
IAIK

IAIK

iOS Platform Security
ACN / Mobile Security 2020

Johannes Feichtner
johannes.feichtner@iaik.tugraz.at



IAIK

● Low-level System Security

● Updates

● Encryption Systems

● Key Management & Passcodes

● Backup

Outline



IAIK

See: https://www.vice.com/en_us/article/4ag5yj/unlock-apple-iphone-database-for-police

https://www.vice.com/en_us/article/4ag5yj/unlock-apple-iphone-database-for-police


IAIK

See: https://www.vice.com/en_us/article/pavwzv/cops-are-confident-iphone-

hackers-have-found-a-workaround-to-apples-new-security-feature

https://www.vice.com/en_us/article/pavwzv/cops-are-confident-iphone-hackers-have-found-a-workaround-to-apples-new-security-feature


IAIK

What?
Install arbitrary app on remote device
via Bluetooth

How?
● Sign malicious app

with enterprise certificate

● Be in Bluetooth range

● Install your tainted app remotely

Why?
Directory traversal flaw

Source: http://goo.gl/17wi9Q

http://goo.gl/17wi9Q


IAIK

What?
Apps can use iOS WebViews to
automatically call attacker-controlled
phone number

How?
● User visits manipulated website

 Includes meta-refresh to phone number

● JavaScript runs a loop and blocks
terminating the call

Why?
Bug in iOS WebView component

Source: https://goo.gl/TfKnqk

iOS WebView auto dialer bug

https://goo.gl/TfKnqk


IAIK

iOS Security Architecture

Source: https://goo.gl/2kl3Qt

https://goo.gl/2kl3Qt


Low-Level
System Security



IAIK

Secure Boot Chain

On chip – cannot be
modified

Boot ROM
Low- Level 

Bootloader (LLB)
iBoot

Device Firmware 
Upgrade (DFU)

Apple Root CA

Kernel
System 

Software
Applications

● „Chain of Trust“
Each step ensures next step is signed by Apple
 Hierarchy reaches up to App Signing

● From LLB to Applications  can be updated



IAIK

Starting with simple boot loader…

● Ensure basic security level

● Prevent tampering of lowest software levels

● Similar (separate) boot process for

 Baseband processor (cellular access)

 Secure Enclave coprocessor

 Error if load / verify next step failed

 Enter DFU (Recovery mode)

 Connect to iTunes and restore factory defaults

Secure Boot Chain



IAIK

Apple prevents them using „System Software Authorization“!

● Signatures alone would enable replay attacks

● Online process

 Device generates nonce („anti-replay value“)
 Sends unique device ID + nonce to Apple 

 Apple generates signature for (OS image + Device ID + nonce)

 Device checks if signature ok, nonce / device ID matches

 If fine: Install software

● Prevent installation of old OS images by revoking old signatures

iOS Downgrades?



IAIK

iOS Updates

Source: https://goo.gl/NJFiDQ

https://goo.gl/NJFiDQ


IAIK

iOS 13 downloadable since 19.9.2019

● Disable the „Chain of Trust“

 Kernel modifications

 Install of unsigned / custom-signed apps

● Hooking point typically: Low-level bootloader

 Software patchfix possible!

● BootROM exploits

 Hardware problems  deploy new chips

 Checkm8 exploit published on 27.9.2019

Jailbreak



IAIK

Goals?
● Protect user data by strong cryptographic master key

 Derived from user passcode

● Prevent…

 Offline attack on passcode  derive master key in hardware

 Brute-force attack  hard limit on number of passcode tries

● Hardware keys from master key derivation
never handed out to mutable software

● Integrated support for alternative unlock mechanisms (FaceID, TouchID, …)

Secure Enclave



IAIK

Overview
● Crypto operations for Data Protection key management

● Maintain integrity of Data Protection even if kernel compromised

Secure Enclave

How?
● Dedicated co-processor for Apple A7 & newer

● Own Boot ROM & software update sequence

● Based on ARM TrustZone + modifications

● Encrypted memory



IAIK

● Dedicated AES-256 crypto engine

● Individual for each coprocessor:

 Unique device ID (UID)

 Device group ID (GID)

● UID tied to particular device

 Move the chip to another device  File System Encryption unreadable

 Used to derive AES keys for data encryption (KeyChain, files, file metadata)

● GID key

 Common to processor class (e.g. Apple A8), needed for system updates

Secure Enclave

Fused AES-256 keys



IAIK

● Not directly readable by firmware, software, JTAG (or other debuggers)

 Get only encryption / decryption results

Key Generation
● Random Number Generator (CTR_DRBG)

● Entropy from

 Timing variations during boot

 Interrupt timing after boot

Key Erasure
● Address and remove certain blocks on NAND storage

● Triggered with OS option: „Erase all content and settings“

Secure Enclave



IAIK

Fingerprint sensing system  in addition to passcode!
Use to authorize payments (Apple Pay), application access via APIs

5 mismatches possible, then passcode entry required

Touch ID

How does device unlock work?
● Without TouchID

 Lock: Data Protection keys discarded

 Unlock: User enters passcode
 keys restored

● With TouchID

 Lock: Keys wrapped if TouchID key in Secure Enclave

 Unlock: Fingerprint recognized?
 Provide key to unwrap Data Protection keys



Encryption 
Systems



IAIK

Other key
(symmetric, asymmetric)

Wrapped AES key

Messages, Files

My device

Chip integrated in device

Secure 
Element

Trust 
Zone

Hardened 
CPU

Password

KDF

Software

Chip on external token via 
NFC, cable etc

SIM 
Card

Secure 
SD Card

Smart 
card

Operating System store

Software Hardware

Cloud

HSM
Mobile Phone 

Signature



IAIK

● File system encryption

 Alias: „Full disk encryption“, „Storage encryption“

 Introduced with iOS 3 and iPhone 3GS

 Based on hardware element

● Data Protection

 Introduced with iOS 4

 Extends File system encryption

 Improved in newer version (new Protection classes, KeyChain features)

Encryption Systems



IAIK
File system encryption

Data Protection system

File 1

File 3
Operating 

System

Passcode

KDF

Secure 
Enclave 
AES key

Remote Wipe

Filesystem key

Data protection 
class keys

File system

Application 1

Application 2

Application 3
File 4 File 5

Jailbreak

File 2

Not dependent 
on Passcode

Per file, dependent on 
Passcode and Secure 

Enclave Key

Developer s Choice!



IAIK

Outline
Same as last slide but 

more detailed!

Note 
key0x9B, key0x835
 Static device-

specific nonces, e.g.
key0x9B = AES(UID, const)



IAIK

Every Secure Enclave Processor has access to a unique private key = UID

● UID key generated by Secure Enclave itself immediately after fabrication

● Used to derive / protect further user keys

 Needed to encrypt the filesystem, files, file metadata

User keys are stored on the device but encrypted with the UID key

PIN / Passcode is not used for filesystem key derivation, only the UID key

What if phone is stolen?
Apply jailbreak to bypass passcode protection, system decrypts the data for you

 Makes sense only for quick remote wiping

File System Encryption



IAIK

File System Encryption – Remote Wipe

From the iOS Security Guide (Q4 / 2019):

 Erase the file system key to avoid further access to any file!

 Remote Wipe does not actually delete the file…

The metadata of all files in the file system is encrypted with a random key, which 

is created when iOS is first installed or when the device is wiped by a user. The 

file system key is stored in Effaceable Storage. Since it’s stored on the device, 

this key is not used to maintain the confidentiality of data; instead, it’s 

designed to be quickly erased on demand (by the user, with the “Erase all content 

and settings” option, or by a user or administrator issuing a remote wipe command 

from a mobile device management (MDM) server, Exchange ActiveSync, or iCloud). 

Erasing the key in this manner renders all files cryptographically inaccessible. 



IAIK

● User keys are wrapped by master key

● Master key derived from

 User passcode, random salt + Key derivation function in Secure Enclave

Master Key Derivation

KDF Mki = KDF2(E(UID, Mki-1))Passcode

Userland

Salt Timed Iterations (100-150ms)

Secure Enclave Processor

Master Key



IAIK

Idea
● Manages keys for file and KeyChain protection classes

 Set of keys generated for each system user

● 10 incorrect tries  further attempts blocked

Different policy associated with each keybag key (usage, availability)

 Class A (256-bit AES)  Key only available while device unlocked

 Class B (Curve 25519)  Public key always available, private only while unlocked

 Class C (256-bit AES)  Available after first unlock

 Class D (256-bit AES)  Always available

User Keybags



IAIK

Status quo
File system encryption encrypts all file blocks with AES-XTS with 128-bit keys

Data protection = Additional encryption layer
● Encrypts each file on user partition separately if device locked or powered off

● Encrypted data protected by user‘s passcode

 Limit speed of bruteforce attacks with custom passcode derivation function

Design
● Data availability

 when unlocked, while locked, after first unlock, always

● Protection class for every single file and KeyChain item

Data Protection

Unique key for every file!



IAIK

Represent the policies to determine when data is accessible

● „Always“: File keys protected with (= „wrapped by“) Class encryption keys only
 no real protection!

● All others: File keys encrypted with key derived from UID and passcode
 Jailbreak does not reveal the encrypted data

Data Protection Classes

File Availability File Data Protection

When unlocked NSFileProtectionComplete

While locked NSFileProtectionCompleteUnlessOpen

After first unlock NSFileProtectionCompleteUntilFirstUserAuthentication

Always NSFileProtectionNone



IAIK

● NSFileProtectionComplete

 Keys removed from memory when device locked
 files not available in locked state

● NSFileProtectionCompleteUnlessOpen

 Problem: Some files need to be written when locked, e.g. incoming mails

 Solution: Use ephemeral ECC keys with derived symmetric keys

 Private key not available when locked!

● NSFileProtectionCompleteUntilFirstUserAuthentication

 Key available after first unlock (almost like NSFileProtectionComplete)

Data Protection Classes



IAIK

New file is created…
● Data Protection creates new 256-bit per file key

● Hardware AES engine uses key to encrypt file content

● Per file key wrapped with one of several class keys

● Resulting wrapped key stored in file metadata

File is opened…
● Metadata decrypted with file system key

 Result: Wrapped file key and class used for protection

● Unwrap file key with according class key

● Suppy file and key to AES engine & read plaintext result

Data Protection – How it works

AES Key Wrap
Algorithm (RFC 3394)

Note: Wrapped file key
handling always in SE!
Never enters the CPU



IAIK

Hint: To keep it simple… read from right to left ;)

Data Protection
Change file class? Just rewrap file key!
Change passcode? Just rewrap class key!



IAIK

● Every new file gets assigned a protection class by an app (!)

 Handled by the developer!

 User cannot know which apps encrypt their data and which do not

● Consider the scenario

 Getting email with PDF attachment (mail app uses data protection)

 Opening the mail in a PDF reader (not using data protection)

How to find out?  Application Analysis

● Dynamic approach: Monitor live file access using jailbroken device

● Static approach: Look for file API calls + parameters in binary dump

Data Protection – Where is the problem?



IAIK

Since iOS 7 default protection class: „Protected until first user authentication“

Data Protection – In Practice
let fileManager = FileManager.default

fileManager.createDirectory(atPath: folder.path, withIntermediateDirectories: true, 

attributes: [FileAttributeKey.protectionKey: FileProtectionType.complete])

…

fileManager.createFile(atPath: databaseKeyURL.path, contents: nil, 

attributes: [FileAttributeKey.protectionKey: FileProtectionType.complete])

let data = Data(count: count)

data.write(to: fullCachePath,

options: [.atomic, .completeFileProtection])



Key Management 
& Passcodes



IAIK

What for? 
Mobile OS needs to handle passwords, login tokens, PINs, certificates, etc

How does it look like?
● 1 SQLite database stored on file system

● KeyChain entries can be shared between apps from same developer (app group)
● Access from apps using ordinary API

● Protection classes similar to those for files

Side note: 
Uninstalling an app does not remove KeyChain data!

iOS KeyChain



IAIK

Every entry has…

● Access control list (ACL)

 Accessibility: When is item readable? 
Similar to protection class

 Authentication: What authentication is needed for access?

● Key wrapped with protection class key, 

● Protection class affiliation

● Attributes describing the entry

● Version number

 Every aspect is encrypted (AES-128 GCM)! 
E.g. also usernames (= attribute), not only passwords!

iOS KeyChain Items

Source: Xamarin

 Policy

See: https://goo.gl/iHYHOX

https://goo.gl/iHYHOX


IAIK

iOS KeyChain: App Access Workflow

Source: Xamarin



IAIK

Represent the policies to determine when keys are accessible

KeyChain Protection Classes

Key Availability Key Data Protection

When unlocked kSecAttrAccessibleWhenUnlocked

While locked N/A

After first unlock kSecAttrAccessibleAfterFirstUnlock

Always kSecAttrAccessibleAlways

Passcode-enabled kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly



IAIK

● kSecAttrAccessibleWhenUnlocked

 Class key wiped when device is locked

● kSecAttrAccessibleAfterFirstUnlock

 Class key remains in memory after first unlock

● kSecAttrAccessibleAlways

 Class key remain in memory

● kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly

 Class key wiped when device is locked but only if passcode is set

 Never stored to backups or escrow keybags

Key Protection Classes



IAIK

Why is it useful?
Enables file data protection!

What happens inside?
● User unlocks device with passcode

● Key is derived using PBKDF2

● Used to unwrap (decrypt) class keys

Can we attack it? :-)

Yes, but iteration count for KDF calibrated with device
Goal: One derivation should take ~80ms (newer: 100-150ms)

Passcodes

4 digits, 6 digits, 
arbitrary-length

alphanumeric password



IAIK

Apple A7/A8 processor introduced delay

 KDF performed in Secure Enclave

 5 second-delay added between unlock attempts!

Until iOS 9
● 4 digit pincode could be brute-forced in 14 hours

● Unlimited PIN attempts due to bug (CVE-2014-4451)

Now
● Additional delay introduced, e.g. 5 tries  1min delay, 6 tries  5min, …

● If user-enabled, system wipe after 10 incorrect tries

Passcode Attacking

See: https://goo.gl/lnKd3M

https://goo.gl/lnKd3M


Backups



IAIK

● Local iTunes backups (WiFi or USB cable)

 Encrypted (AES-256 CBC)

 Plain

● iCloud Service

 Sync data to iCloud for distribution
on your iOS devices

Local or Remote Backup



IAIK

Keys for file and KeyChain Protection classes are managed in „Keybags“

● System Keybag

 Contains all wrapped keys for protection classes

 Ex.: Passcode entered key for NSFileProtectionComplete is loaded

● Backup Keybag

 Transfered (export) system keybag in backups

 Backup encrypted: Key derived from iTunes password (10 Mio. iterations PBKDF2)

 Backup plain: KeyChain still protected by UID-derived key
 To migrate backup to new device: encrypt the backup!

Keybags on iOS



IAIK

● Escrow Keybag

 Used for iTunes syncing and MDM

 Allows iTunes to backup and sync without user passcode!

Each device generates iCloud KeyChain synchronization key pair

User explicitly approves new devices joining the „sync circle“

 Needed for every OTA update (user is prompted for passcode)

 Together with accepting provisioning profiles
 weakest point in OS!

Keybags on iOS



IAIK

● Encrypted using backup („escrow“) key

 Randomly generated key

 Wrapped using a key that is derived using a KDF
from an „iCloud Security Code“ (iCSC)
 iCSC = User passcode

● Backup encrypted with escrow key

 Sent to Apple in wrapped form

 In case of device loss or new device
 User can recover secrets with iCloud password and iCSC

● Main problem in practice: iCloud account security

iCloud Backup



IAIK

Other weaknesses?
iCloud backend could brute-force iCSC to access escrow key!

Apple‘s solution: Cloud Key Vault
● Enforce policy over escrow key

 Want hard limit on escrow recovery attempts under adversarial cloud

 What if escrow key unwrapping only happens in Hardware Security Modules?

● Cloud Key Vault = HSM running custom secure code

 Key vault runs own certificate authority

Private key never leaves HSM

 Each iOS device hardcodes key vault CA cert

iCloud Backup „Who watches the
watchers?“ :-)



IAIK

● 23.04.2020

 iOS Application Security

● 30.04.2020

 Android Platform Security

Outlook


