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Why Care About Gröbner Bases in Cryptography?

Gröbner Bases are used as a tool for ...

... cryptanalysis of symmetric key primitives such as stream and block ciphers or
hash functions.

... cryptanalysis of public key primitives, especially for cryptosystems based on
multivariate quadratic equations.

... a general tool for solving systems of polynomial equations.
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“God Made the Integers, all the Rest is the Work of Man”

Many concepts of modern algebra evolved out of a careful study of number sytems like
Z,Q,R and polynomials over them. Among others, we have had a look at rings, ideals
and quotient rings.

Do you remember the following concepts from the realm of the integers?

Divisibility and division with remainder

Greatest common divisors

(Extended) Euclidean algorithm

In this lecture:We generalise and carry over above concepts tomultivariate
polynomial rings and see how they connect to Gröbner bases.
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Divisibility and Division Algorithms



First things first

A Gröbner basis is ...

Definition

... a finite set of generators {g1, . . . ,gk} for a polynomial ideal I in F[X1, . . . , Xn] such
that the ideal generated by the leading terms of g1, . . . ,gk is equal to the ideal
generated by all the leading terms of polynmials in I.
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It Is All About Ideals

Fundamental task: Find all solutions (x1, . . . , xn) ∈ Fn to a system of polynomial
equations

f1(x1, . . . , xn) = f2(x1, . . . , xn) = . . . = fk(x1, . . . , xn) = 0.

In other words:We are looking for the set of all common zeros of f1, . . . , fk

V(f1, . . . , fk) ∶= {(x1, . . . , xn) ∈ Fn ∶ fi(x1, . . . , xn) = 0, for all 1 ≤ i ≤ k}.

This is equivalent to asking for the set of all common zeros of polynomials in
Id(f1, . . . , fk). I.e. we have

V(f1, . . . , fk) = V (Id(f1, . . . , fk)) .

Quintessence: Instead of working with the set of polynomials {f1, . . . , fk} from the
initial system, we switch to the ideal Id(f1, . . . , fk) generated by these polynomials.
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The Generating Set Matters

Observation: A di�erent generating set for Id(f1, . . . , fk)maymake it easier to solve
the corresponding equation system.

Example: Consider the equation system

x2 + y2 + 2x + 2y + 2 = 0 = f1(x, y, z),
−2x2 + y2 − z2 + 2y − 4x − 2z − 2 = 0 = f2(x, y, z),
4x2 + 3y2 + z2 + 8x + 6y + 2z + 8 = 0 = f3(x, y, z).
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Roadmap to Gröbner Bases I

Fact 1
Polynomial equation systemÐ→ Generated ideal
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Consequence: We Need Multivariate Division I

Question: How do we proceed to find another generating set for a multivariate ideal
Id(f1, . . . , fk)?
Counterquestion:Well, how do we proceed in the univariate case?

Example: Consider the two univariate polynomials f1(X) = 3(X + 1)(X − 2)2 and
f2(X) = 2(X −3)(X +1)(X −2)(X −4) overQ. To find another generating set for Id(f1, f2)
we apply the Euclidean algorithm and calculate g ∶= gcd(f1, f2) = (X + 1)(X − 2). Then

f1 = q1g and f2 = q2g
and therefore Id(f1, f2) ⊆ Id(g). We obtain the reverse inclusion with the Extended
Euclidean Algorithm via Bezout’s identity

g = gcd(f1, f2) = a ⋅ f1 + b ⋅ f2
for some a,b ∈ Q[X]. Hence Id(g) = Id(f1, f2).
Quintessence:We need a notion of multivariate polynomial long division!
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Consequence: We Need Multivariate Division II

Question: Can we identify any requirement for multivariate long division?

Answer: Indeed, we can. It relates to the structure of ideals in F[X1, . . . ,Xn].
Remember: The univariate polynomial ring F[X] over a field F is a principal ideal
domain (as are the integers Z).
Spoiler: Multivariate polynomial rings do not admit this structure.

Example: Suppose, in F[X, Y] the ideal generated by {X, Y}was principal, i.e., there
was a polynomial f ∈ F[X, Y] such that Id(X, Y) = Id(f). Then

X = g ⋅ f and Y = h ⋅ f .

Consequently degX(f) = degY(f) = 0, whichmeans that f was a constant and therefore
Id(X, Y) = Id(f) = F[X, Y]. A contradiction.
Consequence for us: To find a generating set for multivariate ideals it is desirable to
have a division algorithmwhich handlesmultiple divisors.
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Roadmap to Gröbner Bases II

Fact 1
Polynomial equation systemÐ→ Generated ideal

Fact 2
Multivariate division algorithm that handles multiple divisors
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The Intuition Behind Gröbner Bases

Remember: For any two integers (univariate polynomials) a,b, with b ≠ 0, there are
unique integers (univariate polynomials) q, r such that a = q ⋅ b + r and ∣r∣ < ∣b∣
(deg(r) < deg(b)). In particular we always have

r = 0⇐⇒ a ∈ Id(b).

Spoiler: The division algorithm in multivariate polynomial rings doesn’t satisfy this
property anymore (more precisely, the direction “⇐Ô”). More on that later.
Intuition behind Gröbner bases: A set {g1, . . . ,gk} is a Gröbner basis of the ideal
I ∶= Id(g1, . . . ,gk) if membership in I is equivalent to having a zero remainder r a�er
division by g1, . . . ,gk. In other words, for any polynomial awe have

r = 0⇐⇒ a ∈ Id(g1, . . . ,gk).

12 / 38



Roadmap to Gröbner Bases III

Fact 1
Polynomial equation systemÐ→ Generated ideal

Fact 2
Multivariate division algorithm that handles multiple divisors

Fact 3
Membership in an ideal equivalent with zero remainder
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Long Division of Polynomials in One Variable I

Long division of univariate polynomials is much like long division with integers. Let us
tackle the following long division inQ[X]: how would you carry out

(3X4 + X3 + 1) ∶ (2X3 + X) = ?
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Long Division of Polynomials in One Variable II

Let us highlight the aim of each step in the long division:

By asking how o�en 2X3 fits into 3X4 we find a factor, 32X, such that “dividend
minus factor times divisor” does not contain the term 3X4 anymore; we call this a
reduction.

Important fact about reductions: the resulting polynomial has degree strictly less
than the initial one (the reason why the algorithm eventually terminates).

As is the case for integers, we have the following

Theorem (Long Division with Univariate Polynomials)

Let F be a field and g ∈ F[X] be a non-zero polynomial. Then every polynomial
f ∈ F[X] can be written as

f = q ⋅ g + r,
where q, r ∈ F[X] are uniquely determined and either r = 0 or deg(r) < deg(g).
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Teaser: Long Division with Polynomials in Several Variables?

Question: Can we carry over the concept of long division to multivariate polynomials?

Answer: Yes, but the generalisation requires some care. Especially, how we achieve
reductions.

Let’s say, we wanted to perform a long division with the following polynomials in
Q[X, Y] by imitating the procedure overQ[X]:

(X6 + Y7 + X3Y4 + 1) ∶ (X + Y3) = ?

Then we need to address (at least) two questions:

Shall we begin with the term X or Y3 on the divisor side?

Which term is the “pivot term” on the dividend side?
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Another Look at Univariate Polynomial Long division

Observation: Univariate long division uses an implicit notion of “order”.

Explanation: In every step of the division algorithmwe take the monomial with the
highest degree to achieve a reduction.

Consequences:We therefore need the notion of “order” in multivariate rings as well.

Motivating Example: Howwould you order the following terms inQ[X, Y,Z]?

4X, 2Y5Z, Y5, 1000 and 1

Takeaway: Constant factors do not matter! Hence, we focus onmonomials (rather
than terms) in F[X1, . . . ,Xn].
Intermezzo: Let’s have a closer look at how we “order” monomials in the univariate
case.
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“Let There Be Order”: Monomial Order in F[X]

Observation: Monomials in F[X] are expressions of the form Xn, for n ∈ N0 and we
have a canonical order onN0.

Consequence: Given the order onN0, it is natural to set

X0 = 1 ≤ X ≤ X2 ≤ . . .

or more generally for X i,X j ∈ F[X] and i, j ∈ N0

X i ≤ X j ∶⇐⇒ i ≤ j.

Question: Can we use above order and extend it to monomials in F[X1, . . . , Xn] by
setting

X i11 . . . X
in
n ≤ X j11 . . .X jnn ∶⇐⇒ ∀1 ≤ k ≤ n ∶ ik ≤ jk?
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“Let There Be Order”: Total Order I

Answer: No, not quite. But the approach is not completely pointless.

Example: Let’s say, we wanted to compare and order monomials in F[X, Y] according
to the suggested order above. Then, e.g., how would we relate the monomials X2Y2

and X3Y?

Conclusion:We need to think a bit more about what wemean by an “order”.
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“Let There Be Order”: Total Order II

As it turns out, there is an order relation available that is useful for our purposes.

Definition (Total Order)

LetM be a set and ≤ a (binary) relation onM satisfying the following properties

a ≤ b or b ≤ a (Comparability),

a ≤ b and b ≤ c implies a ≤ c (Transitivity),

a ≤ b and b ≤ a implies a = b (Antisymmetry),

for all a,b, c ∈ M. Then ≤ is called a total order onM.
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“Let There Be Order”: Monomial Order in F[X1, . . . ,Xn]

Notation:We use the abbreviating notation Xα ∶= Xα11 ⋯Xαnn for a monomial in
F[X1, . . . , Xn]with exponent vector α ∶= (α1, . . . , αn) ∈ Nn

0.

Our previous observations about order in multivariate polynomial rings are reflected
in the following

Definition

Amonomial order ≤ on F[X1, . . . , Xn] is a (binary) relation on the set of monomials in
F[X1, . . . ,Xn] satisfying the following properties

≤ is a total order,
Xα ≤ Xβ ⇒ Xα ⋅ Xγ ≤ Xβ ⋅ Xγ

for every monomial Xα,Xβ,Xγ in F[X1, . . . ,Xn].
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Examples of Monomial Orders I

Remark: Of course the polynomial ring F[X1, . . . ,Xn] is the same as, e.g., the
polynomial ring F[Xn, . . . , X1]. For simplicity, we fix the following succession
(X1,X2, . . . ,Xn)when writing down the exponent vector α = (α1, . . . , αn) of Xα.
Some commonly usedmonomial orders:

Lexicographic Order (“lex”)
Ð→ Emphasises the first place of variables in their succession, then higher
univariate degree, then 1

Graded Lex Order (“deglex” or “glex”)
Ð→ Emphasises higher multivariate degree, then first place in succession, then
higher univariate degree, then 1

Graded Reverse Lex Order (“degrevlex” or “grevlex”)
Ð→ Emphasises higher multivariate degree, then last place in succession, then
lower univariate degree, then 1
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Examples of Monomial Orders II

Let’s discuss some examples inQ[X, Y,Z], with the variables arranged in the following
succession (X, Y,Z).

lex first in succ. higher uni.
deglex higher multi. first in succ. higher uni.
degrevlex higher multi. last in suc. lower uni.

Example:What is the arrangement of the monomials X2, XY2Z2, Y4Z in descending
order with respect to lex, deglex and degrevlex?

Question:What distinguishes onemonomial order from another one?

Short Answer: Di�erent monomial orders have di�erent arithmetic and/or
algorithmic properties (e.g. number of steps in the divison algorithm) .
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Leading Monomials and Leading Terms

Definition

Let ≤ be amonomial order on the monomials in F[X1, . . . , Xn] and f ∈ F[X1, . . . ,Xn] a
polynomial denoted as

f(X1, . . . ,Xn) = ∑
α=(α1,...,αn)∈Nn

0

cαXα11 ⋯Xαnn = ∑
α=(α1,...,αn)∈Nn

0

cαXα.

The leading monomial of f (with respect to ≤) is the monomial given by

LM(f) ∶= LM≤(f) ∶= max
≤

{Xα ∶ cα ≠ 0},

whereas the leading term of f (with respect to ≤) is the product of the leading
monomial with its corresponding coe�icient, i.e.

LT(f) ∶= LT≤(f) ∶= cαXα, for Xα = LM(f).
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Long Division on Polynomials in Several Variables I

Key ingredients for multivariate long division: Amonomial ordering in F[X1, . . . ,Xn]
and the requirement of multiple divisors.

Outline:With these key ingredients at hand, we sketch the multivariate division
algorithm in F[X1, . . . ,Xn].1

Univariate Multivariate

Dividend f = f(X) f = f(X1, . . . ,Xn)

Divisor g f1, . . . , fk

Result f = q ⋅ g + r f = q1 ⋅ f1 + . . . + fk ⋅ gk + r

1For a formal treatment see e.g. Cox, Little, O’Shea: “Ideals, Varieties and Algorithms”, 4th ed., p. 64
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Long Division on Polynomials in Several Variables II

Input: Dividend f , divisors f1, . . . , fk, monomial order ≤
Output: Factors q1, . . . ,qk and remainder r such that f = q1f1 +⋯ + qkfk + r
q1 ∶= 0; . . . ;qk ∶= 0; r ∶= 0; p ∶= f
while p ≠ 0 do

i ∶= 1;
while i ≤ k do

if LT(fi) divides LT(p) then
qi ∶= qi + LT(p)/LT(fi); p ∶= p − (LT(p)/LT(fi))fi
i ∶= 1

else
i ∶= i + 1

r ∶= r + LT(p); p ∶= p − LT(p)
return q1, . . . ,qk, r

Algorithm 1:Multivariate Division
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Long Division on Polynomials in Several Variables III

Theorem (Long Division with Multivariate Polynomials)

Let F be a field and {f1, . . . , fk} ⊆ F[X1, . . . ,Xn] be a set of non-zero polynomials.
Then every polynomial f ∈ F[X1, . . . ,Xn] can be written as

f = q1f1 +⋯ + qkfk + r,

where q1, . . . ,qk, r ∈ F[X1, . . . , Xn], and either r = 0 or nomonomial of r is divisible by
any of LT(f1), . . . , LT(fk).

Remark: Multivariate division doesn’t guarantee uniqueness of factors and remainder.
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Example I

Example: Let us divide f = X2Y + XY2 + Y2 by f1 = Y2 − 1 and f2 = XY − 1 with respect to
the lex order.

28 / 38



Example II

Example: Let us divide f = X2Y + XY2 + Y2 (same dividend) by f1 = XY − 1 and f2 = Y2 − 1
(same divisors, but in reversed order) with respect to the lex order.
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Side E�ects of Multivariate Division

Observation:We have

X2Y + XY2 + Y2 = (X + 1)(Y2 − 1) + X(XY − 1) + (2X + 1)
= (Y2 − 1) + (X + Y)(XY − 1) + (X + Y + 1).

In other words: The outcome of multivariate division is not unique and depends on
the order of the divisors!

Bottom line:When testing a polynomial f for membership in the ideal Id(f1, . . . , fk)we
only know

Zero remainder a�er dividing f by f1, . . . , fk Ô⇒ f ∈ Id(f1, . . . , fk).
But, we desire to have equivalence between these two statements.

Resolution: The notion of Gröbner bases!
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Gröbner Bases



Gröbner Bases I

Let’s recall the definition from the beginning

Definition

A Gröbner basis for a polynomial ideal I in F[X1, . . . ,Xn] is a finite set of generators
{g1, . . . ,gk} for I such that the ideal generated by the leading terms of g1, . . . ,gk is
equal to the ideal generated by all the leading terms of polynomials in I, i.e., such
that

Id(LT(g1), . . . , LT(gk)) = Id(LT(I)),
where LT(I) ∶= {LT(i) ∶ i ∈ I}.

Observation: The crucial property here is

LT(I) ⊆ Id(LT(g1), . . . , LT(gk)),
or in other words: “The leading term LT(i) of every element i ∈ I is a linear combination
of the leading terms LT(g1), . . . , LT(gk)with coe�icients in F[X1, . . . ,Xn].”
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Gröbner Bases II

Question: The crucial property of Gröbner bases reads as

LT(i) = p1LT(g1) +⋯ + pkLT(gk),

for every i ∈ I and certain q1, . . . ,pk ∈ F[X1, . . . , Xn]. But why is this important?
Intuitive Answer: Multivariate division is all about working with and cancelling leading
terms. When testing if f ∈ Id(g1, . . . ,gk), we divide f by g1, . . . ,gk and possibly get

f = q1g1 +⋯ + qkgk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶q

+r = q′1g1 +⋯ + q′kgk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶q′

+r′.

Suppose r ≠ r′, then LT(r − r′) = LT(q′ − q) ∈ LT(I)
!
⊆ Id(LT(g1), . . . , LT(gk)), and

therefore
LT(r − r′) = p1LT(g1) +⋯ + pkLT(gk).

A�er expanding the RHS, we conclude that LT(gi) ∣ LT(r − r′) for at least one i.☇
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Recap

When trying to solve a system of polynomial equations, represented by the
polynomials f1, . . . , fk, it is convenient to switch to the generated ideal
Id(f1, . . . , fk)

Another generating set for Id(f1, . . . , fk)may bemore practical for determining
the solutions x1, . . . , xn ∈ F of f1(x1, . . . , xn) = . . . = fk(x1, . . . , xn) = 0

A Gröbner basis {g1, . . . ,gl} is a special kind of generating set

The crucial property of a Gröbner basis is the relation

LT(i) = p1LT(g1) +⋯ + plLT(gl),

for every i ∈ I and certain q1, . . . ,pk ∈ F[X1, . . . ,Xn]. It allows us to “control” the
division algorithm such that we have a unique remainderwhen dividing by
g1, . . . ,gl.
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Computing Gröbner Bases: The Buchberger Criterion

Remark: Our definition of a Gröbner basis is of little help for checking if a set
{g1, . . . ,gl} is a Gröbner basis for the ideal I ∶= Id(g1, . . . ,gl). We need amore practical
criterion.

The “main theorem” of Gröbner basis theory is the following criterion, introduced by
Bruno Buchberger in his Phd thesis (1965).

Theorem (Buchberger’s criterion)

Let G ∶= g1, . . . ,gk be a set of generators for the ideal I ∶= {g1, . . . ,gk}. Then G is a
Gröbner basis of I if and only if for all pairs i ≠ j the remainder of

s(gi,gj) ∶=
u

LT(gi)
gi −

u
LT(gj)

gj,

with u(gi,gj) ∶= lcm(LT(gi), LT(gj)), a�er division by G (in some order) is zero.
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Computing Gröbner Bases: The Buchberger Algorithm in F[X1, . . . ,Xn]

Input: A set of polynomials F ∶= {f1, . . . , fk}
Output: A Gröbner basis G ∶= {g1, . . . ,gl} for the ideal Id(f1, . . . , fk)
G ∶= F; H ∶= {0}
while G ≠ H do

H ∶= G
foreach p,q ∈ G, p ≠ q do

u ∶= lcm(LM(p), LM(q))
s ∶= u

LT(p)p −
u

LT(q)q

r ∶= remainder of S a�er division by H
if r ≠ 0 then

G ∶= G ∪ {r}

return G
Algorithm 2: Buchberger
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Computing Gröbner Bases: E�iciency Considerations

Observation: In Buchberger’s Algorithm, only polynomials swhich have non-zero
remainder a�er division by elements in the intermediate set H contribute to the final
Gröbner basis.

Basic strategy for improvements: Reduce the number of polynomials s that need to
be considerd. That means, finding other criteria that tell us in advancewhen a given
polynomial s has zero remainder.

Approaches

Preprocessing the input (Ð→ homogeneous polynomials)

Batch processing of several s-polynomials at once (Ð→ linear-algebra-based
algorithms, F4)

Exploit certain relations between the input elements (Ð→ “signature”-based
algorithms, F5)
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Questions?
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Questions for Self-Control

1. What is the fundamental di�erence of ideals in univariate andmultivariate
polynomial rings (with coe�icients in a field) and how does this di�erence
influence multivariate polynomial long division?

2. What is a monomial ordering and why is it important for polynomial long division?

3. Explain the similarities/di�erences of univariate andmultivariate polynomial long
division.

4. What is a Gröbner basis? Discuss the underlying idea and the connection to
multivariate long division.

5. Discuss Buchberger’s Algorithm and identify the most expensive steps. Highlight
the main idea for improvements.
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