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Introduction

Core procedure:

1. Represent the cipher (or components of it) as a set of equations

2. Solve the resulting system for the unknown variables (e.g., key
variables)

Many attack strategies (as for other attacks: one has to be “creative”)

Di�erent solving techniques

Complexities sometimes hard to estimate

Strength of attacks greatly dependent on the structure of a cipher
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What is a Gröbner Basis? – Mathematical Background

Given a set of equations F “ tf1, f2, . . . , fnu, we convert it to a set of
polynomials P “ tp1, p2, . . . , pnu (e.g., x1 ` x2 “ x3 Ñ x1 ` x2 ´ x3)

The set of solutions for F is precisely the set of solutions for P such that
p1 “ 0, p2 “ 0, . . . , pn “ 0 (this set of solutions is called an algebraic
variety)

Crucial point: the varieties of P and IdealpPq are the same, which means
they have the same solutions

... but ideals are too large to use them e�iciently
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What is a Gröbner Basis? – Mathematical Background cont.

Definition (Gröbner Basis)

A Gröbner basis of an ideal is a polynomial equation systemwith the same
variety and which is easier to solve.

Computing a Gröbner basis for an ideal can be computationally expensive

Algorithms involve polynomial divisions

Use the leading terms of the polynomials

The term order describes how the terms in a polynomial are ordered
and what the leading term is

Huge impact on the e�iciency of the computation
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What is a Gröbner Basis? – Mathematical Background cont.

Lemma (Triangular Shape)

The reduced Gröbner basis G “ tg1, g2, . . . , gnu (in a specific term order)
generating the zero-dimensional ideal I is of the form

g1 “ x1d ` h1px1q,
g2 “ x2 ` h2px1q,

...
gn “ xn ` hnpx1q,

where hi is a polynomial in x1 of degree at most d ´ 1.

Note that g1 is now a univariate equation and we can solve it by
factorization!
Use the result to solve for the other variables
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First Target: ThePURE Block Cipher

Variant of theKN Feistel cipher proposed in 1995 [NK95] to be provably
resistant against di�erential and linear attacks

64-bit blocks, 192-bit key k “ pkiq
6
i“1 with ki P F232

Simplified round function (6 rounds in total):

pxR ` kiq3

xL xRki

yL yR

Computation of x3 in F232
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Gröbner Basis Attack on the 3-RoundPURE Cipher

pxR ` k1q3

pxR ` k2q3

pxR ` k3q3

pL pRk1

k2

k3

cL cR

x1

Our key variables are k1, k2, k3
We introduce an additional intermediate variable x1
for our equations
The system of equations describing the cipher is
then

x1 ` ppR ` k1q3 ` pL “ 0,
cL ` px1 ` k2q3 ` pR “ 0,
cR ` pcL ` k3q3 ` x1 “ 0

(pL, pR, cL, cR are known)
But there is a problem...
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Gröbner Basis Attack on the 3-RoundPURE Cipher cont.

We have 3 equations in 4 variables (our system is underdetermined)

Simple solution: Use a second (plaintext, ciphertext) pair

Introduce a new variable x2 for the second pair (k1, k2, k3 stay the same)

Add equations:

x2 ` ppRp2q ` k1q3 ` pLp2q “ 0,

cLp2q ` px2 ` k2q3 ` pRp2q “ 0,

cRp2q ` pcLp2q ` k3q3 ` x2 “ 0

Nowwe have 6 equations in 5 variables and we can solve it!

Result: 96-bit key k “ pk1, k2, k3q found in under 1 second on a normal
laptop
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Second Target: The JARVIS Block Cipher

Block cipher proposed in 2018 for “algebraic” use cases [AD18]

n-bit blocks and keys

Simple round function:

si si`1

ki

S B´1 C

S computes the inverse, i.e., Spxq “ x´1

B and C are low-degree a�ine polynomials
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Rewriting the Inverse Function

Example (3-bit S-Box)

x 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
Spxq 0x0 0x1 0x5 0x6 0x7 0x2 0x3 0x4

Over F23 , this S-box computes:

Spxq “ x2
n´2
“ x6 “

#

0 x “ 0
x´1 otherwise

Since S computes the inverse of x in F23 for all x ‰ 0, we can also write
@x ‰ 0 : x ¨ y “ 1 (now a degree-2 equation instead of a degree-6 one!)

For su�iciently large block sizes, we can assume that x ‰ 0 with high
probability
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Attack Idea

Rewrite the inverse function as a low-degree function

B and C have only low degree

Introduce intermediate variables

Avoid forward computation of the inverse

Avoid forward computation of (high-degree) B´1
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Introducing the Variables

New variables xi:

si si`1

ki

S B´1 C
xi

New equation for two consecutive rounds:

pCpxiq ` kiq ¨ Bpxi`1q “ 1

for 1 ď i ď r ´ 1 (recall that S computes the inverse)

Twomore equations for plaintext and ciphertext, and equations for round
keys

At the end: 2r ` 1 equations in 2r ` 1 variables
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Complexity of the Attack

There exist complexity estimations for the case in which the number of
equations equals the number of variables

Unfortunately, complexities are too high when using this approach

For example, 6 of 12 rounds of 128-bit JARVIS already need around 2120
computations

So... what can we do?

Reduce the number of variables!

Describe every round key in terms of the master key

Skip every second intermediate variables
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Relate Round Keys to the Master Key

Two consecutive round keys are related by

ki`1 “
1
ki
` ci

Therefore, each round key is a rational function of the master key k0 in
degree 1:

ki`1 “
αi ¨ k0 ` βi
γi ¨ k0 ` δi

.

αi, βi, γi, and δi are constants, and can be precomputed
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Skipping Intermediate Variables

For each intermediate variable xi, note that:

Bpxiq “
1

Cpxi´1q ` ki´1
, Cpxiq “

1
Bpxi`1q

` ki

We find low-degree a�ine polynomials D and E such that

DpBq “ EpCq
Applying these yields

D
ˆ

1
Cpxi´1q ` ki´1

˙

“ E
ˆ

1
Bpxi`1q

` ki

˙

Nowwe can remove every second variable!
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Complexity of Improved Attack

Equations for the plaintext and ciphertext have to be added

In total, we have r
2 ` 1 equations and the same number of variables

New equations have slightly higher degrees (applications of D and E)

Complexity estimates for JARVIS instances:

r nv Complexity in bits

10 (JARVIS-128) 6 100
12 (JARVIS-192) 7 119
14 (JARVIS-256) 8 138

16 9 156
18 10 175
20 11 194
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There’s more to it...

Same strategy works for FRIDAY, a hash function based on JARVIS

By exploiting the internals of the hash function, the attacks becomes
even better

Full details given in the paper [ACG+19]

Maybe the strategies are applicable to other similar designs as well?

Di�erent perspectives

Designer: Make one step of the attack su�iciently expensive

Attacker: Evaluate complexities of all necessary steps

... both are not trivial (active research, see e.g. [ST19])
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Gröbner Bases – Complexity

Reminder: Computing a Gröbner basis only one of the steps in the attack

In most cases, we expect it to be the most expensive one

Complexity di�icult to estimate (depends on number of variables,
number of equations, degrees, ...)

Last step (factorization) might also be a bottleneck

Most theoretic results apply to “random” systems

However, cryptographic schemes tend to be well-structured

Advantage: The attack does not needmany (plaintext, ciphertext) pairs
(sometimes, even one pair is enough!)

Protection (simplified): Force attacker to use many variables, increase
degrees of equations
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Gröbner Basis Attacks – Summary

In short: simplify an equation system and solve it

Recently, they gain importance due to new ciphers which exhibit a “nice”
algebraic structure

Design of such algorithms is motivated by new use cases

Gröbner bases can provide strong attacks against such ciphers

In general: di�icult to apply Gröbner bases to bit-based schemes (i.e.,
working in F2)

Many variables

Approaches based on SAT solvers also e�icient

See e.g. MQ challenge (https://www.mqchallenge.org/)
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