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How do we digitally
exchange keys in the age
of quantum computers?
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Target Field

Our extension field is as follows:
e [, with p =3 mod4
o represented as F . = Fy(i) with i2 +1 =0

e all elements are u + vi where u,v € T,

We are only interested in [p/12] 4+ z where z € {0,1,2}
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jJ-invariants

using elliptic curves in Montgomery form:

E.:y?=x3+ax’+x
has the j-invariant:

. 2-3)3
J (Ea) = %

There are multiple a values that correspond to the same j-invariant
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source: https://eprint.iacr.org/2019/1321.pdf
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Supersingular curves
Torsion Group

Torsion Points Let n € N. The set of n-torsion points of the group E is denoted by
E[n]={PeE: [n]P=0}.

Note that this set is the kernel of the multiplication-by-n map.
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Torsion Group

Torsion Points Let n € N. The set of n-torsion points of the group E is denoted by
E[n]={PeE: [n]P=0}.
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Suprersingular Curves

Definition (Supersingular)

An elliptic curve £ over a finite field Fy is called supersingular, if char(Fg) divides
t=q+1-#E(Fy).



Supersingular curves

Torsion Group

Torsion Points Let n € N. The set of n-torsion points of the group E is denoted by
E[n]={PeE: [n]P=0}.

Note that this set is the kernel of the multiplication-by-n map.
Simplest definition:
p-tortion in Fo:  E[p] =0

These curves have some nice properties, like their j-invariants
always being in F.:



Maps

Using Montgomery form E, : y?> = x> + ax? 4 x, we can do x-only
arithmetic, map on the same curve or from one curve to another:
x — f(x)

or more fully:
(x,y) = (f(x), ¢ y'(x))

where f' is the derivative of f



Isogeny definition

An Isogeny is simply a map:

¢:E—E
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The denominator here determines which points are of order 2,
these points are sent to O when they go through this isogeny.



Maps

Point doubling using Montgomery form:

(212

X 4x(x2+ax+1)

The denominator here determines which points are of order 2,

these points are sent to O when they go through this map.

These points form the kernel of the multiplication-by-2 map, in

other words they are the 2-tortion

G =1{0,(a,0),(%,0),(0,0)}



Tortions
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source: https://eprint.iacr.org/2019/1321.pdf



Tortions
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This holds true for all £ where p 1 ¢

source: https://eprint.iacr.org/2019/1321.pdf



Isogenies

The point doubling operation is described by its Kernel, a group G

of points on the curve:
G ={0,(x,0),(%,0),(0,0)}

Nothing new - we multiply the point by 2 and get a new point on

the same curve...



Isogenies

The point doubling operation is described by its Kernel, a group G
of points on the curve:

G ={0,(x,0),(%,0),(0,0)}

Nothing new - we multiply the point by 2 and get a new point on
the same curve...

However, what if we take an operation that has G = {O, («,0)} ?

This will land us on a new curve with a different j-invariant!
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Isogenies

We call a structure preserving mapping an isogeny when it is
surjective and G is finite, i.e.:

¢ - E — E’ with kernel G

Any finite subgroup G of points in E give rise to an isogeny.
However most will map to the same curve (E = E’)

We can find an isogeny from the corresponding group using Vélu's
formula



Isogenies
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Isogenies - properties

e Isogenies are algebraic group homomorphisms:
(P + Q) =o(P) + 6(Q)
e We can compose Isogenies:
¢:E—E and¢: E' — E"
(0 ¢): E— E"

— This is useful because complicated Isogenies can be broken

down into simpler ones
e Operations on Isogenies stay in F

e The degree of the Isogeny = #G



Isogenies
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S
%@A@%@ )
CIEDwy — (
D ﬁ" e |
@ (-/
@ 19 \@Q

@

2-Isogeny Graph

source: https://eprint.iacr.org/2019/1321.pdf



SIDH

Alice computes 4 isogenies on 2-isogeny graph

source: https://eprint.iacr.org/2019/1321.pdf
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Bob computes 3 isogenies on 3-isogeny graph

source: https://eprint.iacr.org/2019/1321.pdf



SIDH
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Alice computes 4 isogenies from Bob's point on 2-isogeny graph

source: https://eprint.iacr.org/2019/1321.pdf



SIDH

Bob computes 3 isogenies from Alice's point on 3-isogeny graph

source: https://eprint.iacr.org/2019/1321.pdf



SIDH - Security

e Hard problem - hard to find isogenies that connect 2
J-Invariants
» Classical algorithm complexity O(p'/*)
» Quantumn algorithm complexity O(p'/®)
e Size of graph grows exponentially with p

» Alice and Bob won't visit same point
» Number of intemediate j-invariants grows
e Graph properties
» expander graphs - No way to rearrange to simplify graph
» connected - there is a path to every node
» (¢ + 1) regular - each node has ¢ + 1 edges*
» rapid mixing - logarithmic no. of steps away from any other
node
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NIST Post Quantum Competition

PKE/KEM Finalists
e CRYSTALS-KYBER
e NTRU
e SABER
e Classic McEliece

Alternate candidates
e FrodoKEM
e NTRU Prime
e BIKE
e HQC
e SIKE
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