IAIK Ty

Static & Dynamic Analysis

ACN / Mobile Security 2020

Johannes Feichtner
johannes.feichtner@iaik.tugraz.at

Outline

e Why app analysis?

e Approaches / Techniques
— Reverse Engineering
— Static & Dynamic Program Inspection

e Tools

IAIK T

Grazm

Introduction

Problem

e Software that is cheap, correct, secure, efficient, ... is a myth!
e Users have to trust (unknown) developers

e Source code usually not published publicly
— How many % of app users could verify it anyway?

What now?

e Minimize number of security threats
— Developers will always make mistakes
— Need for automated security checks

e Software reverse-engineering

”*'T‘_‘
.y

CHALLENGE 1: Broader mobile attack surface

THE DEVICE

BROWSER PHONE/SMS
* Phishing * Baseband attacks

* Framing * SMS phishing

* Clickjacking

* Man-in-the-Middle
« Buffer overflow
= Data caching

SY STEM

No/Weak passcode
* Android rooting/iOS jailbreak
* OS data caching
*» Passwords & data accessible
« Carrier-loaded software
* No/Weak encryption
* User-initiated code
* Confused deputy attack
» TEE/Secure Enclave Processor
« Side channel leak
* Multimedia/file format parsers
» Kernel driver vulnerabilities
* Resource DoS
* GPS spoofing
* Device lockout

rJ' UASP

lJ; en Web H;);:h: ation
security Project

AP PS

Sensitive data storage
* No/Weak encryption
* Improper SSL validation
= Configuration manipulation
* Dynamic runtime injection
* Unintended permissions
= Escalated privileges
« Ul overlay/pin stealing
* Third-party code
* Intent hijacking
« Zip directory traversal
* Clipboard data
* URL schemes
* GPS spoofing
* Weak/No Local authentication
* Integrity/tampering/repacking
= Side channel attacks
* App signing key unprotected
* App transport security
= XML serialization
* JSON-RPC
« SQLite database

/\ MALWARE

THE NETWORK

* Wi-Fi (no/weak encryption)
* Rogue access point

* Packet sniffing

* Man-in-the-middle

» Session hijacking

* DNS poisoning

« SSL Strip

« Fake SSL certificate

* Baseband

* Wifi (chip/firmware attack)
« BGP hijacking

« |[MSIl-catcher

. LTE ™
* HTTP Proxies o
* VPNs O

CLOUD / DATA CENTER

WEB SERVER

« Platform vulnerabilities

« Server misconfiguration

* Cross-site scripting

* Cross-site request forgery
* Weak input validation

* Cross origin resource sharing
* Brute force attacks

« Side channel attacks

* Hypervisor attack

* VPN

DATABASE

= SQL injection

* Privilege escalation

« Data dumping

* OS command execution

Introduction

Technical objectives
e Fight complexity
— More code = more bugs = more attack vectors

e Secure platform
— Smaller attack surface for apps
— Tighter boundaries for data misuse

e Find out what apps are doing
— Reverse engineering
— How do know what they are doing?
— What is malware?

Reverse Engineering

discovering the technological
principles of a device, object or
system through analysis of its
structure, function and operation

WhY? Source: https://goo.gl/UZgNm
e Curiosity =)
e Protocol interoperability

— Windows file share support in Linux (Samba)
API| compatibility

— Windows emulation on Linux (Wine)
Unlocking hardware

— Jailbreaking iPhone, PS4

IAIK T

Grazm

https://goo.gl/UZqNm

State of Mobile Application Security

Different Types

e Static Analysis
— Analyze code without running
— Inspecting disassembled or decompiled code

e Dynamic Analysis
— Analyze app behaviour while running
= Network traffic, file system access, user input, sensor usage, ...
— Mostly done in emulators

e Hybrid Analysis
— Combines both types and often multiple tools

Build Processes

Application Module Dependencies

APK

Packager

Source Code

e

Frontend
(Clang)

Code _ Semantic
Generation Analysis

LLVM IR

_ . Asm
Optimization S sy

Backend ———
(LLVM) v

Object Code

Linker Assembler

Executable File

IAIK T

Grazm

Static Analysis

Control Flow Graph

What?

e All possible execution paths in a program
e Directed graph consisting of

— Nodes = Basic Blocks

— Edges = Possible flow between nodes

Steps to obtain CFG
1. Identify all basic blocks

— Instructions that cannot halt oder branch out
2. Add all edges

— Hard with indirect calls / self-modifying code

Control Flow Graph

Program

X =2z-2;
y = 2%z,
if (c) {
X = X+1;
y =y+1;
y
else {
X = Xx-1;
y =y-1;
}

Z = X+Y;

Control Flow Graph

X = 2z-2;
y = 2%z
if (C)

X

X = X-1;
Y = y-1;

~N 7

B, |z = x+y;

Source: https://goo.gl/PWPZJo

https://goo.gl/PWPZJo

Data Flow Graph

What?

e Get all variable changes at some execution point

e Shows show data changes through a Basic Block
— What input/output is sent to/from a function?

Two types
e Forward Analysis
— ,Find all statements that are influenced by some starting point (slicing criterion)*”

e Backward Analysis
— ,Find all statements that are influencing some target (slicing criterion)”

Forward Analysis

Computing available expressions

{a+b}

l X
>
{a+b}
| y @
>
>

{a+b, a*b}
{a+b, a*b}

a
{a+b, a*b} { {a+b}
{a+b, a*b} / ‘l' < {a+b}

{a+b} \/
Source: https://goo.qgl/ypEULtt

https://goo.gl/ypEUtt

Backward Analysis

Computing live variables

X,y,a,b
X,y,a,b
X, y,a b

y,a, b
y,a, b

X =
X, a, b
X, a, b
y = * b;
< X, Y, a
X, Y, a

)
)

y,a, b

X,¥,ab

Source: https://goo.qgl/ypEULtt

https://goo.gl/ypEUtt

Source & Sink Analysis

What?

e Source = User's location, address book, camera 1[roid oncreateO < ,
?Telephnnyﬂanager_tm; GsmCellLocation loc;
. Sink - Internet, SMS, BluetOOth, eoe j ::r:; EEET:;'Zpizi;:I;zzger} getCantext[}.
. . . D getSystemService
- Check if there is potential data flow i o SComtext . TELEPHONY_SERVICE);
between source & Sink - tm.getCellLocation();

8|//source: cell-ID
9lint cellID = loc.getCid();
10| //source: location area code

On AndrOid / iOS 11|int lac = location.getLac();

12| boolean berlin = (lac == 20228 k& celllID
e Sensitive sources reachable via | T o
. 14| String taint = "Berlin: "™ + berlim + " ("
APl methods, e.g. cell location EeellD « vtk lac & s
. . 15 Striﬁlg f =11:.his.rgetFile?Dir(] +
e Hundreds of possible sources and sinks 6l /) aqpmytaintedFile txtt;

17|FileUtils .stringToFile(f, taint);

18| //make file readable to everyone

19/ Runtime . getRuntime () .exec (" chmod 666 "+f);
200}

Source: https://goo.gl/602VU2

IAIK T

Grazm

https://goo.gl/6o2VU2

Android - SUSI

e Supervised Machine Learning
— Train classifier with small set of

manually defined APIs as sources T T
. : Trainin Feature Test i
— Apply on whole Android source code code to | so” || oatanase s i |
. . i ' nput
find other sources and sinks 5 > <3 5
1 Training Matrix Testing Matrix i
i / i Preparation
e Outputs lists of possible sources and sinks /
— Does not find leaks by itself § 1 §
— Can be used as basis for taint tracking N Sosafoetn
--------- Sources 3inks R
Qutput
— 1zt run (classification) ---m 2nd run (categorization)

Source: https://goo.gl/602VU2

IAIK T

Grazm

https://goo.gl/6o2VU2

Android - Soot

What?

e Started as Java optimization framework
— Now used to analyse Java / Android, optimize, visualize

Features
e Call-graph reconstruction

— Calling relationships between subroutines
e Points-to analysis

— Which pointers or heap references can point to which variables / storage locations
e Def-use chains

— Forward Analysis
e Data flow analysis

Dynamic Analysis

Workflow

What?
e Analysis of properties of running program

e Only parts of programs that are actually executed
— No code snippets
— Usually run in sandbox / emulator

e Black-box testing

Purpose

e Run-time error detection

e Test program behaviour with user interactions
e Check for malicious / strange actions

Workflow

On Android / 10S
Network traffic, IPC, Permission usage, Accessed resources, Sensor data

Definable
e Environment
— Virtual Machine / Emulator: Easier to monitor and reset
— Physical device: Real sensor data, WiFi networks, etc.
e Logging
— Create protocol while running
e Interaction
— Simulate user input
e Execution time

Android - Droidbox

e Dynamic Taint Analysis and Method hooking
e Needs modified Android version
— Patches Dalvik and core system

[22.9400451183] Path: /data/data/droidbox.tests/files/myfilename.txt A

Data: Write a line
[24.2107310295] Path: /data/data/droidbox.tests/files/myfilename.txt
Analyzes
Data:
. . . [25.997330904] Path: /data/data/droidbox.tests/files/output.txt
e Incoming / outgoing traffic Data: nll | |
[26.781430006] Path: /data/data/droidbox.tests/files/output.txt
. . . Data:
e File read, write operations [Write operations]
l_. . t) (j . [21.3330090046] Path: /data/data/droidbox.tests/files/myfilename.txt A
Data: Write a line
¢ IStIng roa CaSt recelvers [21.3614990711] Path: /data/data/droidbox.tests/files/output.txt
Data: null
e Sent SMS and phone calls [Crypto APT activities]
. [26.8029410839] Key:{0, 42, 2, 54, 4, 45, 6, 7, 65, 9, 54, 11, 12, 13, 60, 15} Algorithm: AE
[26.811686039] Operation:{encryption} Algorithm: AES
e Performed cryptographic il D

. [26.818600893] Key:{0, 42, 2, 54, 4, 45, 6, 7, 65, 9, 54, 11, 12, 13, 60, 15} Algorithm: AES
(@) perat I0ONS [26.8250999451] Operation: {decryption} Algorithm: AES
Data: {357242043237517}
[26.8305909634] Key:{0, 42, 2, 54, 4, 45, 6, 8} Algorithm: DES
[26.8399989605] Operation: {encryption} Algorithm: DES
Data: {357242043237517}
[26.8453080654] Key:{0, 42, 2, 54, 4, 45, 6, 8} Algorithm: DES
[26.853967905] Operation:{decryption} Algorithm: DES

Android / 10S - Frida

Principle
1. Inject custom logic into process
2. Intercept function calls

3. Stalk process
— Code tracing
— Avoid anti-debugger products

Features

e Attaching to process

e Hooking & calling functions

e Modifying function arguments
e Inspecting & modifying memory

——

Your tool | | Target app
[Brript i i your-script.js
| object | |
F 3
i i frida-agent
i i Shared linrary Injacied by frad-cars
frida-node \=ae
J3ESi & CH+
l . qumis
4' ! p2p DBuUS across : C+ (V)
' platform-specific transport | | +
frida-core i i
(C AP, statically linked) l D i frida-qum
I i Caazm
Vala & C ! i

BHdInectional exchange of JSON messages.
E.g. your-soript 5 calls send[1234), which ransmis:
{"Wpe “send”, "payiad™ 1234 }
Uninandled excepiion fransmis:

Source: https://goo.gl/giWGuZ [ypeemor,

https://goo.gl/gjWGuZ

e 04.06.2020
— Mobile Network Security

e 18.06.2020
— Assignment Presentations

