
IAIK

IAIK

Static & Dynamic Analysis
ACN / Mobile Security 2020

Johannes Feichtner
johannes.feichtner@iaik.tugraz.at



IAIK

● Why app analysis?

● Approaches / Techniques

 Reverse Engineering

 Static & Dynamic Program Inspection

● Tools

Outline



IAIK

Problem
● Software that is cheap, correct, secure, efficient, … is a myth!

● Users have to trust (unknown) developers

● Source code usually not published publicly

 How many % of app users could verify it anyway?

What now?
● Minimize number of security threats

 Developers will always make mistakes

 Need for automated security checks

● Software reverse-engineering

Introduction



IAIK



IAIK

Technical objectives
● Fight complexity

 More code = more bugs = more attack vectors

● Secure platform

 Smaller attack surface for apps

 Tighter boundaries for data misuse

● Find out what apps are doing

 Reverse engineering

 How do know what they are doing?

 What is malware?

Introduction



IAIK

Why?
● Curiosity :-)

● Protocol interoperability

 Windows file share support in Linux (Samba)

● API compatibility

 Windows emulation on Linux (Wine)

● Unlocking hardware

 Jailbreaking iPhone, PS4

Reverse Engineering
discovering the technological

principles of a device, object or

system through analysis of its

structure, function and operation

Source: https://goo.gl/UZqNm

https://goo.gl/UZqNm


IAIK

Different Types
● Static Analysis

 Analyze code without running

 Inspecting disassembled or decompiled code

● Dynamic Analysis

 Analyze app behaviour while running

 Network traffic, file system access, user input, sensor usage, …

 Mostly done in emulators

● Hybrid Analysis

 Combines both types and often multiple tools

State of Mobile Application Security



IAIK

Build Processes



Static Analysis



IAIK

What?
● All possible execution paths in a program

● Directed graph consisting of

 Nodes = Basic Blocks

 Edges = Possible flow between nodes

Steps to obtain CFG
1. Identify all basic blocks

 Instructions that cannot halt oder branch out

2. Add all edges

 Hard with indirect calls / self-modifying code

Control Flow Graph



IAIK

Control Flow Graph

Source: https://goo.gl/PWPZJo

https://goo.gl/PWPZJo


IAIK

What?
● Get all variable changes at some execution point

● Shows show data changes through a Basic Block

 What input/output is sent to/from a function?

Two types
● Forward Analysis

 „Find all statements that are influenced by some starting point (slicing criterion)“

● Backward Analysis

 „Find all statements that are influencing some target (slicing criterion)“

Data Flow Graph



IAIK

Computing available expressions

Forward Analysis

Source: https://goo.gl/ypEUtt

https://goo.gl/ypEUtt


IAIK

Computing live variables

Backward Analysis

Source: https://goo.gl/ypEUtt

https://goo.gl/ypEUtt


IAIK

What?
● Source = User‘s location, address book, camera

● Sink = Internet, SMS, Bluetooth, …

 Check if there is potential data flow
between source & sink

On Android / iOS
● Sensitive sources reachable via

API methods, e.g. cell location

● Hundreds of possible sources and sinks

Source & Sink Analysis

Source: https://goo.gl/6o2VU2 

https://goo.gl/6o2VU2


IAIK

● Supervised Machine Learning

 Train classifier with small set of
manually defined APIs as sources

 Apply on whole Android source code code to
find other sources and sinks

● Outputs lists of possible sources and sinks

 Does not find leaks by itself

 Can be used as basis for taint tracking

Android - SUSI

Source: https://goo.gl/6o2VU2 

https://goo.gl/6o2VU2


IAIK

What?
● Started as Java optimization framework

 Now used to analyse Java / Android, optimize, visualize

Features
● Call-graph reconstruction

 Calling relationships between subroutines

● Points-to analysis

 Which pointers or heap references can point to which variables / storage locations

● Def-use chains

 Forward Analysis

● Data flow analysis

Android – Soot



Dynamic Analysis



IAIK

What?
● Analysis of properties of running program

● Only parts of programs that are actually executed

 No code snippets

 Usually run in sandbox / emulator

● Black-box testing

Purpose
● Run-time error detection

● Test program behaviour with user interactions

● Check for malicious / strange actions

Workflow



IAIK

On Android / iOS
Network traffic, IPC, Permission usage, Accessed resources, Sensor data

Definable
● Environment

 Virtual Machine / Emulator: Easier to monitor and reset

 Physical device: Real sensor data, WiFi networks, etc.

● Logging

 Create protocol while running

● Interaction

 Simulate user input

● Execution time

Workflow



IAIK

● Dynamic Taint Analysis and Method hooking

● Needs modified Android version

 Patches Dalvik and core system

Analyzes
● Incoming / outgoing traffic

● File read, write operations

● Listing broadcast receivers

● Sent SMS and phone calls

● Performed cryptographic
operations

Android - Droidbox



IAIK

Principle
1. Inject custom logic into process

2. Intercept function calls

3. Stalk process

 Code tracing

 Avoid anti-debugger products

Features
● Attaching to process

● Hooking & calling functions

● Modifying function arguments

● Inspecting & modifying memory

Android / iOS - Frida

Source: https://goo.gl/gjWGuZ

https://goo.gl/gjWGuZ


IAIK

● 04.06.2020

 Mobile Network Security

● 18.06.2020

 Assignment Presentations

Outlook


