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Overview

The Very Concrete Introduction to Elliptic Curves
* Plane Cubic Algebraic Curves
* Non-Singular Curves
* Projective Space
* (Non-Singular) Projective Curves
= Group Law on Non-Singular Projective Cubics
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The Very Concrete Introduction to Elliptic Curves



What’s Ahead

= How and why we can calculate with points on cubic curves.

= Ahands-on approach to elliptic curves.

Nota Bene: For the sake of vividness, we often deal with algebraic curves over the
reals R. But the discussed concepts are valid in arbitrary fields (and thus in finite
fields), if not stated otherwise.



Exposition: Cubic Plane Algebraic Curves

A plane cubic algebraic curve C over a field IF is the set of points (a, b) € F? which
satisfy a polynomial equation
f(a,b) =0,

where f(X,Y) e F[X, Y] is a polynomial of degree three in two unknowns.
Example: Does the real polynomial f(X,Y) = X3 + Y2X + X + 1 define a curve in the
above sense? What about g(X,Y) = X3 + X2Y2 + X + 12
From now on

m  The expression "curve" always denotes a cubic plane algebraic curve.

= We assume that there is at least one point (a, b) € F? on the curve.



To put the cart before the horse...

There is a way to do arithmetic with points on suitable cubic curves.

O (o1 |

Geometric Intuition: "Chord-and-Tangent-Method"
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Steps Towards the Group Structure

"Doing arithmetic" means: endowing algebraic curves with a (additive) group
structure.

Requirements from geometric intuition

O The line through two points on the curve needs to intersect the curve in a third
point, and nowhere else.

O Every point on the curve needs to have a unique tangent.

Resolutions
= Consider curves in projective space

= Non-singular curves
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Example of a Non-Suitable Curve

Consider the real curve defined by f(X,Y) = Y2 — X3 - X2

Problem: With which tangent should we operate?




Tangents we need!
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Taylor Series Expansion

Remember: A polynomial function f : R? - R in two variables has a Taylor series
expansion around every point (a,b) € R,

Example: Expansion of f around (a, b) until first order terms yields
fi(X,Y)=f(a,b) +fx(a,b)- (X-a) +fy(a,b)-(Y-b).
Interpretations

= Thefunction f; can be regarded as (first-order) approximation of f around (a, b).

= Theequation fy(x,y) = 0 describes a line in R2, which can also be regarded as the
tangent line at (a, b) to the curve defined by f. If it exists, it is unique.



Example: Taylor Approximation

Below figure demonstrates the first-order and second-order taylor approximation of
the polynomial function f : R? - R with

f(x,y) = 0.15x° + x* — 3x

around the point (0,0).




(Formal) Partial Derivatives

Remember: The (first-order) partial derivative with respect to X of a real bivariate
monomial f(X,Y) = aX"Y" is given by

0 n=0.

0
fr(X,Y) = —aX"Y" =
x(X.Y) oX {n-aX”‘lY’" n+0.

The (first-order) partial derivate of a polynomial is just the sum of the partial
derivatives of its monomials.

Question: Can we “imitate” this formalism to introduce a notion of formal (first-order)
partial derivatives in arbitrary fields?

Answer: Absolutely!
Example: What is the partial derivate of f(X, V) = Y2 — 3XY? — X3 over R and FF, with
respectto X and Y?
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Non-Singular Curves and Tangent Lines

Definition

Let IF be a field and C be a cubic plane curve over F with defining polynomial
feF[X,Y].ApointP = (a,b) € Cis said to be singular, if

fX(aab) = fY(a’b) = 07

otherwise it is called non-singular (or regular or smooth). The curve C is called
non-singular if all points on the curve are non-singular. The set of points (x, y) € F?
satisfying the equation

fx(a,b)-(x-a) +fy(a,b)-(y-b)=0

is called the tangent lineto C at P = (a, b).
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Roundup |

What we have achieved so far

O The line through two points on the curve needs to intersect the curve in a third
point, and nowhere else.

v~ Every point on the curve needs to have a unique tangent.



Complication: Vertical Chord/Tangent Lines |

Example: Consider again the real curve defined by the polynomial
FX,Y) =Y2- X3+ X eR[X,Y].

.

Question: Do above chord/tangent lines intersect the curve in further points?

Answer: No, not in the real plane R?.
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Complication: Vertical Chord/Tangent Lines Il

What is the problem here?
For a moment, let’s regard the upper part (with non-negative y-coordinate) of the real
curve y? — x> + x = 0 as the graph of the function

f:R->R, f(x)=vx3-

with derivative .
3x?2-1 3-5
fx(x) = = X x¢{0,1,-1}.
) 2V -x /i1

X =

Observation: As x — oo, f(x) — oo as well.

In other words: In the limiting case, the curve behaves like a vertical line and is
therefore parallel to every other vertical line.
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Affine Space vs. Projective Space

Idea: Take a space, where parallel lines meet in exactly one point.

Resolution: This idea leads us to Projective Spaces. Roughly speaking, they extend
ordinary euclidean (or affine) space with intersection points of parallel lines.

Let IF be a field. The affine n-space over [F is the set of all n-tuples with coordinates in

I, i.e. the set
A" = A"(F) :={(ay,...,a,) : q; e F}.

Remark: In light of this definition, curves with points in F? = A?(FF) are also called
affine curves.
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Projective Space |

The intuition behind projective space:
Projective Space = Affine Space + Intersection points of parallel lines

Remember from school: “Coplanar parallel lines intersect at infinity”.

Consequence: All coplanar parallel lines with a given direction supposedly meet in the
same point (at infinity). — See picture on the next slide.

Twist 1: We associate with every direction of parallel lines an intersection point ( =
point at infinity).

Twist 2: To properly distinguish between affine points and points at infinity we need
to “step up” one dimension. — For constructing projective n-space P” we need to
resort to A",
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Projective Space Il

“Quick and dirty”: from A%(F) to P?(FF)
= Apoint (a1,a,) € A?(F) from affine space is “encoded” as (a;, a2, 1).
= Anintersection point = point at infinity is “encoded” as (a1, a,,0).

= Two points at infinity (a1, 0,,0), (b1, b,,0) are equal if they represent the same
direction, i.e., if there is an element A € F \ {0} such that a; = \b; for all .

Nota Bene: Points in P2 have three coordinates. (0,0, 0) is not an element of P!

The formal way to construct projective n-space P" is made explicit in the next
definition.
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Projective Space lll

Definition

Let F be a field. Projective n-space over I, denoted by P"(F), is defined as the set of
all (n+ 1)-tuples (ay, . .., an+1), with a; € F and not all a; equal to zero, modulo the
equivalence relation

(a1,...,0n41) ~ (b1,...,bps1) i< a; = Ab; forsome A e F \ {0} and all .
In other words, we have
P"(F) = {[(ay,...,0n,0ns1)]~ : (A1, ..., 00, Qns1) € F™EN{0O)).

Instead of [(ay,...,aps1)]~ one usually writes [a; : ... : apy1] and calls this
homogeneous coordinates. All points of the form [a; : a, : 0] are called points at
infinity. Projective 2-space IP? is also called the projective plane.
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Homogeneous Polynomials and Homogenisation |

Observation: If we ask for points on the curve defined by f(X,Y) € F[X, Y] in the
projective plane, we encounter an obstacle:

= Two representations of a zero of f in homogeneous coordinates needn’t evaluate
to the same value!

Example: The evaluation of f(X,Y) = Y2 - X* + 1 e R[X, Y] at the projective point P
givenintheform[1:0:1]and [2:0:2].
Resolution: We homogenise our defining polynomial f. But why does this help?
Remember: A homogeneous polynomial f(X,Y,Z) € F[X, Y, Z] of degree d has the nice
property that for every A € F it holds

fFOM,AY,AZ) = MF(X,Y,2).

Example: What is the evaluation of F(X,Y,Z) = Y2Z-X3+Z%at[1:0:1]and [2:0: 2]?
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Homogeneous Polynomials and Homogenisation Il

The homogenisation (with respect to Z) of a polynomial f € F[X, Y] is the polynomial
F e F[X,Y,Z] given by

XY
F(X,Y,Z) =790 £(Z =
X,¥,2) (3

which is a homogeneous polynomial of degree deg(f). Moreover, if F e F[X,Y,Z] isa
homogeneous polynomial, then the polynomial f € F[X, Y] with

f(X,Y) = F[X,V,1]
is called the dehomogenisation (with respect to Z) of F.

Example: What is the homogenisation (with respect to Z) of f(X,Y) = X + Y?> - 2 and
gXx,Y)=x3-v*
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Culmination: (Non-singular) Projective Cubic Curves |

With our previous observations, the definition of a projective cubic curve is
straightforward.

A projective cubic curve over afield F is the set of all points [a : b : ¢] € P*(F) which
satisfy a polynomial equation
F(X7y7z) =0,

where F(X,Y,Z) e F[X,Y,Z] is a homogeneous polynomial of degree 3 in three
unknowns.

Example: The polynomial Y2 - X3 + X € R defines an affine curve over A%2(R). What is
the polynomial defining the corresponding projective curve?

Example: The polynomial F(X,Y,Z) = Y2Z — X® + XZ? + XY? + XY defines a projective
cubic, but the polynomial G(X, Y, Z) = Y2Z + XYZ + Y?>X? + Z° doesn’t (why?).
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Culmination: (Non-singular) Projective Cubic Curves II

The definition of non-singular projective cubics is straightforward as well.

Let IF be a field and C be a projective cubic curve with defining homogeneous
polynomial F e F[X,Y,Z]. Apoint P =[a: b: c] € C is said to be singular, if

FX(a7b7C) :FY(aab7C) :FZ(a7b7C) :07

otherwise it is called non-singular (or regular or smooth). The curve C is called
non-singular, if all points on the curve are non-singular. The set of points
[x :y:z] € P?(F) satisfying the equation

Fx(a,b,c)-(x-a) + Fy(a,b,c)-(y—b)+Fz(a,b,c)-(z—c)=0

is called the projective tangent linetoCatP=[a: b: c].
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Weierstrass Normal Form (WNF) |

Observation: The most general equation of an affine cubic curve is given by
A + BxXPy + Cxy? + Dy? + ExX* + Fxy + Gy* + Hx + Iy + J = 0,
where A, B, ..., J are coefficients in some field F.

Question: Can we find a “nicer” equation (yielding the “same” curve) if we restrict our
attention to non-singular curves?

Answer: Fortunately, yes!

N coordinate transformation ( )/
—_— \ AN
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Weierstrass Normal Form (WNF) Il

Quintessence: The equation of a general affine cubic curve admits a normal form if
we use the condition of non-singularity. This normal form is given by

2+ Axy+By=x>+Cx*+D'x+F,

forsomeA’,B’,...E' € F, and is called affine long Weierstrass (normal) form. We can
even do better: if char(IF) + 2, 3, we arrive at the so-called affine short Weierstrass
(normal) form

y2 =X3 +A”X+ B”,

forA” B" ¢F.

Nota Bene: We are not working out the details, but the idea behind transforming a
general cubic into normal form is clear: it is just a certain change of coordinates.
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Points at Infinity of Non-singular Cubic Curves

Question: By extending an affine non-singular cubic curve to projective space, how
many points at infinity do we add to the curve?

Answer: There is exactly one! The justification is very easy, if we work with the
Weierstrass form we’ve just discussed.

Sketch of the proof: We start with the homogeneous version of the long Weierstrass
form

V2z+Axyz +B'yz* =x® + C'x*z + D'xz2* +E'Z
and set z = 0 to obtain all intersection points at infinity. The only solutionis [0: 1 : 0].

Teaser: Usually this unique point at infinity is used as the zero element for introducing
the group law via the “chord-and-tangent-method” on a cubic curve.

Exercise: Check that the point at infinity [0 : 1 : 0] we add to an affine non-singular
cubic (in Weierstrass normal form) by extending it to projective space is non-singular
as well.
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Summary: Affine Curves vs. Projective Curves

projective completion

Affine space A%(TF) 2 Projective space P?(IF)
intersection

1 T

Affine curve over F Projective curve over IF
! !

homogenisation
f(X,y)=0 2 F(X,Y,Z)=0
dehomogenisation

! !

Affine WNF Projective WNF



Roundup I

What we have achieved so far

~ The line through two points on the curve needs to intersect the curve in a third
point, and nowhere else.

v~ Every point on the curve needs to have a unique tangent.
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Retardation: Intersection Points in Projective Space

Question: Can we be sure a line through two points on a curve always produces a
unique third point of intersection on the curve?

Answer: Yes. But a rigorous proof involves some more concepts (like intersection
multiplicity, algebraic closure, ...).

Intuitive justification: Let C be a projective curve over the field F with defining
polynomial F € F[X, Y, Z]. The projective line through two points on C is described by
an equation of the form

ax+by+cz=0 (a,b,celF),

which we use to eliminate one variable in the curve equation F(x,y, z) = 0. Setting
z = 1 (for affine intersections) or z = 0 (for intersections at infinity) yields a cubic
equation in either x or y. Since we already know that two solutions lie in IF, the third
one must liein IF (and not in the algebraic closure of IF) as well.



Roundup Il

What we have achieved so far

v The line through two points on the curve needs to intersect the curve in a third
point, and nowhere else.

v~ Every point on the curve needs to have a unique tangent.
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“Chord-and-Tangent-Method": Revisited

All our preceding observations culminate in the following - and finally well-defined -
group law on non-singular projective cubic curves.

4

oX@iex@ile

Remark: We don’t prove the group law formally, but just to let you know: proving
associativity via Weierstrass normal form is a real pain!
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What’s Behind

= How and why we can calculate with points on cubic curves.

= Ahands-on approach to elliptic curves.
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Lysis: Elliptic Curves

Finally we state the following

An elliptic curve over IF is a non-singular projective cubic curve with at least one
pointin P?(F) on it.
Remarks

= We have discussed that every elliptic curve over IF admits a long Weierstrass
normal form
V24 Axy +By =x> + Cx* + Dx + E,

with coefficients in F.

= Conversely, every such long Weierstrass normal form defines an elliptic curve if the
coefficients A, B, C, D, E satisfy a certain condition (— discrimant of the equation).
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Questions?

34/35



Questions for Self-Control

1. Explain the idea behind projective spaces. What is the main difference between
affine space and projective space?

2. How is the tangent line to a point on an algebraic curve defined? How do tangent
lines of real curves correlate with the taylor series expansion?

3. Sketch the group law on elliptic curves via the “chord-and-tangent-method”.

4. Which properties must hold for an algebraic curve to describe an elliptic curve?
Discuss and motivate each property.

5. What is a (long) Weierstrass normal form and how is it related to elliptic curves?
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