AIK gfaTU

10S Platform Security

ACN / Mobile Security 2020

Johannes Feichtner
johannes.feichtner@iaik.tugraz.at

Outline

e Low-level System Security

e Updates

e Encryption Systems

e Key Management & Passcodes

e Backup

AR =

MOTHERBOARD 5 Joseph Cox

TECHBY VICE

We Built a Database of Over
500 1Phones Cops Have
Tried to Unlock

Mar 112020, 4:46pm

See: https://www.vice.com/en us/article/4ag5yj/unlock-apple-iphone-database-for-police

AOQ 93 (Rev. 11/13) Search and Seizure Warrant (Page 2)

Return

Case No.:

19 M33553

Date and,time

arrant executed:

Copy of warrant and inventory left with:

Inventory made in the presence of :

'o’/&/’ 2009 2:00pm

BPAT Daw Scof

Inventory of the property taken and name of any person(s) seized:

Ll THawe ALL wi-mATiow WA

e AcrEd,

. . I * T » e SUBM ItRED T¢ FL, THe TR
“It is the world we are in today, and so have to deal with it," former Bt)t Howes W “BWL’J O RCFL,
. . . . 1 o AaACT ([OWU -
FBI general counsel Jim Baker said about device encryption. LA® r PATA Brefcl] O

01/29/2019{1:19-sw-05136 USA v. Apple iPhone District of Colorado DEA Drug trafficking |Yes iPhone 7
USA v. Apple Iphone, model A586, Austin Police Department

01/29/2019 | 1:19-mj-00048 Evidence Tag Waestern District of Texas FBI Firearms, Drug t1 Yes iPhone 6
USA v. IPHONE IN A TAN GUCCI FABRIC CASE WITH A RED

01/30/2019|2:19-mj-00043 WHITE AND BLUE SNAKE ON IT District of Maine FBI Drug trafficking |Yes

01/30/2019 | 2:19-mj-00045 USA v. BLACK IPHONE IN A BLACK CASE et al District of Maine DEA Drug trafficking |Yes Two iPhones

01/31/2019| 1:19-sw-00031 USA v. Red iPhone X, Model Product RED Eastern District of California |ATF Drug trafficking, | Yes iPhone X

01/31/2019|1:19-sw-00032 USA v. Black iPhone 7, Model A1778, FCC ID: BCG-E3091A Eastern District of California |ATF Firearms Yes iPhone 7

01/31/2019 | 1:18-mj-00013 USA v. iPhone X Western District of North Carol| FBI Child exploitation] Yes iPhoneX

01/31/2019{1:19-mj-00016 USA v. Apple iPhone 7 Model A1661 District of New Hampshire DEA Drug trafficking iPhone 7 Plus
USA v. Space Gray Apple iPhone 7 Cellular Phone Bearing Model
Number A1660 And Contained In A Blue And Gray OtterBox

02/01/2019|2:19-mj-00280 Brand Case Central District of California Yes iPhone 7
USA v. In the matter of the search of a gold Apple iPhone, Model
A1660, cellular telephone with a cracked screen, and a black
Samsung, Model SMB311V, cellular telephone, MEID

02/04/2019|2:19-sw-03014 #A0000047718857 Western District of Missouri |ATF Drug Trafficking, | Yes iPhone 7

02/05/2019|6:19-cm-00001 USA v. An Apple iPhone 8 Cellular Telephone Western District of Arkansas | Social Security A Embezziement | Yes iPhone 8

https://www.vice.com/en_us/article/4ag5yj/unlock-apple-iphone-database-for-police

Cops Are Confident
IPhone Hackers Have
Found a Workaround to
Apple’s New Security
Feature

“Grayshift has gone to great lengths to future proof their
technology and stated that they have already defeated this

security feature in the beta build.”

By Joseph Cox and Lorenzo Franceschi-Bicchierai

Jun14 2018, 7:28om [Share W Tweet &k Snap

See; https://www.vice.com/en us/article/pavwzv/cops-are-confident-iphone-
hackers-have-found-a-workaround-to-apples-new-security-feature

According to company slides, the device has two strategies to access
data on the phone: “Before First Unlock” or BFU, and “After First Unlock”
or AFU. BFU is a “slow brute force,” meaning it takes 10 minutes per try.
This gives access to “limited data.” That's likely because the BFU strategy
happens when the phone was off when seized. If that's the case, when
turned on, the iPhone has most of its data, including contacts, messages

and other personal data still encrypted.

AFU, on the other hand is a “fast brute force” mode that presumably
kicks in when the phone is locked but was turned on and unlocked at
some point by the owner. In this case, it allows for 300,000 tries and
allows “parallel extraction of pre-unlock data.” If AFU works, the slide
adds, “95% of the user’s data is available instantly” The slides were
shown during a GrayKey presentation at a recent mobile forensics

conference in Myrtle Beach, South Carolina.

https://www.vice.com/en_us/article/pavwzv/cops-are-confident-iphone-hackers-have-found-a-workaround-to-apples-new-security-feature

Apple mitigates but doesn’t fully fix critical
10S Airdrop vulnerability

Proof-of-concept exploit installs malicious app on nearby iPhones.

by Dan Goodin - Sep 18, 2015 7:31pm CEST u

Apple has mitigated a critical iOS vulnerability that allows attackers within Bluetooth range of an
iPhone to install malicious apps using the Airdrop filesharing feature.

Mark Dowd, the security researcher who discovered the bug and privately reported it to Apple, told
Ars that the vulnerability has been mitigated in i0S 9, which Apple released Wednesday. But he went
on to say that the underlying bug still hasn't been fixed. As he demonstrated in the following video,
the bug allows attackers who briefly have physical access to a vulnerable iPhone or who are within
Bluetooth range of it, to install an app that the device will trust without prompting the user with a
warning dialog.

I0S 8.4.1 AirDrop Exploit Demo

Source: http://goo.gl/17wi9Q

What?

Install arbitrary app on remote device
via Bluetooth

How?

e Sign malicious app
with enterprise certificate

e Be in Bluetooth range
e [nstall your tainted app remotely

Why?

Directory traversal flaw
IAIK T

Grazm

http://goo.gl/17wi9Q

1I0S WebView auto dialer bug

What?

Apps can use i0S WebViews to

automatically call attacker-controlled
phone number

How?
e User visits manipulated website
— Includes meta-refresh to phone number

Call this number?

A e JavaScript runs a loop and blocks

your phone to call this number.

terminating the call

Cancel Make Call

(800) 692-7753

Why?
Bug in i0OS WebView component

Source: https://goo.gl/TfKngk IAIK T

Grazm

Cancel Call

https://goo.gl/TfKnqk

10S Security Architecture

Kernel

Data Protection

Class
Hardware and .
Firmware v App Sandbox
Crypto Engine
Software

A

Device Key

Group Key

Apple Root Certificate File System

Source: https://go0.gl/2kI3Qt Al Kﬂ-!r':z'_

https://goo.gl/2kl3Qt

Low-Level
System Security

Secure Boot Chain

Apple Root CA

e ,Chain of Trust”
Each step ensures next step is signed by Apple
= Hierarchy reaches up to App Signing

On chip - cannot be
modified e From LLB to Applications - can be updated

AIKaTU

Secure Boot Chain

Starting with simple boot loader...
e Ensure basic security level

e Prevent tampering of lowest software levels

e Similar (separate) boot process for

— Baseband processor (cellular access)
— Secure Enclave coprocessor

- Error if load / verify next step failed
— Enter DFU (Recovery mode)

— Connect to iTunes and restore factory defaults

10S Downgrades?

Apple prevents them using , System Software Authorization“!
e Signatures alone would enable replay attacks

e Online process
— Device generates nonce (,anti-replay value®)
— Sends unique device ID + nonce to Apple
— Apple generates signature for (OS image + Device ID + nonce)

— Device checks if signature ok, nonce / device ID matches
— If fine: Install software

e Prevent installation of old OS images by revoking old signatures

AIKaTU

10S Updates

100%
o —
g oS 10
E M ios9
= 75%
=
o
L
(%]
5 s0% B ios 4
3 Week from Monday, Mar 18, 2019 !
k= 05 12: BO.4%
E 05 11: 7.8%
g oo :-:_'_" LI 4-1:
5 105 9: 5.0%
| 05 8- 0.7%
: 05 7- 0.9%
00 0.4%
0% 0% 5: 0.6%
- = i :
RS S 1105 4: 0.1%
Date

Source: https://goo.gl/NJFiDQ

https://goo.gl/NJFiDQ

Jailbreak

iOS 13 downloadable since 19.9.2019

e Disable the ,Chain of Trust”
— Kernel modifications
— Install of unsigned / custom-signed apps

e Hooking point typically: Low-level bootloader
— Software patchfix possible!

e BootROM exploits
— Hardware problems - deploy new chips
— Checkm8 exploit published on 27.9.2019

axi0mX ~
a @axi0mx
EPIC JAILBREAK: Introducing checkm8 (read

"checkmate"), a permanent unpatchable bootrom
exploit for hundreds of millions of IOS devices.

Most generations of iPhones and iPads are vulnerable:
from iPhone 4S (A5 chip) to iPhone 8 and iPhone X
(A11 chip).

axiOmX/ipwndfu

open-source jailbreaking tool for many i10S devices -
axiOmX/ipwndfu

& github.com

1:15 PM - Sep 27, 2019 - Twitter Web Client

7.3K Retweets 16.4K Likes

B

® } v

axi0mX @axiOmX - Sep 27, 2019 e
Replying to @axi0mX

1/ The last i0S device with a public bootrom exploit until today was iPhone
4, which was released in 2010. This is possibly the biggest news in 105
Jailbreak community in years. | am releasing my exploit for free for the
benefit of 105 jailbreak and security research community.

) 38 Tl 384) 25K T

axi0mX @axiOmx - Sep 27, 2019 e
2/ What | am releasing today is not a full jailbreak with Cydia, just an exploit.

Researchers and developers can use it to dump SecureROM, decrypt keybags
with AES engine, and demote the device to enable JTAG. You still need
additional hardware and software to use JTAG.

g 1 203) 18K T

Secure Enclave

Goals?

e Protect user data by strong cryptographic master key
— Derived from user passcode

e Prevent...

— Offline attack on passcode - derive master key in hardware
— Brute-force attack = hard limit on number of passcode tries

e Hardware keys from master key derivation
never handed out to mutable software

e Integrated support for alternative unlock mechanisms (FacelD, TouchlD, ...)

AIKaTU

Secure Enclave

Overview

e Crypto operations for Data Protection key management
e Maintain integrity of Data Protection even if kernel compromised

How?
D e Dedicated co-processor for Apple A7 & newer
NormalWorld | SecureWorld |
User Mode ' User Mode :
T i T .o Own Boot ROM & software update sequence
Normal World | E Secure World E
(| Privileged Modes | ; Privileged Modes ||

[|] .o Based on ARM TrustZone + modifications
:E Monitor Mode E

= ! e Encrypted memory
AIKaTU

Secure Enclave

e Dedicated AES-256 crypto engine

e Individual for each coprocessor: ‘
— Unique device ID (UID)
— Device group ID (GID) } Fused AES-256 keys
e UID tied to particular device
— Move the chip to another device - File System Encryption unreadable
— Used to derive AES keys for data encryption (KeyChain, files, file metadata)

e GID key
— Common to processor class (e.g. Apple A8), needed for system updates

AIKaTU

Secure Enclave

e Not directly readable by firmware, software, JTAG (or other debuggers)
— Get only encryption / decryption results

Key Generation
e Random Number Generator (CTR_DRBG)

e Entropy from
— Timing variations during boot
— Interrupt timing after boot

Key Erasure
e Address and remove certain blocks on NAND storage
e Triggered with OS option: ,Erase all content and settings”

Touch ID

Fingerprint sensing system - In addition to passcode!
Use to authorize payments (Apple Pay), application access via APIs
5 mismatches possible, then passcode entry required

How does device unlock work?
e Without TouchID
Secure Ke
— Lock: Data Protection keys discarded Encigl_ / Store

— Unlock: User enters passcode
—> keys restored

e With TouchlD

— Lock: Keys wrapped if TouchID key in Secure Enclave

) — Unlock: Fingerprint recognized?
— —> Provide key to unwrap Data Protection keys

Encryption
Systems

Password

Chip integrated in device

Secure | Trust | Ha
Element | Zone

Chip on external token via

NFC, cable etc
rdened

CPU

Other key
(symmetric, asymmetric)

Software

Wrapped AES key

Messages, Files

My device

Mobile Phone
Signature

IAIK T

Grazm

Encryption Systems

e File system encryption
— Alias: ,Full disk encryption®, ,Storage encryption”
— Introduced with iOS 3 and iPhone 3GS
— Based on hardware element

e Data Protection
— Introduced with iOS 4
— Extends File system encryption
— Improved in newer version (new Protection classes, KeyChain features)

Passcode

l

KDF

Data Protection system

Developer's Choice!

Data protection
class keys

B

|

Secure
Enclave Filesystem key
AES key

Remote Wipe

>

Not dependent

on Passcode

File system encryption

Per file, dependent on
Passcode and Secure
Enclave Key

=

DN R

Application 1
Operating | | application 2
System
Application 3
File system

Jailbreak

IAIK T

Grazm

—»| key Ox89B »[EMF key —
UID key

L »| key 0x835 »| Dkey effaceable storage
GPT A
Outline
NAND key [System partition Same as Iast inde bUt
more detailed!
Data partition -

systembag.kb
System |Keybag < cprotect attr

systembag.kb /dev/disk0
Y (NSFileProtectionNone) (fsys)

NSFileProtectionComplete

»| File cprotect attr

class ke
A SALT
TER T File contents NOte
|
Passcode key (NSFileProtectionComplete) key0x9 B, key0X835
N - Static device-
> v specific nonces, e.qg.
P asscode keyOx9B = AES(UID, const)

<> Passcode derivation function

— 5 AESWrap
—» AES

IAIK T

Grazm

File System Encryption

Every Secure Enclave Processor has access to a unique private key = UID

e UID key generated by Secure Enclave itself immediately after fabrication

e Used to derive / protect further user keys

— Needed to encrypt the filesystem, files, file metadata
= User keys are stored on the device but encrypted with the UID key
= PIN / Passcode is not used for filesystem key derivation, only the UID key

What if phone is stolen?

Apply jailbreak to bypass passcode protection, system decrypts the data for you
- Makes sense only for quick remote wiping

AIKaTU

File System Encryption — Remote Wipe

From the iOS Security Guide (Q4 / 2019):

The metadata of all files in the file system is encrypted with a random key, which

is created when i0S is first installed or when the device is wiped by a user. The
file system key is stored in Effaceable Storage. Since it’s stored on the device,

this key is not used to maintain the confidentiality of data; instead, it’s
designed to be quickly erased on demand (by the user, with the “Erase all content

and settings” option, or by a user or administrator issuing a remote wipe command

from a mobile device management (MDM) server, Exchange ActiveSync, or iCloud).
Erasing the key in this manner renders all files cryptographically inaccessible.

- Erase the file system key to avoid further access to any file!

- Remote Wipe does not actually delete the file... .
IAIK

Grazm

Master Key Derivation

Userland Secure Enclave Processor
Passcode —> KDF < T " > Mk; = KDF,(E(UID, Mk;)) — Master Key
Salt . Timed Iterations (100-150ms)

e User keys are wrapped by master key

e Master key derived from
— User passcode, random salt + Key derivation function in Secure Enclave

AIKaTU

User Keybags

Idea

e Manages keys for file and KeyChain protection classes
— Set of keys generated for each system user

e 10 incorrect tries = further attempts blocked

Different policy associated with each keybag key (usage, availability)
— Class A (256-bit AES) > Key only available while device unlocked
— Class B (Curve 25519) - Public key always available, private only while unlocked
— Class C (256-bit AES) > Available after first unlock
— Class D (256-bit AES) - Always available

AIKaTU

Data Protection

Status quo
File system encryption encrypts all file blocks with AES-XTS with 128-bit keys

e Encrypts each file on user partition separately if device locked or powered off

e Encrypted data protected by user's passcode
— Limit speed of bruteforce attacks with custom passcode derivation function

Design
e Data availability

— when unlocked, while locked, after first unlock, always I Unique key for every file!

e Protection class for every single file and KeyChain item
AIKaTU

Data Protection Classes

Represent the policies to determine when data is accessible

File Availability File Data Protection

When unlocked NSFileProtectionComplete

While locked NSFileProtectionCompleteUnlessOpen

After first unlock NSFileProtectionCompleteUntilFirstUserAuthentication
Always NSFileProtectionNone

e ,Always”: File keys protected with (= ,wrapped by"“) Class encryption keys only
- no real protection!

e All others: File keys encrypted with key derived from UID and passcode
- Jailbreak does not reveal the encrypted data
IAIK T

Grazm

Data Protection Classes

e NSFileProtectionComplete

— Keys removed from memory when device locked
- files not available in locked state

e NSFileProtectionCompleteUnlessOpen
— Problem: Some files need to be written when locked, e.g. incoming mails
— Solution: Use ephemeral ECC keys with derived symmetric keys
— Private key not available when locked!

e NSFileProtectionCompleteUntilFirstUserAuthentication
— Key available after first unlock (almost like NSFileProtectionComplete)

AIKaTU

Data Protection — How 1t works

New file is created...

e Data Protection creates new 256-bit per file key

e Hardware AES engine uses key to encrypt file content

e Per file key wrapped with one of several class keys AES Key Wrap

e Resulting wrapped key stored in file metadata Algorithm (RFC 3394)

File is opened...

e Metadata decrypted with file system key
— Result: Wrapped file key and class used for protection Note: Wrapped file key
e Unwrap file key with according class key handling always in SE!

e Suppy file and key to AES engine & read plaintext result Never enters the CPU

Data Protection

Change file class? Just rewrap file key!
Change passcode? Just rewrap class key!

File System Key

File Metadata
File Key

Hardware Key

o

Class Key

o

File Contents

Passcode Key

Hint: To keep it simple... read from right to left ;)

Data Protection — Where is the problem?

e Every new file gets assigned a protection class by an app (!)
— Handled by the developer!
— User cannot know which apps encrypt their data and which do not

e Consider the scenario
— Getting email with PDF attachment (mail app uses data protection)
— Opening the mail in a PDF reader (not using data protection)

- Application Analysis
e Dynamic approach: Monitor live file access using jailbroken device
e Static approach: Look for file API calls + parameters in binary dump

Data Protection — In Practice

let fileManager = FileManager.default
fileManager.createDirectory(atPath: folder.path, withIntermediateDirectories: true,
attributes: [FileAttributeKey.protectionKey: FileProtectionType.complete])

fileManager.createFile(atPath: databaseKeyURL.path, contents: nil,
attributes: [FileAttributeKey.protectionKey: FileProtectionType.complete])

let data = Data(count: count)
data.write(to: fullCachePath,
options: [.atomic, .completeFileProtection])

Since i0S 7 default protection class: ,Protected until first user authentication”
IAIK T

Grazm

Key Management
& Passcodes

10S KeyChain

What for?
Mobile OS needs to handle passwords, login tokens, PINs, certificates, etc

How does it look like?

e 1 SQLite database stored on file system

e KeyChain entries can be shared between apps from same developer (app group)
e Access from apps using ordinary API

e Protection classes similar to those for files

Side note:
Uninstalling an app does not remove KeyChain data!

10S KeyChain Items

Every entry has...
e Access control list (ACL) Security API

_ ibilitv: iS | ? -
ApchS|b|I|ty. Whgn IS item readable? EeAHIIW
Similar to protection class

— Authentication: What authentication is needed for access?
e Key wrapped with protection class key,
e Protection class affiliation
e Attributes describing the entry see: httpss/go0.arirvrox Accessability
e Version number

Attributes

Security API

Authentication

- Every aspect is encrypted (AES-128 GCM)!
E.g. also usernames (= attribute), not only passwords!

Source: Xamarin
IAIKﬂ TV
Grazm

https://goo.gl/iHYHOX

10S KeyChain: App Access Workflow

Application

a
~—

. , Keychain
=3
~—

AR
s,

Security API

Encrypted
ltem TouchlD
Use Secltem API to Add, Fingerprints
Rename and Update]
Keychain Items (both Searches the Keychain
Mac and iOS devices) for the Encrypted ltem

Gets decrypted in
the Secure Enclave

Source: Xamarin |A | Kﬂ-!u
razm

KeyChain Protection Classes

Represent the policies to determine when keys are accessible

Key Availability

Key Data Protection

When unlocked
While locked
After first unlock
Always

Passcode-enabled

kSecAttrAccessibleWhenUnlocked

N/A
kSecAttrAccessibleAfterFirstUnlock
kSecAttrAccessibleAlways

kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly

IAIK T

Grazm

Key Protection Classes

kSecAttrAccessiblelWhenUnlocked
— Class key wiped when device is locked

kSecAttrAccessibleAfterFirstUnlock
— Class key remains in memory after first unlock

kSecAttrAccessibleAlways
— Class key remain in memory

kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly
— Class key wiped when device is locked but only if passcode is set
— Never stored to backups or escrow keybags

-107 AT&T =

Passcodes

Why is it useful?
Enables file data protection!

What happens inside?

e User unlocks device with passcode
e Key is derived using PBKDF2

e Used to unwrap (decrypt) class keys

Emergency

Can we attack it? :-)

Yes, but iteration count for KDF calibrated with device 4 digits, 6 digits,

Goal: One derivation should take ~80ms (newer: 100-150ms) arbitrary-length
alphanumeric password

Passcode Attacking

Apple A7/A8 processor introduced delay
— KDF performed in Secure Enclave
— 5 second-delay added between unlock attempts!

e 4 digit pincode could be brute-forced in 14 hours
e Unlimited PIN attempts due to bug (CVE-2014-4451) ... huws//avoainkdam

Now

e Additional delay introduced, e.g. 5 tries - Tmin delay, 6 tries - 5Smin, ...
e |f user-enabled, system wipe after 10 incorrect tries

AIKaTU

https://goo.gl/lnKd3M

Backups

Local or Remote Backup

e LocaliTunes backups (WiFi or USB cable)
— Encrypted (AES-256 CBC)
— Plain

e iCloud Service

— Sync data to iCloud for distribution
on your iOS devices

Keybags on 10S
Keys for file and KeyChain Protection classes are managed in ,Keybags"“

e System Keybag

— Contains all wrapped keys for protection classes
— Ex.: Passcode entered ->key for NSFileProtectionComplete is loaded

e Backup Keybag
— Transfered (export) system keybag in backups

— Backup encrypted: Key derived from iTunes password (10 Mio. iterations PBKDF2)

— Backup plain: KeyChain still protected by UID-derived key
—> To migrate backup to new device: encrypt the backup!

AIKaTU

Keybags on 10S
e Escrow Keybag

— Used for iTunes syncing and MDM

— Allows iTunes to backup and sync without user passcode!
= Each device generates iCloud KeyChain synchronization key pair
= User explicitly approves new devices joining the ,sync circle”

— Needed for every OTA update (user is prompted for passcode)

— Together with accepting provisioning profiles
- weakest point in OS!

ICloud Backup

e Encrypted using backup (,escrow") key
— Randomly generated key

— Wrapped using a key that is derived using a KDF ®
from an ,iCloud Security Code” (iCSC) IC ou
- iCSC = User passcode

e Backup encrypted with escrow key
— Sent to Apple in wrapped form

— In case of device loss or new device
- User can recover secrets with iCloud password and iCSC

e Main problem in practice: iCloud account security

iCIOUd BaCkup ,Who watches the

watchers?” :-)
Other weaknesses?

iCloud backend could brute-force iCSC to access escrow key!

Apple's solution: Cloud Key Vault
e Enforce policy over escrow key
— Want hard limit on escrow recovery attempts under adversarial cloud
— What if escrow key unwrapping only happens in Hardware Security Modules?

e Cloud Key Vault = HSM running custom secure code

— Key vault runs own certificate authority
= Private key never leaves HSM

— Each iOS device hardcodes key vault CA cert

e 23.04.2020
— i0S Application Security

e 30.04.2020
— Android Platform Security

