AIK fTU

10S Application Security

Mobile Security 2021

Johannes Feichtner
johannes.feichtner@iaik.tugraz.at

Outline

e App-Level Security on iOS
— (Real) Code Signing
— Sandbox

e App Internals

e App Analysis oniOS
— Case Studies with Real Apps

Data Protection
Class

App Sandbox

File System

The App's responsibility for securing data

(=

Your app

Check validity and
read data safely

Authenticate recipient and
use secure channel

boundary of trust

Source: https://goo.qgl/8X11Rf ﬂ
IAIK 'EU

https://goo.gl/8X11Rf

APP STALKING —

Dozens of i0S apps surreptitiously share What?

user location data with tracking firms |
Location data of popular apps leaked to

Applications don't mention that they're selling your precise location to third : ; :
patilas 12 known monetarization firms
SEAN GALLAGHER - 9/10/2018, 9:11 PM e Bluetooth LE Beacon Data

e GPS Longitude and Latitude

e Wi-Fi SSID (Network Name) and BSSID
(Network MAC Address)

e Further device data

— Accelerometer, Cell network
MCC/MNC, Battery Charge % and
status (Battery or charged via USB)

Problem?

& Users agree on sharing their location for
different purposes, e.g. ,Location based
& social networking for meeting people

nearby” AIKaTU

https://goo.gl/FjCesH

HYiJéf;féI‘geted attack against 13 iPhones
dropped malicious apps via MDM

What?
13 devices enrolled to attacker-controlled

Installed hacked versions of Telegram, WhatsApp, and tracked users' location and MDM server after D hy sical access or via

SMS.

SEAN GALLAGHER - 7/13/2018, 5:47 PM

App Installation

“jos-certificate-update.com" is about
to install and manage the app
“Telegram"

Your iTunes account will not be
charged for this app

)
X1,
X1,
X2,
X0,
X0,
X0,
X2,
X2,

Cancel Install

Source:

social engineering

Problem?

e MDM enrollment brought certificate >
Trust to apps signed by third-party

e Inject code into messenger apps
e Upload to attacker server

Source: https://goo.ql/d6VE67E

29,#location|
#selRef_stringByAppendingFormat_ @PAGE
[X1,#selRef_stringByAppendingFormat_@PAGEOFF] ; SEL
SP

[X2,#0x40+var_40]

#cfstr_HttpTechwachCo@PAGE ; "http://techwach.com/Reduce/"
X0, #cfstr_HttpTechwachCo@PAGEOFF ; id
#cfstr_Php@PAGE ; "%@.php"

X2, #cfstr_ Php@PAGEOFF ; "%@.php"

_objc_msgSend
X29, X29

https://goo.gl/atCYu2
https://goo.gl/d6V67E

How?
1. User visits MDM web frontend
— http://ios-certificate-update.com
— http://www.wpitcher.com
2. Device enrolment with user interaction
— Certificate authority installed
— MDM has full control over device

3. Use BOptions sideloading technique to
inject dynamic lib into legitimate app
— Malware in custom BOptionspro.dylib
— Bundled with original iOS app

— Lib can ask for more permissions,
execute code, steal info from original app

- Backdoor code to read/send data from
WhatsApp, Telegram, ... databases to C2 server
http://techwach.com

[«

iPHONE #

C2 Servers

Source:

Enroliment

\

Exfiltrate data
e Contacts
LY

® |ocalisation
* Chatlog

* Pictures

MALICIOUS
iOS MDM SERVER

Push malicious
v applications

>

WhatsApp

ENROLLED

iPHONES

IAIK T

Grazm

https://goo.gl/d6V67E

App-Level
Security

1:55+ wl T 27%

Installing 10S Apps

Welcome to Cydia™
- = - by Jay Freeman (saurik)
Officially...

£ cydia > [saurik >
¢ Vla Apple App Store Featured > @Themes >
— Pre-installed on all iDevices e et s i e 5
— Only manually reviewed apps! B a0 unesticior | LT
— Developer's identities are verified by Apple I Manage Account >
e Enterprise Mobile Device Management Upgrading & Jailbreaking Help >
PS S | d e | 0a d | N g Find Extensions for Applications m
— Signing app with developer certificate Viore Package Sources ’
— Install / ,trust” developer certificate on device via Xcode
With Jailbreak USER GUIDES
o o regquen sked Questions
e Via file system weisedtetoe 7
. * 0O 0@ © Q
. Cydla paCkage manager Cydia Sources Changes Installed Search
IAIK T

Grazm

Apple App Store

Review process
1. Developer uploads app
2. Enter queue for manual review (on re-upload: back to start)
3. Enter review in progress
— Onreject: Notification with reason

— On success: App release

e 40 reviewers in 2009, each app with >= 2 reviews .. a/nstws
e Focus on bugs, instabilities, privacy violations, censorship, ...
e Details about security checks not known

+ Quality control and nearly no evil apps
- Not possible to fix bugs / security issues quickly

http://goo.gl/NSthWH

Code Signing

All binaries and libraries must be signed!

Or phone is specially provisioned

Main reason why apps have to come from official store
Signing certificates trusted on every device

Trust Chain with Intermediate & Root CAs stored in OS

How to verify signatures?

1. Getteam ID from certificate

2. Check if used libraries & app binary match signature

3. Linking with same signature as executable always possible

Code Signing Enforcement

When?

e Upon app or binary execution (= at runtime)
e Process may only execute if signed with valid & trusted signature

Security implications
e Ensures that process stays dynamically valid
— No introduction of new executable code
— Existing executable code cannot be changed
e Guarantees that running app == reviewed app
e Prevents code injection
— WAX policy: No memory pages are writable & executable

Code Signing: Developer

How to deploy apps as developer?

1. Generate private keys
2a. Certificate issued by Apple

2b. Specific certificates
- not trusted on devices by default!

How to establish trust?
Using ,Provisioning Profiles”:

Set of i0OS development certificates,
unique device identifiers, and App ID

CODE SIGNING PROCESS mobyfab
Device
— IDs —
? M(,,, | AppiD

Public Key Certificate

T

Private Key Code Sign Signed Binary

‘ Provismmng
Profile

TU

Grazm

IAIK

Code Signing: Enterprise

How to deploy apps as company?
Like developer but multiple devices in ,Team Provisioning Profile”

Individually approved by Apple

Companies can directly deploy anything (no AppStore submission!)

User implicitly trusting all apps from same enterprise app store

- Needed for MDM!

iOS Team Provisioning Profile: *

Devices

App ID

Xcode: i0OS

Wildcard App ID

Development
Certificates

i0S i0S i0S
Development: Development: Development:
Ann Johnson Tom Clark Mei Chen

Ann Johnson’s Tom Clark’s Mei Chen’s

iPad iPhone

iPod touch

|

IAIK T

Grazm

App Store

=

APDP
Sig

App

App APP

Trust "iPhone Distribution:

Ap ple Store Contract Enterpri se User Testing Inc.” Apps on
i This iPhone
Cert Wlth App Ie Cert Trusting will allow any app from this
f ente.?r:ise devdeloper t[c[> be used on
Apple Store Enterprise o
Slg CA CA Cancel
A
roole CA Profiles installed /
e S
PP acked by user!

Trust po
Apple Store - :
Standard iPhone Sig CA D1 1D nterprise |
Apble St D2 1D Cert
pple Store . :
st sig ca Sig Sig
4 4

Developer iPhone (D1 or D

IAIK T

Grazm

Sandbox

1. App tells how it wants to interact
— System grants (only) minimal rights to app

2. User action requires access to system APIs - granted transparently
— E.g., open / save dialogs, drag & drop, paste

Protected access (only with entitlement)
e Hardware (Camera, Microphone, ...)

e Network Connections

e App Data (Calendar, Location, Contacts)

e User Files (Downloads, Music, Pictures, ...)

Unprotected access (always possible): World-readable system files, invoke services
IAIK T

Grazm

Sandbox

In Practice

e Most apps run under same user mobile
— Only few system apps & services as root

e Separate container for each app
— Custom implementation of syscalls mmap and mprotect

= Apps cannot set memory pages executable

= Stop processes from executing
dynamically generated code

Without App Sandbox

— App process restricted to own
directory via chroot-like process

Unrestricted

access No &

Your app
Other
system resources

Al
system resources

e Hardware driver access

|

Only Via Apple frameWOrkS Source: https://900.9l/SL4BCs

With App Sandbox

Other
: usear data

Your sandboy —

Unrestricted
access

Your app

IAIK T

Grazm

https://goo.gl/SL4BCs

Location Services o

Location Services uses crowd-sourced Wi-Fi hotspot locations to determine your approximate

]]]
I 0 S P e r m I Ss I o n s location. About Location Services & Privacy...

App Store
e No permission granting at installation BusBahnBim

— Only during runtime! 8 Camera O

Maps
OBB Scotty
% Safari (_)
Siri
. Workflow c Weather
| (22} Weather+
— First APl access: Request user eaer

— Further APl access:
Refer to saved permission state

e Can berevoked in app settings

@ Find My iPad On

System Services

Note: Only way to remove internet access for app
- Turn off your WiFi / LTE connection...

IAIK T

Grazm

10S Permissions

e Apps do not directly request permissions

— Developers do not have to specify which they want to use
— Depending on use of sensitive APIs

e Example: App wants to access user's contacts

“Cluster” Would Like to
— App calls method from CNContactStore class i (ocese oUrGoiaces
This allows Cluster to let you choose
— Since i0S 10: Apps must present description which frimst»gz :;::fsto shared
how requested data is used
— APl access blocked until permission granted / denied Don't Allow

e Sensitive APIs

Contacts, Microphone, Calendar, Camera, Reminders, Photos, Health, Motion Activity & Fitness,
Speech Recognition, Location Services, Bluetooth Sharing, Media Library, Social Media Accounts

IAIK T

Grazm

Malware?

e Reduced attack surface - stripped down OS
— Lots of useful binaries missing, e.g. no /bin/sh - no ,shell“ code ®
— Evenif shell > no 1s, rm, ps, etc.
— With code execution, what could you do?

e Not many applications to attack
— No Flash, Java
— Mobile Safari does not render same files as desktop Safari (QT)

e Privilege separation
— Most processes run as user ,mobile”
= Mobile Safari, Mobile Mail, Springboard, etc

— Many resources require root privileges

Wirelurker Malware

Trojanize Mac
Application

e Maiyadi App Store
— 3rd Party Mac AppStore in China P}ljlg]vo?\i;t)oSi)rc
— Hosts ,free” apps

User Downloads

e Code signatures can be disabled on macOS & Runs Mac App

Check for Updates

Communicate Mac App Drops & |
with C2 Server Installs Files

. f . | Download i0S Monitor USB for Download New
1 . maCOS IN eCtIOI”l Apps 10S Connections Code

2. App installed via cable on iPhone,

. . . Backup Specific i0S Device Exfiltrate Device
signed with enterprise app store cert 10S Apps Infection
(User has to trust Provisioning profile!)

Trojanize i0S Exfiltrate User

3. Onnormal (not profile trusting) phones: Apps Data
Not malicious but botnet contact

Source: https://qgoo.gl/tirnTD

https://goo.gl/tirnTD

Wirelurker Malware

Solution

Apple has to revoke enterprise certificate
- If certificate revoked, apps cannot be started anymore

Detailed info: https://www.zdziarski.com/bloqg/?p=4140

Inferred problems
e Protect iTunes pairing better!
e Code Signature Certificate Pinning

e Accept enterprise provisioning profiles with one-click
— Why are they needed for standard devices in the first place?

https://www.zdziarski.com/blog/?p=4140

App Internals

App Types

From Apple
e Compiled into kernel, less restrictive
e Can: open SMS database but can not: send SMS, fork()

e Also run in sandbox: Mobile Safari, Mobile Mail, Mobile SMS
— As user mobile

From App Store
e More restrictive sandbox

e Cannot access most of file system
— Generally restricted to app’s home directory

e Further restrictions on APl usage by Apple
— Data Protection for files and databases

App Files

e Distributed in (“iOS App Store Package”)
e ZIP archive with all code + resources

$ unzip SuperPassword.ipa -d acndemo
$ 1s -R acndemo/

/Payload/SuperPassword.ipa/ App itself + static resources

-> SuperPassword “Fat Binary” executable (ARM-compiled code)

-> Info.plist Bundle ID, version number, app name to display

-> MainWindow.nib Default interface to load when app is started

-> Settings.bundle App-specific preferences for system settings

-> further resources Language files, images, sounds, more GUI layouts (nib)
/iTunesArtwork 512x512 pixel PNG image -> app icon
/iTunesMetadata.plist Developer name + ID, bundle identifier,

copyright information, etc.
IAIK T

Grazm

App Installation

e Until iOS 8

— Unpacking to /var/mobile/applications/<APP_UUID>
— APP_UUID = 128-bit number to uniquely identify app

e SinceiOS 10
— /private/var/mobile/Containers/Bundle/Application/<APP_UUID>/
= App bundle (ARM binary, static resources)
= Content of this folder used to validate code signature of app

— /private/var/mobile/Containers/Data/Application/<APP_UUID>/
= User-generated app data
= Subfolder ,Library“: Cookies, caches, preferences, configuration files (plist)
= Subfolder ,tmp"“: Temp files for current app launch only (not persisted)

— /private/var/mobile/Containers/Shared/AppGroup/<APP_UUID>/
= To share with other apps & extensions of same app group IAIK T

Grazm

10S Executable

e ,Fat Binary” - Includes bins for ARMv7, ARMVS, ...

e Each binary is in Mach-O format
— Header

Header
= |dentification Load Commands
= Architecture Load command Segment 1
— Load commands _mmmm
= Virtual Memory Layout —
= Libraries - Secton 1 «
= Code signature E |
. Section k <
= Encryption =
— Data < secton
£
= Executable code 3 p—
= Read / write data _
-
= Objective C runtime information

IAIK T

Grazm

10S App Analysis

Application Analysis

—> Traditionally two approaches
— Dynamic Analysis: Monitor live file access using jailbroken device
— Static Analysis: Look for file API calls + parameters in binary dump

Challenge?

e iOS apps are compiled down to native code
— Analysis on disassembly, e.g. using Ghidra or Hopper
— Hard to find the needle in the haystack

e How do you get apps for analysis?
— All binaries encrypted by Apple = decryptable but anyway...
— Need jailbroken device but jailbreaking is no ,feature by design”

Case Study: Viber

Encryption appears to be custom
C++ implementation

-[VIBEncryptionContext initWithContext:]
-[VIBEncryptionContext context]
-[VIBEncryptionContext params]
-[VIBEncryptionContext setParams:]
-[VIBEncryptionContext .cxx_destruct]
-[VIBEncryptionManager initWithinjector:]
-[VIBEncryptionManager dealloc]
-[VIBEncryptionManager checkEncryptionAbilityForAttachment:completion:]
-[VIBEncryptionManager checkEncryptionForConversation:completion:]
-[VIBEncryptionManager beginEncryptionWithContext:]
-[VIBEncryptionManager encryptData:length:withContext:]
-[VIBEncryptionManager endEncryptionWithContext:]
-[VIBEncryptionManager popEncryptionParamsForContext:]
-[VIBEncryptionManager encryptData:encryptionKey:]
-[VIBEncryptionManager calculateMD5ForAttachment:]
-[VIBEncryptionManager decryptAttachment:completion:]
-[VIBEncryptionManager decryptData:withEncryptionParams:]
-[VIBEncryptionManager decryptFile:withEncryptionParams:]
-[VIBEncryptionManager handleSecureStateChanged:]
-[VIBEncryptionManager supportedMediaTypes]

-[VIBEncryptionManager .cxx_destruct]

IAIK T

Grazm

peR632fa
pR0632fc
00063300
08063304
20863306
32063308
00863302
8006338¢
00063310
20063312
20863316
20063318
2086331a
2006331e
000863322
30063324
09863328
pRB6332a
2086332e
30063330
20863334
P0063338
2006333a
2086333¢
2806333e
20863340
20863344
30063346
2086334a
2006334¢
2086334e
29063352
02863356
22063358
3006335¢
2086335¢
30063362
PBB63364
30863368
2086336¢
2006336e
00063370
20863372

Case Study: Viber

str
movw
movt
mov
add
mov
mov
blx
mov
blx
str
mov
blx
ldr.w
mov
blx
mov
blx
str
movw
movt
mov
add
mov
mov
blx
mov
blx
str
mov
blx
dr.w
mov
blx
mov
blx
str
movw
movt
mov
add
mov
mov

rd, [sp, #0x100 + var_108)

r2, #0x412e
r2, #9xd9
ri, ré

r2, pc

r3, 8

rs,

@"Viber can not verify this number. This may be the result of an error or a breach.\\nPlease verify %@ agai
@"Viber can not verify this number. This may be the result of an error or 3 breach.\\nPlease verify %@ agai
argurent #2 for method imp___picsymbolstubd__objc _msgSend

@"Viber can not verify this number. This may be the result of an error or a breach.\\nPlease verify %@ agai

e me we e

imp___picsymbolstubd__objc_msgSend

r?, 1

imp___picsymbolstubd__objc¢_retainAutoreleasedReturnValue
re, [sp, #0x10® + var_(8]

re, rd

imp___picsymbolstubd__odbjc_release

r9, (fp)
ri, sl

; objc_cls_ref _NSBundle, 08JC_CLASS_S_NSBundle, argument #1 for method imp___picsymbolstubd__objc_msgSend

imp___picsymbolstubd__odbjc_msgSend

O]

imp___picsymbolstubd__objc_retainAutoreleasedReturnValue
r4, [sp, #0x100 + var_100]

r2, #9x410a
r2, #9xd9
ri, 6

r2, pc

r3, r8

rs, rd

@"Nessages sent by participants in this conversation are encrypted and %@ is Verified", :loweri6:{cfstring|
@"Messages sent by participants in this conversation are encrypted and %@ is Verified", :upperl6:(cfstring_|
argueent #2 for aethod imp___picsymbolstubd__odjc_msqSend

@"Messages sent by participants in this conversation are encrypted and %@ is Verified"

e we we we

imp___picsymbolstub4__objc_msgSend

r?, 7

imp___picsymbolstubd__objc_retainAutoreleasedReturnvalue
re, [sp, #0x102 + var_B8]

re, r5

imp___picsymbolstubd__objc_release

ro, (fp)
ri, sl

; objc_cls_ref NSBundle, 08JC_CLASS_$_NSBundle, argument #1 for method imp___picsymbolstubd__objc_msqgSend

imp___picsymbolstub4__objc_msqgSend

r7, 7

imp___picsymbolstubd__objc_retainAutoreleasedReturnvalue
r4, [sp, #0x100 + var_100]

r2, #0x40e6
r2, #0xd9
rl, r6

r2, pc

r3, r8

rs, rd

; @'This conversation cannot be encrypted., This may be the result of an error FElGtgeoSlocatlON LINItaTION" ,
; @'This conversation cannot be encrypted. This may be the result of an error or a geo-location limitation",
; argument #2 for method imp___ picsymbolstubd__objc_msqSend

; @'This conversation cannot be encrypted. This may be the result of an error or a3 geo~location limitation"

Case Study: WhatsApp

$ cd /private/var/mobile/Containers/Shared/AppGroup
$ 1s -1 332A098D-368C-4378-A503-91BF33284D4B/

-> Axolotl.sqglite

-> ChatSearch.sqglite
-> ChatStorage.sqlite
-> Contacts.sqglite

-> StatusList.plist
-> SyncHistory.plist
-> calls.backup.log

e Deleting messages from WhatsApp - message still in SQLite DB
— Deleting SQLite records sets them free but does not clear them

— Can be recovered as long as not overwritten
See: https://goo.gl/ncedjo

IAIK T

Grazm

https://goo.gl/nce4jo

Case Study: WhatsApp

$ sqlite3 ChatStorage.sqglite
SQLite version 3.8.4.3 2014-04-03 16:53:12
Enter ".help" for usage hints.

sqlite> .tables

ZWABLACKLISTITEM ZWAGROUPINFO ZWAMESSAGE Z METADATA ZWACHATPROPERTIES
ZWAGROUPMEMBER ZWAMESSAGEINFO Z PRIMARYKEY ZWACHATSESSION ZWAMEDIAITEM
ZWAMESSAGEWORD Database view | File Info See: https://q00.gl/bfXaG
P M essa g es - ZW A M E S S AG E | ZMESSAGEDATE + ZSENTDATE v ZFROMIJID v ZMEDIASECTIONID v ZPHASH ~ ZPUSHNAME ~ ZSTANZAID v ZTEXT
|| 438344687 27-14166 9BFCF037952062F08F
. . . { 51887@g.us
o Also In flle ChatsearCh'Sqllte 3@438344687 :@LIJZTIJIGG 8B308691B63744F4A3

51887@g.us

o Open ChatS - ZWACHATSESS'ON 32426673193 [To2-14049 81763ABS0957B4E460

1 80353@g.us
. || 426673193 122-14049 0DO2DBISAE3230C30A
— Single user & group chats | ~——
. . || 483635628,093624 ___l7-14166 3EA65954161BBF4605
e Media location - ZWAMEDIAITEM | e
|| 483637174,381004 [hs@swha 46928ABCADS2AAD4SC
1 tsapp.net
o || 483637173,891472 483637174 DF91BESFCSCTDEGSCS EhiND)
483641447 18@s.wha 2016-04 Beaa O'& 4326AEE22C18FF3146
1 tsapp.net

I' 433644648 B3@s.wha Jack AS8883CBCB887779184 END

https://goo.gl/bfXqGd

Case Study: Telegram

e Lots of data also stored in Shared directory

e Documents folder contains tgdata.db
— Contains all information about contacts, conversations, files exchanged, etc.
— SQLite db = recovery of deleted chats possible as with WhatsApp

— Tables
= messages_v29: List of all exchanged messages
= conversations_v29: List of active chats
= encrypted_cids_v29: Conversation IDs of secret chats

sgqlite> SELECT * FROM encrypted cids 29; sqlite> SELECT * FROM messages Vv29;

encrypted id = 1824030108 cid = -2147483648
cid = -2147483648 message = Once I was a secret chat...
from_id = 243610671
encrypted_id = ... to_id = -2147483648

cid = ... e TU

Grazm

Case Study:
Crypto Misuse
In 10S Applications

Paper: Automated Binary Analysis on iOS - A Case Study on Cryptographic Misuse in iOS Applications.
Feichtner, J., Missmann, D. & Spreitzer, R. 2018 Proceedings of the 11th ACM Conference on Security & Privacy
in Wireless and Mobile Networks. New York: ACM, New York, p. 236-247 12 p.

Challenges

e Decompiling machine code
— No(?) ARMv8 64-bit decompiler to LLVM IR available

e Language pecularities
— Dynamic control-flow decisions during runtime - information flow?
— Information about types lost during compilation (but still in binary!)

e Pointer analysis
— Where do different variables point to during execution?
— How to deal with aliasing?
— Potential trade-off: accuracy of slides <-> runtime overhead of points-to analysis

Our Solution

e Framework to automatically track definable method invocations in iOS apps
e General design but study focus on misconceptions in crypto APl usage

Features
e Generic decompiler for ARMv8 64-bit > LLVM IR code
— Also handles language pecularities of iOS binaries
e Pointer Analysis
— Handle Aliasing, reconstruct original call graph
e Static Slicing
— Extract individual execution paths for parameter backtracking
e Evaluates ,security rules”

Source Code: https://github.com/IAIK/ios-analysis

https://github.com/IAIK/ios-analysis

Security Rules

No ECB mode for encryption
No non-random IV for CBC encryption

No constant encryption keys Proposed by

Egele et al.:

No constant passwords or salts for PBE CryptoLint

Not fewer than 1000 iterations for PBE
Do not use static seeds to seed SecureRandom

S e o

Goals

e Transform these “common sense” rules for iOS
— Different defaults (CBC instead of ECB), Rule 6 cannot be violated on iOS
— Adapted for system crypto provider CommonCrypto

e Automatically check these issues in arbitrary apps

,No non-random IV for CBC encryption”

Problem
e |V constant or predictable > deterministic / stateless encryption scheme
e Susceptible to Chosen-Plaintext Attack

Our "Security RUIEM CCCryptorStatus CCCryptorCreate (
CCOperation op, /* kXCCEncrypt, etc. */

P Precondltlon Clpher uses CBC mode CCAlgorithm alg, /* kCCAlgorithmDES, etc. */
CCOptions options, /* kCCCptionPKCS7Padding, etc. */
const void tkey, /* raw key material */

size t keyLength,
const void *iv,

o SIlClng Crlterla CCCryptorRef #*cryptorRef):

~

* optional initialization vector */

* RETURNED */

Ny

CCrypt(...,X5,...), CCCryptorCreate(...,X5,...), CCCryptorCreateWithMode(...,X4,...)

e |V should be “random” / generated by cryptographically secure RNG, e.g. using
— CCRandomGenerateBytes() in CommonCrypto or

— SecRandomCopyBytes() in Security library
IAIK T

Grazm

Evaluation

Motivation

e ,Does our framework also perform with real-world applications?“
e ,What are our security rules able to cover?”

e ,Do i0OS developers know how to apply crypto APIs correctly?” :-)

Method & Dataset
e Manual analysis

— 15 open-source apps from Github using CommonCrypto
= Refined framework / security rules where necessary
= Validated execution paths manually using source codes

e Automated analysis
— 634 free applications from official iOS App Store (> 10.000 installations each)
— Only apps where crypto usage seemed obvious, e.g. password managers

Evaluation Results

Framework
Count [%]
Downloaded from iOS App Store 634
No CommonCrypto calls 139 22%
With CommonCrypto calls 495 78%
Binary only for ARMv7 7 1%
Not decompilable 46 9%
Out of memory 25 5%
Analyzable with CommonCrypto calls 417 84%
Security rules Origin of constant secrets
Violated Rule # Applications [%] # Violations
Rule 2: Uses non-random IV 289 69% Constant string used as encryption key 193
Rule 3: Uses constant encryption key 268 64% Constant password for PBKDF2 84
Rule 1: Uses ECB mode 112 27% Hash value of constant string 18
Rule 4: Uses constant salts for PBE 72 17% Secret retrieved from NSUserDefaults 14
Rule 5: Uses < 1,000 iterations (PBE) 49 12% Constant key data 6
Applications with > 1 rule violations 343 82% Applications violating rule 3 268
No rule violation 74 18%
IAIK T

Grazm

Limitations

Framework
e Context- and field-insensitive approach

— Parameter backtracking might also track spurious execution paths
e Ul elements

— E.g. backtracking password input might end at externally defined UlTextField object

Security Rules
e Not aware of custom implementations / 3rd party crypto libs

e Only evaluate what you specify...
— ,Home-brew" encryption keys fly below the radar...
— Passwords padded with NULL bytes / truncated to key length count as ,non-constant” input

IAIK T

Grazm

Conclusion

e Novel approach to tackle automated analysis of iOS applications
— ARMvV8 64-bit decompiler
— Pointer Analysis
— Static Slicing
— Parameter Backtracking

e Case Study on 417 applications using crypto APIs
— Security rules targeting common crypto misuse
— Iteratively refined approach using open-source applications

> 343 /417 (82%) apps violate at least one security rule
Mostly: Use of non-random 1V (69%), constant keys (64%), ECB mode (27%)

o 22.04.2021
— Android Platform Security

e 29.04.2021
— Application Security on Android

