
IAIK

IAIK

iOS Application Security
Mobile Security 2021

Johannes Feichtner
johannes.feichtner@iaik.tugraz.at

IAIK

● App-Level Security on iOS

 (Real) Code Signing

 Sandbox

● App Internals

● App Analysis on iOS

 Case Studies with Real Apps

Outline

IAIKSource: https://goo.gl/8X11Rf

https://goo.gl/8X11Rf

IAIK

What?
Location data of popular apps leaked to
12 known monetarization firms

● Bluetooth LE Beacon Data

● GPS Longitude and Latitude

● Wi-Fi SSID (Network Name) and BSSID
(Network MAC Address)

● Further device data

 Accelerometer, Cell network
MCC/MNC, Battery Charge % and
status (Battery or charged via USB)

Problem?
Users agree on sharing their location for
different purposes, e.g. „Location based
social networking for meeting people
nearby”Source: https://goo.gl/FjCesH

https://goo.gl/FjCesH

IAIK

What?
13 devices enrolled to attacker-controlled
MDM server after physical access or via
social engineering

Problem?
● MDM enrollment brought certificate 

Trust to apps signed by third-party

● Inject code into messenger apps

● Upload to attacker server

Source: https://goo.gl/atCYu2

Source: https://goo.gl/d6V67E

https://goo.gl/atCYu2
https://goo.gl/d6V67E

IAIK

How?
1. User visits MDM web frontend

 http://ios-certificate-update.com

 http://www.wpitcher.com

2. Device enrolment with user interaction

 Certificate authority installed

 MDM has full control over device

3. Use BOptions sideloading technique to
inject dynamic lib into legitimate app

 Malware in custom BOptionspro.dylib

 Bundled with original iOS app

 Lib can ask for more permissions,
execute code, steal info from original app

 Backdoor code to read/send data from
WhatsApp, Telegram, … databases to C2 server
http://techwach.com

Source: https://goo.gl/d6V67E

https://goo.gl/d6V67E

IAIK

App-Level
Security

IAIK

Officially…
● Via Apple App Store

 Pre-installed on all iDevices

 Only manually reviewed apps!

 Developer‘s identities are verified by Apple

● Enterprise Mobile Device Management

● Sideloading

 Signing app with developer certificate

 Install / „trust“ developer certificate on device via Xcode

With Jailbreak
● Via file system

● Cydia package manager

Installing iOS Apps

IAIK

Review process
1. Developer uploads app

2. Enter queue for manual review (on re-upload: back to start)

3. Enter review in progress

 On reject: Notification with reason

 On success: App release

● 40 reviewers in 2009, each app with >= 2 reviews

● Focus on bugs, instabilities, privacy violations, censorship, …

● Details about security checks not known

+ Quality control and nearly no evil apps

- Not possible to fix bugs / security issues quickly

Apple App Store

http://goo.gl/NSthWH

http://goo.gl/NSthWH

IAIK

All binaries and libraries must be signed!

● Or phone is specially provisioned

● Main reason why apps have to come from official store

● Signing certificates trusted on every device

● Trust Chain with Intermediate & Root CAs stored in OS

How to verify signatures?
1. Get team ID from certificate

2. Check if used libraries & app binary match signature

3. Linking with same signature as executable always possible

Code Signing

IAIK

When?
● Upon app or binary execution (= at runtime)

● Process may only execute if signed with valid & trusted signature

Security implications
● Ensures that process stays dynamically valid

 No introduction of new executable code

 Existing executable code cannot be changed

● Guarantees that running app == reviewed app

● Prevents code injection

 W^X policy: No memory pages are writable & executable

Code Signing Enforcement

IAIK

How to deploy apps as developer?
1. Generate private keys

2a. Certificate issued by Apple

2b. Specific certificates
 not trusted on devices by default!

How to establish trust?
Using „Provisioning Profiles“:

Set of iOS development certificates,
unique device identifiers, and App ID

Code Signing: Developer

IAIK

How to deploy apps as company?
● Like developer but multiple devices in „Team Provisioning Profile“

● Individually approved by Apple

● Companies can directly deploy anything (no AppStore submission!)

● User implicitly trusting all apps from same enterprise app store

 Needed for MDM!

Code Signing: Enterprise

IAIK

Profiles installed /
acked by user!

App

Sig

App Store

App

Sig

Developer

Developer iPhone (D1 or D2)

Apple Store
Sig CA

Standard iPhone

Trust

Apple Store
Sig CA

Trust

Dev Cert

Dev Cert
D1 ID
D2 ID

Enterprise
Cert

*

Apple Store
Sig CA

App

Sig

App

Sig

Enterprise

App

Sig

App

Sig

Dev Cert
Enterprise

Cert
Contract

with Apple

Dev CA
Enterprise

CA

Apple Store
Cert

Apple CAs

Sig Sig

IAIK

Interaction
1. App tells how it wants to interact

 System grants (only) minimal rights to app

2. User action requires access to system APIs  granted transparently

 E.g., open / save dialogs, drag & drop, paste

Protected access (only with entitlement)

● Hardware (Camera, Microphone, …)

● Network Connections

● App Data (Calendar, Location, Contacts)

● User Files (Downloads, Music, Pictures, …)

Unprotected access (always possible): World-readable system files, invoke services

Sandbox

IAIK

In Practice
● Most apps run under same user mobile

 Only few system apps & services as root

● Separate container for each app

 Custom implementation of syscalls mmap and mprotect

 Apps cannot set memory pages executable

 Stop processes from executing
dynamically generated code

 App process restricted to own
directory via chroot-like process

● Hardware driver access
only via Apple frameworks

Sandbox

Source: https://goo.gl/SL4BCs

https://goo.gl/SL4BCs

IAIK

● No permission granting at installation

 Only during runtime!

● Can be revoked in app settings

● Workflow

 First API access: Request user

 Further API access:
Refer to saved permission state

Note: Only way to remove internet access for app
 Turn off your WiFi / LTE connection…

iOS Permissions

IAIK

● Apps do not directly request permissions

 Developers do not have to specify which they want to use

 Depending on use of sensitive APIs

● Example: App wants to access user‘s contacts

 App calls method from CNContactStore class

 Since iOS 10: Apps must present description
how requested data is used

 API access blocked until permission granted / denied

● Sensitive APIs
Contacts, Microphone, Calendar, Camera, Reminders, Photos, Health, Motion Activity & Fitness,

Speech Recognition, Location Services, Bluetooth Sharing, Media Library, Social Media Accounts

iOS Permissions

IAIK

● Reduced attack surface  stripped down OS

 Lots of useful binaries missing, e.g. no /bin/sh  no „shell“ code 

 Even if shell  no ls, rm, ps, etc.

 With code execution, what could you do?

● Not many applications to attack

 No Flash, Java

 Mobile Safari does not render same files as desktop Safari (QT)

● Privilege separation

 Most processes run as user „mobile“

Mobile Safari, Mobile Mail, Springboard, etc

 Many resources require root privileges

Malware?

IAIK

● Maiyadi App Store

 3rd Party Mac AppStore in China

 Hosts „free“ apps

● Code signatures can be disabled on macOS

Attack scenario
1. macOS infection

2. App installed via cable on iPhone,
signed with enterprise app store cert
(User has to trust Provisioning profile!)

3. On normal (not profile trusting) phones:
Not malicious but botnet contact

Wirelurker Malware

Source: https://goo.gl/tirnTD

https://goo.gl/tirnTD

IAIK

Solution
Apple has to revoke enterprise certificate
 If certificate revoked, apps cannot be started anymore

Detailed info: https://www.zdziarski.com/blog/?p=4140

Inferred problems
● Protect iTunes pairing better!

● Code Signature Certificate Pinning

● Accept enterprise provisioning profiles with one-click

 Why are they needed for standard devices in the first place?

Wirelurker Malware

https://www.zdziarski.com/blog/?p=4140

IAIK

App Internals

IAIK

From Apple
● Compiled into kernel, less restrictive

● Can: open SMS database but can not: send SMS, fork()

● Also run in sandbox: Mobile Safari, Mobile Mail, Mobile SMS

 As user mobile

From App Store
● More restrictive sandbox

● Cannot access most of file system

 Generally restricted to app’s home directory

● Further restrictions on API usage by Apple

 Data Protection for files and databases

App Types

IAIK

● Distributed in IPA format (“iOS App Store Package”)

● ZIP archive with all code + resources

App Files

$ unzip SuperPassword.ipa –d acndemo

$ ls -R acndemo/

/Payload/SuperPassword.ipa/ App itself + static resources

-> SuperPassword “Fat Binary” executable (ARM-compiled code)

-> Info.plist Bundle ID, version number, app name to display

-> MainWindow.nib Default interface to load when app is started

-> Settings.bundle App-specific preferences for system settings

-> further resources Language files, images, sounds, more GUI layouts (nib)

/iTunesArtwork 512x512 pixel PNG image -> app icon

/iTunesMetadata.plist Developer name + ID, bundle identifier,

copyright information, etc.

IAIK

App Installation
● Until iOS 8

 Unpacking to /var/mobile/applications/<APP_UUID>

 APP_UUID = 128-bit number to uniquely identify app

● Since iOS 10

 /private/var/mobile/Containers/Bundle/Application/<APP_UUID>/

 App bundle (ARM binary, static resources)

 Content of this folder used to validate code signature of app

 /private/var/mobile/Containers/Data/Application/<APP_UUID>/

 User-generated app data

 Subfolder „Library“: Cookies, caches, preferences, configuration files (plist)

 Subfolder „tmp“: Temp files for current app launch only (not persisted)

 /private/var/mobile/Containers/Shared/AppGroup/<APP_UUID>/

 To share with other apps & extensions of same app group

IAIK

● „Fat Binary“  Includes bins for ARMv7, ARMv8, …

● Each binary is in Mach-O format

 Header

 Identification

 Architecture

 Load commands

 Virtual Memory Layout

 Libraries

 Code signature

 Encryption

 Data

 Executable code

 Read / write data

 Objective C runtime information

iOS Executable

IAIK

iOS App Analysis

IAIK

 Traditionally two approaches

 Dynamic Analysis: Monitor live file access using jailbroken device

 Static Analysis: Look for file API calls + parameters in binary dump

Challenge?

● iOS apps are compiled down to native code

 Analysis on disassembly, e.g. using Ghidra or Hopper

 Hard to find the needle in the haystack

● How do you get apps for analysis?

 All binaries encrypted by Apple  decryptable but anyway…

 Need jailbroken device but jailbreaking is no „feature by design“

Application Analysis

IAIK

Encryption appears to be custom
C++ implementation

Case Study: Viber

IAIK

Case Study: Viber

IAIK

Case Study: WhatsApp
$ cd /private/var/mobile/Containers/Shared/AppGroup

$ ls -l 332A098D-368C-4378-A503-91BF33284D4B/

-> Axolotl.sqlite

-> ChatSearch.sqlite

-> ChatStorage.sqlite

-> Contacts.sqlite

-> StatusList.plist

-> SyncHistory.plist

-> calls.backup.log

...

● Deleting messages from WhatsApp  message still in SQLite DB

 Deleting SQLite records sets them free but does not clear them

 Can be recovered as long as not overwritten
See: https://goo.gl/nce4jo

https://goo.gl/nce4jo

IAIK

Case Study: WhatsApp

● Messages - ZWAMESSAGE

 Also in file ChatSearch.sqlite

● Open chats - ZWACHATSESSION

 Single user & group chats

● Media location - ZWAMEDIAITEM

● …

$ sqlite3 ChatStorage.sqlite

SQLite version 3.8.4.3 2014-04-03 16:53:12

Enter ".help" for usage hints.

sqlite> .tables

ZWABLACKLISTITEM ZWAGROUPINFO ZWAMESSAGE Z_METADATA ZWACHATPROPERTIES

ZWAGROUPMEMBER ZWAMESSAGEINFO Z_PRIMARYKEY ZWACHATSESSION ZWAMEDIAITEM

ZWAMESSAGEWORD See: https://goo.gl/bfXqGd

https://goo.gl/bfXqGd

IAIK

Case Study: Telegram

sqlite> SELECT * FROM encrypted_cids_29;

encrypted_id = 1824030108

cid = -2147483648

encrypted_id = ...

cid = ...

● Lots of data also stored in Shared directory

● Documents folder contains tgdata.db

 Contains all information about contacts, conversations, files exchanged, etc.

 SQLite db  recovery of deleted chats possible as with WhatsApp

 Tables

messages_v29: List of all exchanged messages

 conversations_v29: List of active chats

 encrypted_cids_v29: Conversation IDs of secret chats

sqlite> SELECT * FROM messages_v29;

cid = -2147483648

message = Once I was a secret chat...

from_id = 243610671

to_id = -2147483648

...

IAIK

Case Study:
Crypto Misuse

in iOS Applications

Paper: Automated Binary Analysis on iOS - A Case Study on Cryptographic Misuse in iOS Applications.
Feichtner, J., Missmann, D. & Spreitzer, R. 2018 Proceedings of the 11th ACM Conference on Security & Privacy
in Wireless and Mobile Networks. New York: ACM, New York, p. 236-247 12 p.

IAIK

● Decompiling machine code

 No(?) ARMv8 64-bit decompiler to LLVM IR available

● Language pecularities

 Dynamic control-flow decisions during runtime information flow?

 Information about types lost during compilation (but still in binary!)

● Pointer analysis

 Where do different variables point to during execution?

 How to deal with aliasing?

 Potential trade-off: accuracy of slides <-> runtime overhead of points-to analysis

Challenges

IAIK

● Framework to automatically track definable method invocations in iOS apps

● General design but study focus on misconceptions in crypto API usage

Features
● Generic decompiler for ARMv8 64-bit  LLVM IR code

 Also handles language pecularities of iOS binaries

● Pointer Analysis

 Handle Aliasing, reconstruct original call graph

● Static Slicing

 Extract individual execution paths for parameter backtracking

● Evaluates „security rules“

Our Solution

Source Code: https://github.com/IAIK/ios-analysis

https://github.com/IAIK/ios-analysis

IAIK

1. No ECB mode for encryption

2. No non-random IV for CBC encryption

3. No constant encryption keys

4. No constant passwords or salts for PBE

5. Not fewer than 1000 iterations for PBE

6. Do not use static seeds to seed SecureRandom

Goals
● Transform these “common sense” rules for iOS

 Different defaults (CBC instead of ECB), Rule 6 cannot be violated on iOS

 Adapted for system crypto provider CommonCrypto

● Automatically check these issues in arbitrary apps

Security Rules

Proposed by
Egele et al.:
CryptoLint

IAIK

Problem
● IV constant or predictable  deterministic / stateless encryption scheme

● Susceptible to Chosen-Plaintext Attack

Our „Security Rule“
● Precondition: Cipher uses CBC mode

● Slicing criteria

● IV should be “random” / generated by cryptographically secure RNG, e.g. using

 CCRandomGenerateBytes() in CommonCrypto or

 SecRandomCopyBytes() in Security library

„No non-random IV for CBC encryption“

CCrypt(...,X5,...), CCCryptorCreate(...,X5,...), CCCryptorCreateWithMode(...,X4,...)

IAIK

Motivation
● „Does our framework also perform with real-world applications?“
● „What are our security rules able to cover?“
● „Do iOS developers know how to apply crypto APIs correctly?“ :-)

Method & Dataset
● Manual analysis

 15 open-source apps from Github using CommonCrypto
 Refined framework / security rules where necessary

 Validated execution paths manually using source codes

● Automated analysis

 634 free applications from official iOS App Store (> 10.000 installations each)

 Only apps where crypto usage seemed obvious, e.g. password managers

Evaluation Scenario

IAIK

Framework

Security rules Origin of constant secrets

Evaluation Results

IAIK

Framework
● Context- and field-insensitive approach

 Parameter backtracking might also track spurious execution paths

● UI elements

 E.g. backtracking password input might end at externally defined UITextField object

Security Rules
● Not aware of custom implementations / 3rd party crypto libs

● Only evaluate what you specify…

 „Home-brew“ encryption keys fly below the radar…

 Passwords padded with NULL bytes / truncated to key length count as „non-constant“ input

Limitations

IAIK

● Novel approach to tackle automated analysis of iOS applications

 ARMv8 64-bit decompiler

 Pointer Analysis

 Static Slicing

 Parameter Backtracking

● Case Study on 417 applications using crypto APIs

 Security rules targeting common crypto misuse

 Iteratively refined approach using open-source applications

 343 / 417 (82%) apps violate at least one security rule
Mostly: Use of non-random IV (69%), constant keys (64%), ECB mode (27%)

Conclusion

IAIK

● 22.04.2021

 Android Platform Security

● 29.04.2021

 Application Security on Android

Outlook

