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Literature

The slides are based on the following sources

An Introduction to Mathematical Cryptography, Ho�stein, Je�rey, Pipher, Jill,
Silverman, J.H.

A Decade of Lattice Cryptography, Chris Peikert

The LLL Algorithm, Phong Q. Nguyen, Brigitte Vallée (Eds.)

Many graphics are based on graphics fromMaria Eichlseder.
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Lattice-Based Cryptography

Conjectured security against quantum attacks:
One half of the 2nd round candidates for NIST Post-Quantum Cryptography
Standardization are lattice-based (in the category PKE).

Algorithmic simplicity, e�iciency, and parallelism.

Strong security guarantees fromworst-case hardness.

Construction of versatile and powerful cryptographic objects

Fully Homomorphic Encryption

Attribute-Based Encryption
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Vector Spaces



Vector Spaces

A vector space V is a subset ofRm that is closed under addition and under scalar
multiplication by elements ofR.

A linear combination of the vectors v1, . . . , vk is any vector of the form

w = α1v1 +⋯ + αkvk, with α1, . . . , αk ∈ R.

The collection of all such linear combinations is called the span of {v1, . . . , vk}.

A set of vectors v1, . . . , vk ∈ V is linearly dependent

α1v1 +⋯ + αkvk = 0⇒ α1 = ⋯ = αk = 0.

A basis for V is a set of linearly independent vectors v1, . . . , vk that span V .
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Length and Angle

The dot product of v = (x1, . . . , xm),w = (y1, . . . , ym) ∈ V is the quantity
v ⋅w = x1y1 +⋯ + xmym.

v andw are orthogonal if v ⋅w = 0.
The length, or Euclidean norm, of v is the quantity

∥v∥ =
√
x21 +⋯ + x2m.

A basis v1, . . . , vn is an orthogonal basis if

vi ⋅ vj = 0 ∀i ≠ j.

Let α be the angle between v andw, then

v ⋅w = ∥v∥∥w∥ cos(α).
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GramMatrix

Let v1, . . . , vn be vectors inRm. The entries of the Grammatrix are given by Gij = vi ⋅ vj.
The determinant of G is called the Gram determinant.

detG ≠ 0⇒ v1, . . . , vn linearly independent.
√
detG is the n-dimensional volume spanned by v1, . . . , vn.

Example: Let v1 = (2,3), v2 = (1,4).

G = (2 3
1 4) ⋅ (

2 1
3 4) = (13 14

14 17)

vol(v1, v2) =
√
detG =

√
25 = 5
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Gram-Schmidt Algorithm

Theorem (Gram-Schmidt Algorithm)

Let v1, . . . , vn be a basis for a vector space V ⊂ Rm. The following algorithm creates
an orthogonal basis v∗1 , . . . , v∗n for V :

v∗1 ← v1
for i = 2..n do

for j = 1..i − 1

µi,j ←
vi ⋅ v∗j
∥v∗j ∥2

v∗i = vi −
i−1
∑
j=1
µi, j v∗j
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Definition and Properties



Lattices

Definition (Lattice)

An n-dimensional lattice L is any subset ofRn that is both:

an additive subgroup

discrete

A basis for L is any set of independent vectors that generates L.
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Lattice: Example

In other words, let v1, . . . , vn ∈ Rn be a set of linearly independent vectors. The lattice
generated by v1, . . . , vn is the set of linear combinations of v1, . . . , vn with coe�icients
inZ,

L = {a1v1 +⋯ + anvn ∶ a1, . . . ,an ∈ Z}.
Example:

v1 = (10), v2 = (1/4√
2) R
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Fundamental Domains

Definition (Fundamental Domain)

Let L be a lattice of dimension n and let v1, . . . , vn be a basis for L. The fundamental
domain is the set

F = [0,1)v1 +⋯ + [0,1)vn.
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Volumes

Definition (Volume)

Let L be a lattice of dimension n and let F be a fundamental domain of L. Then the
n-dimensional volume of F is called the volume of L (or sometimes the determinant
of L).

Example: Let L be generated by the vectors

v1 = (10) , v2 = (1/4√
2) .

First, compute Grammatrix:

G = (
1 0
1
4

√
2
) ⋅ (

1 1
4

0
√
2
) = (

1 1
4

1
4

33
16
)

Therefore,
vol(L) =

√
detG =

√
2
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Same Lattice?

v1 = (30), v2 = (22)

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

v′1 = (82), v
′
2 = (52)

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
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Volume: Task

Task: Compute the volumes V resp. V ’ of the fundamental domains corresponding to
v1, v2 respectively v′1, v′2.

G = (3 0
2 2)(3 2

0 2) = (9 6
6 8) .

G′ = (8 2
5 2)(8 5

2 2) = (68 44
44 29) .

Therefore V =
√
G =

√
36 = 6 =

√
36 =

√
G′ = V ′.

Proposition

Every fundamental domain for a given lattice L has the same volume.
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Short Vectors in Lattices



Computational Problems

λ1(L)... length of shortest nonzero vector in L.
Shortest Vector Problem (SVP): Find a shortest nonzero vector v in L, i.e.
∥v∥ = λ1(L).

Closest Vector Problem (CVP): Given a vectorw, find closest vector tow in L.

Example: Given the lattice generated by v1, v2

v1 = (82) , v2 = (52)

and given the vectorw = (−1,3)T . What is a shortest nonzero vector of L? Which vector
is closest tow?

(−12 ) and (−12 )
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How long is the shortest vector?

Theorem (Minkowski’s Theorem)

Let L ⊂ Rn be a lattice of dimension n. Let S ⊂ Rn be convex, closed and symmetric.
Suppose that vol(S) ≥ 2n vol(L), then

S ∩ L ⊋ {0}.

S... hypercube inRn centered at 0 with length 2 vol(L)1/n, then vol(S) = 2n vol(L).
Applying Minkowski’s theorem leads to:

Corollary (Hermite’s Theorem)

Every lattice L of dimension n contains a nonzero v ∈ L satisfying

∥v∥ ≤
√
n vol(L) 1

n .
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Lattice Reduction Algorithms



Babai’s Closest Vertex Algorithm

Input: Basis v1, . . . , vn andw ∈ Rn.

1. Writew = t1v1 +⋯, tnvn, with t1, . . . , tn ∈ R.

2. Set ai = ⌊ti⌉ for i = 1, . . . ,n.

3. Return v = a1v1 +⋯ + anvn.

Try out the algorithm for

v1 = (30) , v2 = (22) ,w = (−13 ) .
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Orthogonality Defects

Definition (Hadamard Ratio)

We define the Hadamard ratio of the basis B = {v1, . . . , vn}. to be the quantity

H(B) = ( vol(L)
∥v1∥⋯∥vn∥

)
1
n

∈ (0,1].

(the closer to 1, the more orthogonal)

Example: v1 = (30) , v2 = (22)

H(B) = ( 6√
9
√
8
)

1
2

≈ 0.84.
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