
Secret Sharing

Daniel Kales

Graz University of Technology

1 Introduction

Trusting a single entity with an important piece of information is some-
thing that carries a large amount of potential risks and often requires a
large amount of trust placed in this entity. Historically, one can think of
examples in the context of military operations, where a relatively extreme
example comes in the form of nuclear launch codes. Other examples can
be found in companies where, for example, the president has the sole
power to authorize big business decisions such as spending large amounts
of money. Due to the critical nature of some of these examples, one could
look for a different solution and arrive at the following question.

Could we share a piece of information, such as authorization codes,
between several parties, so that the individual parties learn nothing
about it, but can work together to recover this information?

In the following, we will present an approach known as secret sharing,
and different instantiations of it. Using this approach, we can not only
answer the aforementioned question in the positive, but can even imple-
ment complex access structures where only a subset of the individual
people is required to recover the information.

2 Secret Sharing Schemes

We can think of a secret sharing scheme as a tuple of the following al-
gorithms: (Gen,Share,Reconstruct). The general definition of these algo-
rithms is given in Scheme 1.

We can see one important feature of a secret sharing scheme in this
definition, the concept of an access threshold t. In general, we split a
secret into n shares, but for some use-cases we might want to be able
to recover the secret x by combining only t (with t ≤ n) shares. Such
schemes are also called t-out-of-n secret sharing schemes.

In the following, we will look at two different, popular schemes for the
specific cases of t = n and t ≤ n.

Gen() : Set up and return public parameters pp.

Share(pp, x, n, t) : Share the secret x between n players, returning a set of n shares
{x1, . . . , xn}. Later, t of these shares can be used to reconstruct the secret x by
calling Reconstruct.

Reconstruct(pp, {x1, . . . , xt}) : Recover the secret x from the t shares x1, . . . , xt and
return x.

Scheme 1: Generalized Interface of a Secret Sharing Scheme.

The trivial case of t = 1. One can also think of a secret sharing scheme
where t = 1, i.e., only one share suffices to recover the secret information
x. However, for this case it simply suffices to give the original secret to
each of the n parties.

2.1 Notation

In the following, we denote by [n] the set {1, . . . , n} and by x
$← S the

sampling of an element x from the set S uniformly at random. Further-
more, for a given variable x, we denote by 〈x〉 the shared form of x, which
refers to the set of the shares of x. For operations involving shared values,
this means applying the operation to each share of x individually (e.g.,
〈z〉 = 〈x〉+ 〈y〉 means adding the share xi to the share yi and calling the
result zi for all i ∈ [n].). The same holds for multiplications with public
values (e.g., 〈z〉 = 3 · 〈x〉 means multiplying the share xi by 3 and calling
the result zi for all i ∈ [n].), whereas additions with public values are only
added to the first share and not to all shares (e.g., 〈z〉 = 〈x〉 + 3 means
adding 3 to the share x1 only).

2.2 Additive Secret Sharing

For the access threshold of t = n, we require every single share to recover
the original secret. Although this is less general than allowing an arbitrary
threshold t ≤ n, it is still a popular use case. Furthermore, due to the
restrictions placed on t, we can come up with very efficient schemes.

The idea behind additive secret sharing is contained in the name: We
want to split a secret into n shares, so that the sum of all shares is equal
to the original secret x.

Addition of Secret Shared Values Using additive secret sharing im-
mediately results in a nice property. For any additively secret shared
values 〈x〉 and 〈y〉, if we want to calculate z = x+ y, we can perform this
operation using only the secret shares.

2

Gen() : Agree on a group G with group operation + and its inverse operation − and
set pp← G. Return pp.

Share(pp, x, n, t) : Parse pp as G. If n 6= t or x /∈ G, return ⊥. Otherwise, for i ∈

{1, . . . , n− 1} set xi
$← G. Set xn = x−

∑n−1
i=1 xi. Return {x1, . . . , xn}.

Reconstruct(pp, {x1, . . . , xt}) : For all i ∈ [t], if there exists an xi such that xi /∈ G,

return ⊥. Otherwise, return x =
∑t

i=1 xi.

Scheme 2: Additive Secret Sharing.

Theorem 1. Let G be a group and x, y ∈ G, n ∈ N. Let 〈x〉 = Share(G, x,
n, n) and 〈y〉 = Share(G, y, n, n) be the additive secret sharing of x and y
respectively. Set 〈z〉 = 〈x〉+ 〈y〉. Then, z = Reconstruct(G, 〈z〉) = x + y.

Proof. From the definition of additive secret sharing in Scheme 2, we get
x =

∑n
i=1 xi, y =

∑n
i=1 yi and z =

∑n
i=1 zi. If we set zi = xi+yi according

to the definition above, we get

z =
n∑

i=1

zi =
n∑

i=1

(xi + yi) =
n∑

i=1

xi +
n∑

i=1

yi = x + y .

ut

Multiplication of Secret Shared Values Instead of using a group G,
we could also consider instantiating the additive secret sharing scheme
over a field F, where, in addition to the additive operation +, we also have
a multiplicative operation ·. Sadly, even though the addition of shared
values still works as described above, this does not apply to the multipli-
cation of shares. If one simply tries to multiply the individual shares with
each other, we arrive at a wrong result:

z =

n∑
i=1

zi =

n∑
i=1

(xi · yi) 6=
n∑

i=1

xi ·
n∑

i=1

yi = x · y .

One approach to solve this issue was proposed by Donald Beaver [1],
and is employing so called multiplication triples (also often called Beaver
triples).

Definition 1. Let F be a field and a, b, c ∈ F . We call a tuple of secret
shared values (〈a〉, 〈b〉, 〈c〉) a multiplication triple if c = a · b.

Theorem 2. Let F be a field and x, y ∈ F, n ∈ N. Let 〈x〉 = Share(F, x, n,
n) and 〈y〉 = Share(F, y, n, n) be the additive secret sharing of x and y re-
spectively. Let (〈a〉, 〈b〉, 〈c〉) be a multiplication triple. Set 〈d〉 = 〈x〉 −

3

〈a〉 and 〈e〉 = 〈y〉 − 〈b〉. Broadcast d = Reconstruct(F, 〈d〉) and e =
Reconstruct(F, 〈e〉). Set 〈z〉 = d · e + d · 〈b〉 + e · 〈a〉 + 〈c〉. Then, z =
Reconstruct(F, 〈z〉) = x · y.

Proof. From the definition of additive secret sharing in Scheme 2, we get
x =

∑n
i=1 xi, y =

∑n
i=1 yi and z =

∑n
i=1 zi. If we set zi = dbi + eai + ci

according to the definition above (while adding the public value de only
the first share z1), we get

z =

n∑
i=1

zi = de +

n∑
i=1

(dbi + eai + ci) = de + d

n∑
i=1

bi + e

n∑
i=1

ai +

n∑
i=1

ci

= de + db + ea + c = (x− a)(y − b) + (x− a)b + (y − b)a + c

= xy − xb− ya + ab + xb− ab + ya− ba + ab = xy .

ut

This method is one of the standard methods for computing multipli-
cations of secret shared values. However, it leaves the secure generation
of multiplication triples to a preprocessing step. For security of this mul-
tiplication protocol it is important that the plain values of a, b and c are
not known to any party, otherwise they could recover the values of x and
y. Protocols for secure generation of these triples in environments with
malicious participants are non-trivial and often involve advanced cryp-
tographic primitives such as oblivious transfers (e.g., MASCOT [4]) or
homomorphic encryption (e.g., SPDZ [3]).

2.3 Shamir Secret Sharing

A different approach for a secret sharing scheme was proposed by Adi
Shamir in 1979 [5]. The scheme is based on polynomial interpolation in
the plane of dimension 2. Given t points (x1, y1), . . . , (xt, yt) in this 2-
dimensional plane, there exists a unique polynomial p of degree t − 1
so that p(xi) = yi∀i ∈ [t]. To create a threshold secret sharing scheme
with threshold t, Shamir proposed to embed the secret x as the coeffi-
cient a0 in the polynomial p(X) = a0 + a1X + · · · + at−1X

t−1 of degree
t− 1, where all other coefficients ai are chosen at random. To generate n
shares, the polynomial is evaluated over the domain [n], i.e., the shares
are (1, p(1)), (2, p(2)), . . . , (n, p(n)). In the following, we assume the x-
coordinate is equal to the party’s index and will therefore always omit it.
Given a subset of k of these points, we can find the original polynomial

4

p by means of polynomial interpolation (a method to perform this inter-
polation would be Lagrange interpolation). The exact procedure is given
in Scheme 3.

Gen() : Agree on a finite field F and set pp← F. Return pp.

Share(pp, x, n, t) : Parse pp as F. If n < t or x /∈ F or |F| ≤ n, return ⊥. Otherwise, for

i ∈ {1, . . . , t−1} set ai
$← F and a0 ← x. Define the polynomial p(X) =

∑t−1
i=0 aiX

i.
For i ∈ {1, . . . , n}, set xi ← p(i). Return {x1, . . . , xn}.

Reconstruct(pp, {x1, . . . , xt}) : For all i ∈ [t], if there exists an xi such that xi /∈ F,
return ⊥. Otherwise, find the unique polynomial p(X) interpolating the points
x1, . . . , xt. Return x = p(0).

Scheme 3: Shamir Secret Sharing [5].

Addition of Secret Shared Values Similar to the case of additive
secret sharing, Shamir secret sharing also allows us to perform additions
of two secret shared values locally by adding the y-coordinates of the
individual shares (we can only add shares with the same x-coordinate,
so only shares for the same party). We show this in the following for the
case of t = n, but this can easily be generalized to the case t ≤ n.

Theorem 3. Let F be a finite field and x, y ∈ F, n ∈ N. Let 〈x〉 =
Share(F, x, n, n) and 〈y〉 = Share(F, y, n, n) be the Shamir secret sharing
of x and y respectively. Set 〈z〉 = 〈x〉+〈y〉 by adding only the y-coordinate
of the points. Then, z = Reconstruct(G, 〈z〉) = x + y.

Proof. From the definition of Shamir secret sharing in Scheme 3, we get
x = px(0), y = py(0) and z = pz(0), where px, py and pz are the polyno-
mials interpolating the shares 〈x〉, 〈y〉 and 〈z〉, respectively. Due to basic
properties of polynomial additions (∀x ∈ F : f(x) + g(x) = (f + g)(x)),
adding the y-coordinate of all points with the same x-coordinate results in
a polynomial pz that is the addition of the two polynomials px and py as
shown below:

px(X) = x + a1X + · · ·+ an−1X
n−1 ,

py(X) = y + b1X + · · ·+ bn−1X
n−1 ,

pz(X) = (x + y) + (a1 + b1)X + · · ·+ (an−1 + bn−1)X
n−1 .

The result of pz(0) is therefore equal to x + y. ut

5

Multiplication of Secret Shared Values For the case of additions
we used the fact that for any two polynomials over a finite field F it
holds that ∀x ∈ F : f(x) + g(x) = (f + g)(x). However, a careful reader
might remark that this is also true for multiplications. Indeed, (∀x ∈ F :
f(x) · g(x) = (f ∗ g)(x)), where ∗ denotes polynomial multiplication. It
seems that we can now also perform multiplication of shares locally by
multiplying the y-coordinates.

Theorem 4. Let F be a finite field and x, y ∈ F, n ∈ N. Let 〈x〉 =
Share(F, x, n, n) and 〈y〉 = Share(F, y, n, n) be the Shamir secret sharing
of x and y respectively. Set 〈z〉 = 〈x〉 · 〈y〉 by multiplying only the y-
coordinate of the points. Then the polynomial pz, interpolating the points
〈z〉, evaluated at 0 is equal to xy.

Proof. From the definition of Shamir secret sharing in Scheme 3, we get
x = px(0), y = py(0) and z = pz(0), where px, py and pz are the polyno-
mials interpolating the shares 〈x〉, 〈y〉 and 〈z〉, respectively. Due to basic
properties of polynomial additions (∀x ∈ F : f(x) · g(x) = (f ∗ g)(x),where
∗ denotes polynomial multiplication), multiplying the y-coordinate of all
points with the same x-coordinate results in a polynomial pz that is the
multiplication of the two polynomials px and py as shown below:

px(X) = x + a1X + · · ·+ an−1X
n−1 ,

py(X) = y + b1X + · · ·+ bn−1X
n−1 ,

pz(X) = (xy) + (a1y + b1x)X + · · ·+ (an−1bn−1)X
2n−2 .

The result of pz(0) is therefore equal to xy. ut

However, the method detailed in Theorem 4 has one practical problem:
Although the evaluation of pz at 0 correctly results in xy, the degree of
that polynomial has grown. A call to Reconstruct would now need 2t− 1
unique shares to be able to correctly reconstruct the result. In our case of
t = n, we see that we therefore can never have enough shares to correctly
recover the value of xy.

2.4 Polynomial Degree Reduction

To combat this problem when using Shamir secret sharing in practice, par-
ties holding the shares need to engage in a polynomial degree reduction
protocol. The goal of this protocol is to reduce the degree of the polyno-
mial pz, which is the result after the local multiplication back down to a

6

polynomial of degree t− 1, so t points are enough to uniquely determine
this polynomial.

Such degree reduction protocols require interaction between the par-
ties holding the shares, again leaving us in a similar situation as we had in
the case of additive secret sharing: additions can be performed completely
locally, however for multiplications, the shareholders need to engage in
some form of communication.

The oldest protocol for this is by Ben-Or, Goldwasser and Widger-
son [2] and involves a re-randomization of the coefficients of the trunca-
tion of pz. For a detailed description, we refer the reader to [2, The degree
reduction step & The randomization step].

References

1. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
CRYPTO. Lecture Notes in Computer Science, vol. 576, pp. 420–432. Springer
(1991)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC. pp. 1–10. ACM (1988)

3. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: CRYPTO. Lecture Notes in Computer Sci-
ence, vol. 7417, pp. 643–662. Springer (2012)

4. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure com-
putation with oblivious transfer. In: ACM Conference on Computer and Commu-
nications Security. pp. 830–842. ACM (2016)

5. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

7

	Secret Sharing

