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Literature

The slides are based on the following sources

= An Introduction to Mathematical Cryptography, Hoffstein, Jeffrey, Pipher, Jill,
Silverman, J.H.

= The LLL Algorithm, Phong Q. Nguyen, Brigitte Vallée (Eds.)
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Lattice: Basis, Fundamental Domain, Volume
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Recap from Last Lecture

Lattice: Basis, Fundamental Domain, Volume
SVP: Minkowski’s and Hermite’s Theorem

Reduction: Babai’s Algorithm
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Lagrange-Reduced

Definition

Lagrange-reduced Let L be a two-dimensional lattice. A basis (v1,Vv,) of L is said to
be Lagrange-reduced if and only if

2
74
il < [val| and v - vgl < 22

Optimal: A (L) = |v4|
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Lagrange’s Reduction Algorithm

Input: A basis (u, v) of a 2-dimensional lattice L.
Ouput: A Lagrange-reduced basis of L.



Lagrange’s Reduction Algorithm

Input: A basis (u, v) of a 2-dimensional lattice L.
Ouput: A Lagrange-reduced basis of L.

if |u| < |v| then
sawp uand v
while |v| > |u| do

u-v
r<u-qv whereqzbvp]

u<yv

V<r

return (u,v)




Lagrange Reduction: Example

s (0).0- )

u=(5,1)

v=(2,0)
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Lagrange Reduction: Example

s (0).0- )

(_17 1) =V

u=(2,0)
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Lagrange Reduction: Example

s (0).0- )

(_17 1) =u

v=(1,1)
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Lagrange Reduction: Example

s (0).0- )

(-1,1)=u v=(1,1)

Task: Solve SVP for the lattice generated by

v, = (66586820, 65354729)", v, = (6513996, 6393464) .



Size-Reduction

Definition (Size-Reduced)

Abasis vy, ..., v, of a lattice is size-reduced if its Gram-Schmidt orthogonalization
satisfies
| jf <

N =
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Size-Reduction

Definition (Size-Reduced)

Abasis vy, ..., v, of a lattice is size-reduced if its Gram-Schmidt orthogonalization
satisfies
| jf <

N =

Input: A basis (v, ...v,) of a lattice L.
Ouput: A size-reduced basis of L.
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Size-Reduction

Definition (Size-Reduced)

Abasis vy, ..., v, of a lattice is size-reduced if its Gram-Schmidt orthogonalization
satisfies

N =

|wai,j| <

Input: A basis (v, ...v,) of a lattice L.
Ouput: A size-reduced basis of L.

Compute all the Gram-Schmidt coefficients y; ;
fori=2..ndo
forj=(i-1)..1do
Vi < Vi— lMi,j]Vj
fork=1.jdo
Wik < ik = L1 11,
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LLL Algorithm

Definition (LLL-Reduced)

Let B = {vy,...,V,} be a basis for a lattice L and denote its associated Gram-Schmidt
orthogonal basisas vy, ..., v, . The basis is said to be LLL-reduced if it is
size-reduced and satisfies forall 1 </ < n.

3 2 o
Ivi|? > (Z - M,%,'_l) Ivi|%  (Lovész Condition).
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Why Lovasz Condition?

- size-reduced
- not LLL-reduced

vy = (-2,-1)
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Why Lovasz Condition?

Changed order

vy =(-2,-1)

v = (3,4)
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Why Lovasz Condition?

- size-reduced
- LLL-reduced

v =(-2,-1)

Vy =

_172)
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LLL-reduced Basis is Good Basis

Let L be a lattice of dimension n. Any LLL reduced basis vi, ..., v, for L has the
following property:

i n(n-1)
[TIvil <277 vol(L).
i=1

In particular,

n-1
||V1|| <272 /\1(1_)

Thus an LLL reduced basis solves apprSVP within a factor of 2("~1/2,
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LLL Algorithm

Input: A basis (v1,...v,) of a lattice L.
Ouput: A LLL-reduced basis of L.
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LLL Algorithm

Input: A basis (v1,...v,) of a lattice L.
Ouput: A LLL-reduced basis of L.

Size-reduce (v1,...Vy)

if 3j€{2,...,n} : Lovasz Condition violated then
swap v; and vj_;
LLL(vy, ... Vp)
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LLL Algorithm

Input: A basis (v, ...v,) of a lattice L.
Ouput: A LLL-reduced basis of L.

Given a basis vy, ..., Vv, of a Lattice L the LLL algorithm calculates an LLL-reduced

basis in time

Size-reduce (v1,...Vy)

if 3j€{2,...,n} : Lovasz Condition violated then
swap v; and vj_;
LLL(vy, ... Vp)

O (n®log’B), where B = max | v;].
I
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Proof sketch

Itis clear that the output is LLL-reduced. So we only have to show finite number of
steps.

m [, =lattice spanned by vy, ...v,.
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Proof sketch

Itis clear that the output is LLL-reduced. So we only have to show finite number of
steps.

m [, =lattice spanned by vy, ...v,.
= d; =TI, |v/|?and D = [T\, d| = det(L,)? = d.

= D changes only when swapping. More precisely, D is reduced by a factor of at least
(3/4)N (argumentation with fact that Lovasz condition is violated).

12/13



Proof sketch

Itis clear that the output is LLL-reduced. So we only have to show finite number of
steps.

m [, =lattice spanned by vy, ...v,.

= d; =TI, |v/|?and D = [T\, d| = det(L,)? = d.

= D changes only when swapping. More precisely, D is reduced by a factor of at least
(3/4)N (argumentation with fact that Lovasz condition is violated).

= Bound D from above with Hermite’s Theorem.
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LLL Example

Task: Compute an LLL-reduced basis of the 6-dimensional lattice L with basis given by

the rows of the matrix
19 2 32 46

15 42 11 O
43 15 0 24
20 44 44 O
0 48 35 16
48 33 32 9

Also, compute the Hadamard ratio of both basis.

33
24
16
15
31
29
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