.CAMERA” />

IAIK

Normal permissions
Automatically granted, no user confirmation needed

For ex.: BLUETOOTH, CHANGE_NETWORK_STATE, DISABLE_KEYGUARD, FLASHLIGHT, INTERNET,
NFC, USE_FINGERPRINT, SET_ALARM, INSTALL_SHORTCUT, VIBRATE

Dangerous permissions
Require explicit user approval at install or runtime

CALENDAR, CAMERA, CONTACTS, LOCATION, MICROPHONE, PHONE, SENSORS, SMS, STORAGE

Problem due to grouping
E.g. PHONE = { READ_PHONE_STATE, CALL_PHONE, … }

 You always grant entire group, e.g. allow reading phone ID + making calls!

Permissions Groups

IAIK

● All permissions granted at install time

● With Android 4.2+
Only dangerous permissions require confirmation

● No runtime checks required

● Once granted, cannot be revoked

● Fine-grained

● Granted for all users on device

Install-Time Permissions

IAIK

● Need to prompt for dangerous permissions

● Can be revoked at any time

● Granted / revoked with entire group

 Accept „PHONE“  Grant reading phone ID + calling

● Managed individually per app and user

● Managable by device owner

 Useful for MDM

Runtime Permissions

IAIK

For all .apk files
 Self-signed X.509 certificate

 Not using PKI  no certificate chain of trust!

 Individual signature for each file included in APK

Attacker cannot simply exchange file in app package!

 Signing certificate == Package & developer identity

 Package update requires same certificate

For update packages (OTAs)
 Modified ZIP format

 Signature in ZIP comment over whole file

 Verified by OS and recovery

Application Signing

IAIK

Application Signing != Code Signing

 Android supports code loading at runtime

 Useful for shared frameworks, testing, dynamic addon loading

 Can also be loaded from Internet!

 Using various class loaders (APK, JAR, pure dex files, optimized dex files)

 By loading & executing any other application‘s code (createPackageContext API)

Problems
● Malicious app can evade detection by Google Bouncer & app analysis

 Some remedy provided with Google PlayProtect (since Android 8)

● Code injection attacks on benign apps may affect millions of users!

Signing Dilemma

IAIK

What if…
● Code is loaded from external domains via HTTP

 MITM!  Possible for attackers to modify / replace downloaded code

● Code is loaded and stored on device‘s file system

 E.g. Directories on external storage (SD card)

 Other apps may tamper additional code before loading

● Applications forge package names

 Name not displayed during installation

 First-come, first serve  malicious app could be installed prior to legitimate one!

Conclusion: Real code signing (as on iOS) would

● …mitigate many exploits & attack surfaces

● …ease application analysis significantly!

Signing Dilemma

IAIK

● Developed by „Equus Technologies“ (Israel)

● 20 apps in Play Store, installed on 100 devices

 „Backup, Cleaner, Recorder, Notepad, …“

Two-stage approach
1. Clean app in PlayStore (stage 1)

 After install, „License Verification“ loads stage 2

 Check device properties (platform, version, etc.) and abort criteria

2. If all clear, stage 2 uses root exploits to gain system permissions

Result
Attacker has full control over device and sensors via C&C servers

Source: https://goo.gl/K7Ea3a

Case Study: Lipizzan

https://goo.gl/K7Ea3a

Case Study: WhatsApp

IAIK

● 06.05.2021

 Static and Dynamic Application Analysis

● 20.05.2021

 Mobile Network Security

Outlook

