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Homomorphic Encryption

= Homomorphic to operation &

E(m;) ® E(my) = E(my & my), Vmy,m, e M

® and @ can be the same, but don’t have to be!
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Partial Homomorphic Encryption - RSA

= Encryption:
E(m) = m®*mod N
= Homomorphic to multiplication:

E(m;) - E(my) = (mi mod N) - (m§ mod N)
= (my-my)*modN

E(my - m,)
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Partial Homomorphic Encryption - Paillier

= Encryption:
E(m) =g" - r"modn®
... withrandom r
= Homomorphic to addition:

E(my) - E(my) = (g™ - r! mod n?) - (g™ - rj mod n?)
= g™ . (r; - r,)" mod n?
= E(m; + my)



Fully Homomorphic Encryption (FHE)

= Evaluate every circuit homomorphically
=  Homomorphic

= To addition and multiplication

= Arbitrary times
=  Nowadays: Somewhat HE or Levelled HE

= Homomorphic to addition and multiplication
= Limited number of times

m  Become FHE with bootstrapping
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Learning With Errors (LWE)

= Search: Find secret s € Zg given many noisy inner products

" a; < Zy: b= (ajs) +e €7

01<—ZZ

az<—Z3

A= :b:As+eer§

ak<—ZZ

= Decision: Distinguish (A, b) from uniform (A, b) € Zt*" x Z¥

6/23



Ring Learning With Errors (R-LWE)

s LetR=Z[X]/(X"+1)forn=2",and R, = R/qR
= Polynomials of deg < n and coefficients mod g

= Search: Find secret ring element s(X) € R, given:

a1+ Ry b1 =0a,-s+e €Ry
Ay Rg:by=0,-5+e€,€R,

Ak Rg:by=ax-s+e Ry

= Decision: Distinguish (a;, b;) from uniform (a;, b) € Ry x Ry
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(Ring -) Learning With Errors

= Lattice-based cryptography
= Applications:

= FHE
= (PQ) public key encryption
= Key exchange protocols

= Encryption introduces noise
= Ring-LWE:

= Smaller public keys (A € Z{*" vs. a € Ry)
»  Efficient multiplication with NTT (O(n log n))
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FHE Schemes

m  First FHE scheme by Gentry in 2009 [Gen09]
= Today’s schemes:

= BGV[BGV12]
= BFV[Bral2; FV12]
m  CKKS (HEAAN) [Che+17]

®  Based on R-LWE

= Different noise placement/handling

10/23



Noise Propagation

= Encryption introduces noise
=  Homomorphic operations:

= Addition: negligible noise growth
m  Multiplication: significant noise growth

= Limited amount of multiplications! (Leveled HE, Somewhat HE)
= Bootstrapping [Gen09]

m  Costly homomorphic decryption to reset noise
= |HE, SWHE — FHE
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BGV - FHE over Integers

= Gen:s< Ry, 0« Ry,b=a-s+t-ewithm e R;

m  Keys:pk = (b,a),sk=s
= Encrypt: ¢ = Enc(m) = (co,¢c1) =V -pk+ (m+t-et-e;)
= Decrypt: m = Dec(c) = (co — sk - c; mod q) mod ¢

m  Errorif||co — sk - ¢1]|, >= q (wraparound)

Bl ~] ® | B~ | —— [ [

Y —
q mim;

Fig.: Homomorphic multiplication of BGV [Che+17].
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BGV - Multiplication

= Multiplication

m Mult(c,c’) = (co - g, Co - €} + €1 - g, €1 - €1) = (Co, C1,Ca)
m triple decryptablebys®s
= Key Switching (Relinearization) required

®  Quadratic noise growth

= Modulus Switching after multiplication

= =(p/q)-c

m m=(cy—sk-cymodq) = (c; — sk -c;modp)modt
m  Result: noise growth reduced to linear

m  But: different (smaller) modulus each level
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CKKS - Approximate FHE

= FHE problem: No floats
= Fixed-point arithmetic: 3.1415 — 314 at scale 100

=  Multiplication:

= Scale grows
= Noise grows (R-LWE)

m  Big plaintext parts reserved for insignificant LSBs
= |dea:

m  Encode noise in LSBs

m  Rounding operation after multiplication
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CKKS - Rescale

m  Rescale operation:

m Division by a base: ct — ct’' = ct/p (scaling)

m  Consumes modulus: g, — g = q¢/p
= Rescale achieves rounding

m  Discard insignificant LSBs
= Discard noise

= Similar to plain floating-point computation
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CKKS Multiplication & Rescale

mi m2
— —

N |

€1

mimsg
MSB ‘ ‘ ‘ e* ‘ LSB
q
RS |
p~t-mymy
——
| =

Fig.: Homomorphic multiplication and rescaling for approximate arithmetic [Che+17].
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Outlook

= FHE problems:

m  Parameter tuning (maximize performance)
= No branching

= Optimizations:

m  RNSvariants using Chinese Reminder Theorem (CRT)
m  Natural SIMD encoding (packing multiple Ciphertext)

= BFV (FHE over integers):

= Different noise encoding
= Noise budget instead of modulus switching
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Conclusion

= FHE is powerful, but

m . difficult to use

m ___still slow
= Problem: managing LWE noise
= Different schemes with different noise management

=BGV and BFV over integers

m  CKKS for approximate numbers
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