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Motivation

Boolean functions are important because ...
= ... they natively allow to work with binary encoded information.

= .. theyare used in many symmetric key primitives (AES, LowMC, MiMC, Prince, ...).

Our goals for today are:
= Discuss different representations of boolean functions.

= Qutline a basic concept of cryptanalysis on boolean functions.



Boolean Functions



Boolean Functions

Our basic object of study in this lecture is outlined in the following

Let n,m e N. A function I} — [F,, with

(X15 -y Xn) = F(X1, .0 Xn),

is called a boolean function. Similarly, a vectorial boolean function (or vector valued
boolean function) is a function Fj — F7' with

X1y Xn) = (A, X)Xy oy Xn))-

The functions f; : F) — I, are also called the coordinate functions of f.
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Preliminaries |

Question: Which algebraic structure does the n-fold Cartesian product Fj admit?

Answer: First of all, it is an [F,-vector space. Its elements are tuples of length n with
coordinatesin I, i.e. we have

F) ={(x1,...,%n) : x; € F, forall i}.
Vector addition is defined as
X1y Xn) + V1yoe s ¥n) = (X + Y1, s Xn + Yn)
and scalar multiplication is given by
Ao (X1yeeoyXn) == (A X1, oy A Xp),

forall (x1,...,%0), (V1,.--,¥n) € FJand A e F,.



Preliminaries Il

Question: Is there any connection between F) and Fyn?

Answer: Yes, there is. We can endow ) with the field structure of IF,». Field addition is
clear (how?). But what about field multiplication?

Structure of Fn: Elements in F,» can be represented as polynomials of degree at most
n — 1, right? Multiplication in ' is ordinary polynomial multiplication modulo some
[F,-irreducible polynomial f of degree n (see L3 - Fields and Finite Fields).

Relation between F) and [F,: To define multiplication in F, we “encode” binary
vectors as polynomials (and vice versa) via

X = (X1, X0, - ooy Xpo1, %) €Y <= Py i= X Y 400 Y ™2 44 X1 Y 4 X, € o

Then, in F5, we have (x1,...,%n) - (V1,.--,¥n) := (21,...,25), Where
p;=2z1Y"! + - + z, € Fon comes from the congruence

Pz = px - py (mod f).
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Preliminaries Il

Question: Considering the construction
Fo[X1,.... Xa]/ (X] = X0, ..., X7 = X)),

how would you put into words the structure of its elements?



Preliminaries IV

Let’s discuss some examples that may illuminate the aforementioned construction.

Example: Consider the quotient ring Q := F,[X, Y, Z]/(X* - X, Y? - Y, Z*> - Z). What is
the reduced representation of

X2Y°Z* and X2Y3Z + XYZ + X + Z + Z°

in above quotient ring?
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Preliminaries V

Remark: For any field E, every polynomial f € E[X] induces a polynomial function
f:E—>Ea~f(a).

Theorem (Every Function over a Finite Field is a Polynomial Function)

Every map f : Fy - F, on a finite field F, can be uniquely described as a univariate
polynomial over [F; with maximum degree g — 1.

For existence, consider the polynomial
F(X):=> f(a)(1- (X—a)T™h).
aelfy

For uniqueness, observe, if there are two polynomials F, G of degree at most g — 1
with F(x) = f(x) = G(x), for all x € Fg, then F — G has g roots. Thus, F = G. O
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Preliminaries VI

There is also a more general version of the preceding result

Every map f : g — [ can be uniquely described as a multivariate polynomial over
[Fq in nvariables with maximum degree g — 1 in each variable.

Proof
For existence, consider the polynomial

F(Xe,....Xn) == > f(ag,...,a0) ] (1= (X —a)?).

(al,...,a,,)eIFg 1<i<n

Uniqueness follows from a cardinality argument: the two finite sets
S=Fq[Xy,..., X l/(X] = X1,..., X7 = X;) and R := {f : Fj - F} have the same
cardinality g9’ and the map ¢ : R - S with o(f) := F(Xy, ..., X,) is injective. O
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Truth Table |

If we arrange the inputs and outputs of a boolean function f : F) — F,,

(X1,..-,%p) = f(x1,...,X,), in form of a table

X1 X2 ... Xp_1 X f(x1,...,Xn)
0 | £(0,0,...,0,0)
1 | £(0,0,...,0,1)
0 | £(0,0,...,1,0)
11 10 |f(1,1,...,1,0)
11 1 f(1,1,...,1,1)

we get the truth table representation of f.
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Truth Table Il

Nota Bene: Fixing an order of the input vectors (e.g. lexicographic) and denoting them
(e.g. in ascending order) by (), x() . x(9) we can compress this representation
into a single sequence, also called the value vector of f, given by

CF®) L F®) L (™) ).

Example: Consider the function f : F3 — I, with f(x1, X2, X3) 1= X2x; + (X2X3)? + X3 (sic!).
What is its truth table and value vector?
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Algebraic Normal Form (ANF) |
Above theorem about the multivariate representation of functions Fy — [, applies in
particular to boolean functions F) — [F,. Therefore we can state the following

Theorem (Algebraic Normal Form of Boolean Functions)

Let f : ) — I, be a Boolean function of n variables. Then there exists a unique
polynomial F(Xy, ..., X,) € Fa[X1,..., Xp /(X2 = X, ..., X? = X;) such that

F(x1,... %) =f(x1,...,X), forall (x1,...,x,) e F5.
In other words, we can write f as

F(X1,...,Xp) = > ay - XX

u=(uy,...,up ) €ry

with coefficients a, € IF,.

13/26



Example

Problem: Consider the function f : IE‘% — [F, given by the truth table:

Compute the ANF.

y 0
X 0
fx,y) | 1
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Algebraic Normal Form (ANF) Il

Theorem (Algebraic Normal Form of Boolean Functions)

Letf:F) - FJ, (X1,..., %) = (fi(x1, ..., Xn), ..., fa(x1,...,Xn)), be avectorial
Boolean function in n variables and m coordinates. Then, for every 1 <i < m, each

coordinate function f; : F) — [, can be written as

(X, .. X%) = S al) X,
u=(uy,...,up ) €Fy
yielding
af?
a® "o
f(X1,. .0, Xn) = > XX
u=(uy,...,up)€F] :
2 aL(Im)

with coefficients al(,i) e IF,.

15/26



Algebraic Degree

The next definition is important because it formalises a property of boolean functions
thatis used in cryptanalysis (more later).

Let f : F) — F7' be a vectorial boolean function and

f(X1,.. ., Xp) = > ay - X{eXpn.

u=(uy,...,un)€Fy

the corresponding ANF with coefficients a,F7'. The multivariate degree (sometimes
total degree or just degree) of f is also called the algebraic degree of f and denoted
by §(f); in other words

§:=06(f) =max{uy +--+up:u=(uy,...,u,) € F) witha, + 0}.
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Mobius Transform

Question: Other ways to compute the ANF?
Answer: Indeed. Let’s cast it into the following
Proposition (Binary Mobius Transform)

Let f : F) — F, be a boolean function and

F(X1,...,Xp) = D au XX

u=(us,...,up ) €Fy

be the ANF with coefficients a, € IF,. Then we have the following relation between
evaluations f(x) of f and coefficients a, of the ANF (x, u € F):

a= Yy f(x) and f(x)= > ay

xelF), x=<u uelf), u=x

whereu = (uy,...,up) < (v1,...,v,) =vifandonlyifu; <v;forall1 <i<n.
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Example

Problem: Consider the boolean function f : [} — [, given by the truth table:

X3 0j1(0({1j0|1]0]|1
X2 0j0|1|1j0j0]1]1
X1 0j0ojo0jO0|1|1]1]|1
f(X]_,Xz,X3) oOj1(0|0|0]1]1]|1

Compute the ANF using the Mobius transform.
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Cryptanalysis of Boolean Functions



Boolean Functions and Block Ciphers

Nota Bene: An important criterion for boolean functions used in block ciphers is the
algebraic degree.

Question: Why?

Answer: The algebraic degree is one measure of the “algebraic complexity” of a
boolean function. Another measure is the number of non-vanishing monomials in its
ANF (sometimes called weight).

Rule of Thumb: We can state

“Security against algebraic attacks = High algebraic degree + High weight”

Disclaimer: High algebraic degree and high weight might not be sufficient for security
against algebraic attacks (see e.g. an attack on the block cipher proposal JARrvis?)

1https ://eprint.iacr.org/2019/419
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Primer on Higher-Order Differential Cryptanalysis

Starting point: A boolean function f : ) — [, e.g. describing (part of) a
cryptographic primitive.

Assumptions

= We know the algebraic degree § of f and it holds § <« n.

= We know how to “differentiate” functions on ).

Idea: Since f can be written as a polynomial, the (¢ + 1)-th order derivative of f is zero.

Consequences: By taking the (§ + 1) order derivative we can distinguish f from
randomly sampled values. This allows us to build a zero-sum distinguisher, with
which we potentially can set up a key-recovery attack for some of the key bits.

Spoiler: In practice, we don’t know the algebraic degree of a real-world cipher!
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Mathematics of Higher-Order Differential Cryptanalysis |

We need: A notion of derivation on F!
Remember: In calculus, the derivative of a function f : R — R at the pointx e R is

defined as ; ;
Af(x) := lim w’
a—0 a
presuming the limit exists at all.

Transfer to finite fields: Discard the limit-part of the definition and just keep the
difference-part!

Letf:F) — Fy,x = (X1,...,X,) — f(x), be a boolean function. The (first-order)
derivative of f in direction of a € ] at the point x € F] is defined as

Af(x):=f(x+a)+f(x).
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Mathematics of Higher-Order Differential Cryptanalysis Il

The main reason for introducing above notion of derivation is made explicit in the

following

Proposition (Derivation Strictly Reduces the Algebraic Degree)

Let h: F) — IF, be a boolean function. Then, for any a € ) it holds

5(Agh) < 5(h) - 1.

Lemma (Properties of A,)

A(f+9) = Aof + Agg (“homomorphic with respect to addition”),

o Ag(f-9)(x) =f(x+a)-Dug(x)+ Asf(x) - g(x), for x € FJ ("Almost Leibniz").
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Mathematics of Higher-Order Differential Cryptanalysis |l

With these properties of A, at hand, the proof of the aforementioned proposition
becomes a lot more pleasant.

Proof sketch (for Propostion “Derivation Strictly Reduces the Algebraic Degree”)

Because of A, being homomorphic with respect to addition, it suffices to consider
only one monomial X1, . .., Xy of the ANF of h. We proof this special case by
induction. For k = 1, we getforanya = (ay,...,a,) € F}

AGX]_ = (Xl + Gl) + X1 =0;.

The induction step from k — 1 to k. “Almost Leibniz” yields

—_——
=97 =g —f()(+a) —Aag =A,f =9

A (X1X2 Xk 1Xk) = (X1+al) (Xk 1+ k- 1) ak + A (Xl Xk 1)Xk
—_——

Now we apply the induction hypothesis.
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Recap

Let’s reflect on the goals from the beginning of this lecture.

= Discuss different representations of boolean functions — Multivariate,
univariate polynomial representation

= QOutline a basic concept of cryptanalysis on boolean functions — Higher-order
differential cryptanalysis

Many more aspects of boolean functions, especially in the context of stream ciphers
and linear/differential cryptanalysis. Standard readings on boolean functions:

= Anne Canteaut, Lecture Notes on Cryptographic Boolean Functions,

= Claude Carlet, Boolean Functions for Cryptography and Error Correcting Codes and
Vectorial Boolean Functions for Cryptography.
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Questions?
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Questions for Self-Control

1. Whatis a (vectorial) boolean function?

2. Discuss polynomial representations of boolean functions. Why is it possible to
represent boolean functions as polynomials after all?

3. How is the Mobius transform connected to the ANF of a boolean function?
4. What is the algebraic degree and why is it important in cryptography?

5. Outline the basic idea of higher-order differential cryptanalysis and describe the
involved notion of derivation.
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