
IAIK

IAIK

Android Platform Security
Mobile Security 2021

Johannes Feichtner
johannes.feichtner@iaik.tugraz.at

IAIK

● Low-level System Security

 Verified Boot & dm-verity

● Encryption System

 Full Disk Encryption

 File-based Encryption

● Android OS Security

 Architecture & Sandbox

 SELinux

Outline

IAIK

What?
Bugs in Android‘s libstagefright
and libutils

How?
● Attacker embeds shellcode in

harmless multimedia file

● Message is downloaded (e.g. via
MMS)

● Exploit is executed

Result
● Attacker can execute any code

on remote device
Source: https://goo.gl/9fgYSc

https://goo.gl/9fgYSc

IAIKSource: https://goo.gl/5Ea555

What?
Android can be tricked into
using an all-zero encryption key
for WPA/WPA2 WiFi communication

How?
● Attacker resends message of 4-way

handshake to device

● Real encryption key is replaced with
zero key

Result
● Attacker can intercept and

manipulate traffic from device

https://goo.gl/5Ea555

IAIK

What?
Implementation flaws in common
Bluetooth stacks enable remote code
execution

On Android?
● Device constantly scans for other

devices nearby

● Bluetooth implementation runs with
privileged permissions and is
exploitable (heap overflows)

Result
● Remote code execution on phone

without user noticing

Source: https://goo.gl/sDiTuu

https://goo.gl/sDiTuu

IAIK

Android Security Architecture

Source: https://goo.gl/xp74UR

https://goo.gl/xp74UR

Low-Level
System Security

IAIK

Verified Boot
● „Chain of Trust“

Established between bootloader and system image

● Transparent real-time integrity checking of block devices
 Prevent persistent rootkits

● Based on Device Mapper verity (dm-verity) feature of Linux Kernel
 Protection only effective if kernel can be trusted

Typical for OEMs:
Unmodifiable keys burned into device to verify boot partition‘s signature

IAIK

Boot chain (simplified)
● Verify bootloader using Chain of Trust

● Bootloader verifies boot / recovery partition

● Kernel verifies system partition

Device / bootloader state
● LOCKED/UNLOCKED

● Allows custom (non-OEM) keys

Boot state
● GREEN/YELLOW/ORANGE/RED

● Does not stop boot, only warning

Verified Boot – Workflow

IAIK

Idea: Look at block device and storage layer of file system using a hash tree

● Hash values stored in tree of pages

 Only „root hash“ must be trusted to verify rest of tree

● Modification of any 4k-block would
change the „root hash“

● Verify signature of „root hash“ using
public key included on boot partition
 Confirm that device‘s system
partition is unchanged

dm-verity – Insight

IAIK

Limitations
● Only applicable to read-only partitions

 Read-write partitions would update metadata when files are read

 Any change in FS breaks the tree
 but useful for /system partition (or where read-only is no drawback)

● Need block-based OTA updates

 Need to ensure that all devices have same /system partition

Status on Android 11

● Default is enforcing mode, fallback to logging mode if metadata unverifiable

● State saved in dedicated metadata partition

dm-verity

IAIK

Near Field Communication (NFC)
● Read/write mode (RW)

● Peer-to-peer mode (P2P)

● Card emulation mode (CE)

Secure Elements
● SIM card (UICC)

● microSD card (ASSD)

● Embedded SE (eSE)

APIs
● Telephony APIs (restricted)

● Android HCE (HostApduService)

● OpenMobile API (SEEK)

Device Interfaces

Encryption
System

IAIK

Starting with Android 3.0…
 4.4: Replaced PBKDF2 with scrypt

 5.0: Hardware-backed key storage

 7.0: Introduced file-based encryption

Full Disk Encryption
● Uses dm-crypt

● Operates on block-level

● Random-generated 128-bit disk encryption key (DEK)

 < 5.0: Key file protected only by lock screen password

 Now: Key file stored in Secure Element

Overview

IAIK

PBKDF2 with 2000 iterations
● < 16 chars lockscreen password

● Random salt

● Derivation based on SHA-1

 Needs only little memory

 Attack parallelizable :-)

Brute-Force Attack
● Copy encrypted /data & crypto footer off device

 Crypto footer found with „encryptable“ flag in /etc/fstab

● Bruteforce via GPU, validate key by decrypting  6-digit PIN needs only seconds!

FDE in Android 3.0

IAIK

Scrypt KDF instead of PBKDF2
● Salsa20-like hash function instead of SHA-1

● Prevent parallelizable large-scale attacks
using „work factors

FDE in Android 4.4

Brute-Force still possible
but takes longer!

See: https://goo.gl/a7Qjv1

https://goo.gl/a7Qjv1

IAIK

● Support for patterns and encryption without password

● Hardware-backed key storage for encryption key using signing capabilities of TEE

● „Off device“ brute-force attack no longer feasible

FDE in Android 5

IAIK

Since Android 7.0: Encryption of files instead of block-level

● KEK held in TEE

 User‘s auth credentials needed

to access KEK

● DEK used to encrypt file contents

 Separate key per file

 File keys derived from DEK and

nonce combined using AES-ECB

File-Based Encryption

Source: https://goo.gl/7zJ2c9

https://goo.gl/7zJ2c9

IAIK

Instead of crypto footer for partition,
key storage in /data/misc/vold/user_keys
 Different subdirectory in ce and de per Android user id

Two Areas
● Device Encrypted (DE)

 Immediately available after device turn-on

 „Direct boot“ mode: Receive phone calls, set alarms, …

● Credential Encrypted (CE)

 Available after user entered

authentication credentials

File-Based Encryption

$ ls -R /data/misc/vold/user_keys

+ ce/0/current:

- encrypted_key

- keymaster_key_blob

- salt

- secdiscardable

- stretching

- version

+ de/0:

- encrypted_key

- keymaster_key_blob

- secdiscardable

- stretching

- version

Android OS
Security

IAIK

OS Architecture
Stock Android Apps

Launcher2
Email
Gallery
Calendar

Calculator
Phone
Settings
MMS

Browser
Contacts
Alarm Clock
Camera

Your Apps / Market Apps

App
API

android.*

Binder

System Services java.*
(Apache Harmony)

Dalvik / Android Runtime / Zygote

JNI

Libraries

Bionic / OpenGL / SSL / WebKit

Hardware
Abstraction Layer

Native
Daemons

Power Manager
Activity Manager
Package Manager
Battery Service

Mount Service
Notification Manager
Location Manager
Surface Flinger

Status Bar Manager
Sensor Service
Window Manager
...

Init /
Toolbox

Linux Kernel

Wakelocks / Lowmem / Binder / Ashmem / Logger / RAM Console / ...

Desk Clock
Bluetooh

IAIK

● Kernel-based application sandbox

 DAC (UID, GID-based access control) and MAC (SELinux type enforcement)

 Dedicated, per-application UIDs

● Secure IPC (local sockets, Binder, intents)

● Systems running with reduced privileges

● Code signing

 Application packages (APKs)

 OS update packages (OTA packages)

● Permissions: System and custom (per app)

Android Security Model

IAIK

● Android assigns unique UID to each application  separate processes

 Kernel-level application sandbox

● Security enforced at process level through standard Linux facilities (UID, GID)

● Sandbox at kernel level

 Security model extends to
native code and OS applications too

● FS permissions as a mechanism to
keep files / folder separate

App Sandbox

IAIK

● Installing new apps
 Creates new directory /data/data/<Package name>/

 E.g. /data/data/com.whatsapp/

● Accessing other apps‘ directory  needs same UID

 Apps signed with same developer certificate

 Explicitly sharing same UID in AndroidManifest.xml

App Sandbox

$ ls -l /data/data/

drwx------ 4 u0_a97 u0_a97 4096 2017-01-18 14:27 com.android.calendar

drwx------ 6 u0_a120 u0_a120 4096 2017-01-19 12:54 com.android.chrome

...

IAIK

By default since Android > 4.3:
Define app boundaries with SELinux

Concept
„Not explicitly allowed? Then deny!“

Modes
● Permissive: Denials only logged

● Enforcing: Logged and enforced

Since Android 5: Enforce always (only)

SELinux on Android Security-Enhanced Linux

IAIK

● No unlabeled files

● No ptrace

● No device node creation

● No raw I/O

● No mmap zero

● No mac_override

● No setting security properties

● No access to /data/security and
/data/misc/keystore

● No /dev/mem or /dev/kmem access

● No /proc usermode helpers

● No ptrace of init

● No access to generically labeled
/dev/block files

● Restrictions on mounting filesystems

SELinux on Android – Sample Rules
● No execute of files from outside of

/system

● No access to /data/properties

● No writing to /system or rootfs

● No registering of unknown services

● No entering init domain

● No /sys/kernel/debug read access

● No apps acquiring capabilities

● No raw app access to camera, microphone,
NFC, radio, etc.

● No app-generic socket access

● No app/proc access to different security
domains

● No access to GPS files

● Cannot disable SELinux

Meanwhile > 250 Rules

IAIK

● Originally for tablets only, now for phones too (> Android 5.0)

● Users isolated by UID / GID

● Separate settings & app data directories

 System directory: /data/system/users/<user ID>/

 App data directory: /data/user/<user ID>/<pkg name>/

● Apps have different UID and install state for each user

 App UID: uid = userId * 10000 + (appId % 10000)

 Shared Apps: Install state in per-user package-restrictions.xml

● External storage isolation

Multi-User support

IAIK

● Primary user (owner)

 Full control over device

● Secondary users

 Restricted profile

 Share apps with primary user

 Only on tablets

 Managed profile

 Separate apps and data but share UI with primary user

 Managed by Device Policy Client (DPC)

● Guest user

 Temporary, restricted access to device

 Data (session) can be deleted

User Types

IAIK

● JCA Provider Architecture

● (SSLv3), TLS v1.0-v1.3 support via JSSE API

Cryptography

Android application using cryptographic functions

Cryptographic Service Providers (CSP)

JCA / JCE API

Application
layer

Abstract
layer

Provider
layer

AndroidOpenSSL BouncyCastle Crypto

HarmonyJSSE AndroidKeyStore

IAIK

What makes correct Crypto difficult on Android?
● Insecure defaults imported from Java

 E.g. Cipher.getInstance(„AES“) implicitly uses ECB mode

 Bad / no documentation on how to use correctly

● Variety of crypto providers

 Many apps bundle SpongyCastle library to fix issues in BouncyCastle

 No full BouncyCastle library in Android  features depending on included version

● Frequent changes in APIs

 Android 7: „Crypto“ provider deprecated, SHA1PRNG replaced with OpenSSLRandom

 Android 8: „You should not use IVParameterSpec for GCM but GCMParameterClass“

 Android 9: „Crypto“ provider removed, developer must not explicitly select provider

Cryptography

IAIK

● Android-specific trust store

● Trust anchors

 Pre-installed („trusted credentials“)

 Per user / profile

● Modified certificate building chain

 Based on BouncyCastle code

 Dynamically updated certificate blacklists

 Dynamically updated Certificate Pinning for Google Sites

Certificates & PKI

IAIK

● WPA EAP2 Enterprise (802.11i)

 EAP: EAP-TLS, EAP-TTLS, PEAP, EAP-SIM, EAP-AKA since Android 5.0

 Integrates with system keystore

 Integrated with Android for Work
(device administrator APIs)

● VPN

 Legacy: PPTP, IPSec

 Always-on VPN:
No network access until VPN is up

 Per-user / profile VPNs:
Dynamic routing / firewall rules

 Per-application VPN since Android 5.0

Networks

IAIK

● Lockscreen (keyguard service)

 Pattern (least secure)

 PIN / Password

 Stores hashes, uses Gatekeeper HAL since Android 6.0

● Smart Lock since Android 5.0

 Extensible Trust Agents

 Bluetooth, NFC, Location, Face Recognition

● Factory reset protection since Android 5.1

 Google account info saved on frp partition

● Fingerprint API since Android 6.0

Device Security

IAIK

● System-managed, secure cryptographic key store

 Unexportable keys

 Remain secure even if OS is compromised  Secure Element

● Implemented in the keystore system service

 HAL interface (keymaster), hardware-backed implementations possible

 Typically uses TEE (implemented using TrustZone) on ARM devices

● Framework APIs

 KeyChain API

 KeyStore

 KeyPairGenerator, KeyGenerator

Credential Storage

IAIK

● Device security policy can be set by admin

 Password / PIN policy

 Device lock / unlock

 Storage encryption

 Camera access

● Needs to be activated by user

● Cannot be directly uninstalled

● May be required to sync account data

 Microsoft Exchange (EAS)

 Google Apps

MDM

IAIK

● Android > 5.0 provides “Work Profiles”

 Pre-defined managed provisioning flow

 Managed by “Profile Owner” (device admin)

 Requires device encryption

● Separate apps and data: Can only install approved apps

● UI shared with primary user (Launcher, Notifications, …)

● “Device owner” is super-device admin

 Installed upon first device initialization

 Cannot be uninstalled

 Extra privileges

 Scoped to whole device

Android for Work

IAIK

● 29.04.2021

 Application Security on Android

● 06.05.2021

 Static and Dynamic Application Analysis

Outlook

