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Literature

The slides are based on the following sources

An Introduction to Mathematical Cryptography, Ho�stein, Je�rey, Pipher, Jill,
Silverman, J.H.

The LLL Algorithm, Phong Q. Nguyen, Brigitte Vallée (Eds.)
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Lattice Reduction Algorithms



Recap from Last Lecture

Lattice: Basis, Fundamental Domain, Volume

SVP: Minkowski’s and Hermite’s Theorem

Reduction: Babai’s Algorithm
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Lagrange-Reduced

Definition

Lagrange-reduced Let L be a two-dimensional lattice. A basis (v1, v2) of L is said to
be Lagrange-reduced if and only if

∥v1∥ ≤ ∥v2∥ and ∣v1 ⋅ v2∣ ≤
∥v1∥2

2
.

Optimal: λ1(L) = ∥v1∥
v1

v2v2

4 / 13



Lagrange’s Reduction Algorithm

Input: A basis (u, v) of a 2-dimensional lattice L.
Ouput: A Lagrange-reduced basis of L.

if ∥u∥ < ∥v∥ then
sawp u and v

while ∥v∥ > ∥u∥ do

r ← u − qv where q = ⌊ u ⋅ v
∥v∥2

⌉

u← v
v ← r

return (u, v)
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Lagrange Reduction: Example

Input: v = (20) ,u = (51)

v = (2,0)

u = (5,1)
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Lagrange Reduction: Example

Input: v = (20) ,u = (51)

u = (2,0)

(−1,1) = v
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Lagrange Reduction: Example

Input: v = (20) ,u = (51)

v = (1,1)(−1,1) = u
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Lagrange Reduction: Example

Input: v = (20) ,u = (51)

v = (1,1)(−1,1) = u

Task: Solve SVP for the lattice generated by

v1 = (66586820,65354729)T , v2 = (6513996,6393464)T .
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Size-Reduction

Definition (Size-Reduced)

A basis v1, . . . , vn of a lattice is size-reduced if its Gram-Schmidt orthogonalization
satisfies

∣µi, j∣ ≤
1
2
.

Input: A basis (v1, . . . vn) of a lattice L.
Ouput: A size-reduced basis of L.

Compute all the Gram-Schmidt coe�icients µi, j
for i = 2..n do

for j = (i − 1)..1 do
vi ← vi − ⌊µi, j⌉vj
for k = 1..j do
µi, k ← µi, k − ⌊µi, j⌉µj, k
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LLL Algorithm

Definition (LLL-Reduced)

Let B = {v1, . . . , vn} be a basis for a lattice L and denote its associated Gram-Schmidt
orthogonal basis as v∗1 , . . . , v∗n . The basis is said to be LLL-reduced if it is
size-reduced and satisfies for all 1 < i ≤ n.

∥v∗i ∥2 ≥ (3
4
− µ2i,i−1) ∥v∗i−1∥2. (Lovász Condition).

8 / 13



Why Lovász Condition?

- size-reduced
- not LLL-reduced

v1 = (3,4)

v2 = (−2,−1)
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Why Lovász Condition?

Changed order
v2 = (3,4)

v1 = (−2,−1)
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Why Lovász Condition?

- size-reduced
- LLL-reduced

v2 = (−1,2)

v1 = (−2,−1)
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LLL-reduced Basis is Good Basis

Theorem

Let L be a lattice of dimension n. Any LLL reduced basis v1, . . . , vn for L has the
following property:

n

∏
i=1

∥vi∥ ≤ 2
n(n−1)

4 vol(L).

In particular,
∥v1∥ ≤ 2

n−1
2 λ1(L).

Thus an LLL reduced basis solves apprSVP within a factor of 2(n−1)/2.
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LLL Algorithm

Input: A basis (v1, . . . vn) of a lattice L.
Ouput: A LLL-reduced basis of L.

Size-reduce (v1, . . . vn)
if ∃ j ∈ {2, . . . ,n} ∶ Lovász Condition violated then

swap vj and vj−1
LLL(v1, . . . , vn)

Theorem

Given a basis v1, . . . , vn of a Lattice L the LLL algorithm calculates an LLL-reduced
basis in time

O(n6 log3 B) , where B = max
i

∥vi∥.
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Proof sketch

It is clear that the output is LLL-reduced. So we only have to show finite number of
steps.

Ll = lattice spanned by v1, . . . vl.

dl = ∏l
i=1 ∥v∗i ∥2 and D = ∏l

i=1 dl⇒ det(Ll)2 = dl.

D changes only when swapping. More precisely, D is reduced by a factor of at least
(3/4)N (argumentation with fact that Lovász condition is violated).

Bound D from above with Hermite’s Theorem.
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LLL Example

Task: Compute an LLL-reduced basis of the 6-dimensional lattice Lwith basis given by
the rows of the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

19 2 32 46 3 33
15 42 11 0 3 24
43 15 0 24 4 16
20 44 44 0 18 15
0 48 35 16 31 31
48 33 32 9 1 29

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Also, compute the Hadamard ratio of both basis.
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