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Literature

The slides are based on the following books
= The Arithmetic of Elliptic Curves, Joseph H. Silverman

= An Introduction to Mathematical Cryptography, Hoffstein, Jeffrey, Pipher, Jill,
Silverman, J.H.

= Elliptic Curves: Number Theory and Cryptography, Lawrence C. Washington

= Elliptische Kurven in der Kryptographie., Annette Werner



Motivation

Suggested by Miller, Koblitz in 1980’s
Smaller key size compared to RSA

Recommended cryptographic primitive (standard)
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Elliptic Curve Cryptography



Elliptic Curves

An elliptic curve E over the field IF is the set of solutions of an equation of the form
Y?Z = X* + aXZ* + bZ?
where a, b € IF, with the discriminant A := —-16(4a> + 27b%) # 0, i.e.
E={(x:y:2) ePX(F)|y’z=x*+axz* + bZ*}.
Affine plane: E:y? =x3 +ax +b
Rational points:

E(F):={0}u{(x,y) e FxF|y*=x>+ax+b}
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The Group Law
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The Group Law
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Mulitplicatio-by-m map

Let £ be an elliptic curve over IF, and let m be an integer. The multiplication-by-m map

[m] : E — Eis defined for P € E as follows

m terms

—_——~
P+--+P m>0
[m]P:: 0 m=20
-P—----—P m<0
———

—m terms
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Elliptic Curve Diffie-Hellman Key Agreement

Alice and Bob agree on an elliptic curve E over a finite field F, and a point P € E(F,).
Then Alice chooses a secret integer m, and Bob chooses a secret integer n.

A=[mlP —ﬂ

Alice Bob

Their shared key is
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DH Example

Elliptic curve E : y? = x> + x over IF; and generator P = (3,3) € E(F7). m = 5,n = 3.

n |0 1 2 3 4 5 6 7
nP |0 (3,3) (1,4) (55) (0,00 (52) (1,3) (3.4)

' A=[5](3,3) = (5,2) ﬂ
\ B=[31(3.,3) - (5.5) u

Alice Bob
K=1[5-3](3,3)=(3,4)
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(Elliptic Curve) Discrete Logarithm Problem

Definition (ECDLP)

Given an elliptic curve E over Fy, a point P € E(IF;) and point Q € (P).
Find:
[xIP=Q

Definition (DLP)

Let (G, -) be a finite cyclic group and g € G a generator of G. Further, let a € G be
arbitrarily. The challenge is to find an x € Z such that

g =a.
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Examples

= LetG=(Z/317Z)*. One can show that 3 is a generator of the cyclic group. Further,
let a = 14. Then the DLP is to find x € Z such that

3 =14
= Elliptic curve £ : y? = x> + x over F7 and generator P = (3,3) € E(F7). m = 5,n = 3.

n [0 1 2 3 4 5 6 7
nP |0 (33) (1,4 (55) (0,0) (52) (1,3) (3,4

K =1[5-3](3,3)=(3,4) Would have to solve:
[x](3,3) = (3,4).
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Dlog Algorithms



Subsection 1

Babystep-Giantstep

13/34



Shanks’s Babystep-Giantstep Algorithm

L ome [V

2. Create two lists:
BS:1,9,9%,...,g™!
GS:a,a(g™™),a(g™™)*,...,a(g”™"*

3. Find a match between the list BS and GS,
sayg'=a-(g.

4. x' < i+jm
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BSGS Example

G = (Z/31Z)*,then m = [\/30 ] = 6. We want to solve the following DLP

The baby steps are:

The giant steps are:

—X R

3 =1

TRES
~ o
w| | =
Ol | N
S
Rl o

r o 1 2 4 5
%39 % B B9 7 1

Therefore the solution tothe DLPisx =3 -6 + 4 = 22.
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BSGS Analyses

Runtime:
Lom e[ VAl
2. BS:1,9,9%,...,g™1 O (m)
GS:a,a(97™),a(g™™)?,...,a(g™™)"* O (m)
3. Finding a match O (mlogm)
O (Vn)
Space Complexity:

The lists in step (2) have length m, so we get O (\/n).
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Pohlig-Hellman

Let |G| = n = [T;Z; p;". Assume we have some oracle O(g, a, p®) which outputs the DL of
aw.r.t. ginagroup of order p°.
Thenfori=1,...,mdo:
1. g < g\
2. d < g"F
3. yi<0(g',d",p*)
Use the CRT to solve
x=y; (modp$) ..., X=Yyn,(modpir).
Running time: O ((27; (e (logn +/p7))))
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Subsection 3

Pollard p-Method
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Definition and Notation

Let Sbe afinite set, letf : S — Sand let x € S. The sequence
Xo=X, x1=Ff(X0), x2=F(x1), x3=Ff(x2), ...

is called the (forward) orbit of x by the map f and is denoted by O (x).

T... Tail Length

& M... Loop Length

19/34



Theorem (Cycle Detection)
Let S be a finite set containing n elements, letf : S — S, and x € S be an initial point.
B Suppose that the forward orbit OF (x) = {xo, X1, X2, ...} of x has a tail of length T
and a loop length of M. Then
Xoj = Xj forsomel <i<T+M.

In particular we only need O (1) memory to find a collision.

@ If f is sufficiently random, then the expected value of T + M is
E (T +M) ~ 1.25\/n.

Hence, we are likely to find a collision in O (/) steps.

20/34



Pollard’s p for the DLP

Partition Ginto S1,S,, S3, where 1 ¢ S,. Let x; € G, then we definef : G - Gin the
following way

gXi X €S
f(xi)={x> x €S,
ax; Xj€Ss.

Note, if we start with xo = 1, every x; can be written as x; = go‘faﬁ", where

aji_1+1 (mod n) Xj € Sl ﬂi—l Xj € Sl
a; =4 2aj-1 (mod n) xi€S,  Bi=120i-1 (modn) X €S,
Qi1 X € S3 Bi-1+1(modn) x;eSs.
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Pollard’s p for the DLP (cont.)

Compute ((x;, v, 57), (%21, azi, B27) ) until there is a collision x; = x,;, i.€.
gaiaﬁf - gaziaﬁzi' Hence,
g = qPibi = gX(ﬁzi—ﬁi)_

Therefore a solution to the given DLP is a solution of the congruence relation
X(Bai = Bi) = @i — azi (mod n).
= Apply the Eucledian algorithm to find the smallest positive integer solution s.

®  Setd = gcd(S, - (i, n), then basic theory about congruence relations tells x is one
of the values n n
— d-1)-.
$,5+ P s+ ( )d
= Tryall possible values (usually d is small).
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Pollard’s p Example

Consider the subgroup G of g, of order n = 101 generated by the element g = 64 and

the DLP
64 =122.

Define

S1={XeFgy,:x <201},
Sy = {x e Fgy; : 202 < x < 403},
S3={xelFg;:404 <x <606}

Apply Pollard’s Rho method:
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Pollard’s p Example (cont.)

il X o Bi| xi cx B i.e. collision, when i = 14.

0 1 0 0 1 0 0

1122 0 1(316 0 2 x(6-12) = 0-64 (mod 101)

2 ﬁ 0 2 12 0 8 —6x = —64 (mod 101)
3138 0 4137 0 18 95x = 37 (mod 101)
11|18 0 55| 7 8 12 Since gcd(95,101) = 1, there is
121352 0 56|309 16 26 only one solution smaller than n.
13| 76 0 11 |352 32 53

14 ]167 0 12|167 64 6 x=18,
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Index-Calculus

Only works for the multiplicative group of a finite field, i.e. ;.
Setting of the DLP g,a € Z;:

g =a.
The algorithm has two major steps:

1. Choose abound B € N and compute the discrete logarithm for all elements g in
the factor base F(B): g =@

2. Lookforanexponenty € {1,2,...,p -1} such that the integer ag” modulo p is
B-smooth.
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Dlog Algorithms (EC)



Subsection 1

MOV Algorithm
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Torsion Group

Torsion Points Let n € N. The set of n-torsion points of the group E is denoted by
E[n]={Pe€E: [n]P=0}.

Note that this set is the kernel of the multiplication-by-n map.

Let £ : y? = x> — Tx + 6 be an elliptic curve over R. E[2] =7.

O € E[2]. So, let P € E[2]~ {0} be arbitrary. From [2]P = O, we know that O lies on the
tangent of E at P. Let aX + bY + cZ = 0 be the equation defining the tangent. Since O is
on this projective line, we get b = 0 and therefore the tangent is is vertical in the affine
plane. This implies that the y-coordinate of P must be 0. To get the remaining points in
E[2], we now have to solve the cubic equation 0 = x* — 7x + 6. By doing this we obtain

E[z] = {07 (_37 0)7 (17 0)7 (27 0)}
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Pairings

Definition (Pairing)

Let G1 = (91), G2 = (g2) and Gr be three groups of prime order p. A (bilinear) pairing
isamap e : Gy x G, » Gr, with the following properties:

Bilinearity: e(g1,9,)?° = e(¢%,93) Va,beZ,

Non-degeneracy: e(g1,92) # 1g,,i.€. €(g1,92) generates Gr.

Definition (Weil-Pairing)
Let E be an elliptic curve over F and n € N, then there exists a map
en: E[n] x E[n] — iy (F) = {x e F* : x" =1}

which is bilinear, called the Weil-pairing. 28/34



Digression: Roots of unity

Definition (Root of Unity)
Let F be afield and n € N. An element x € F is called n-th root of unity in IF if
X" =1.

The set of n-th roots of unity in I is denoted by 1, (IF).

= up(F)isacyclic subgroup of (F*,-)

= The generators of p,(IF) are called primitive n-th roots of unity.

29/34



Pairings (cont.)

Corollary

Let £ be an elliptic curve over a finite field IF and let P € E be a point of order n. Then
there exists a point Q € E[n] such that e,(P, Q) is a primitive n-th root of unity. In
particular, if E[n] c E(F), then pu,(F) c F*.
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MOV Algorithm

Given: Elliptic curve £ over Fy (g = p), with Q € (P) and #(P) = n.
Find: k € Z:
[KP=Q

1. Determine a number [ with E[n] c E(F).

2. Compute a pointR € E[n] such that a = e,(P, R) is a primitive n-th root of unity, i.e.
ahas order nin 11, (Fy).

3. Compute b =e,(Q,R).

4. Solvethe DLP: b =d¥in F.
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Suprersingular Curves

Definition (Supersingular)

An elliptic curve E over a finite field Fy is called supersingular, if char(Fg) divides
t=q+1-#E(F,).

Let E be a supersingular elliptic curve over Fy and t = g + 1 — #E(FFg). Then
E[n] c E(F4), if is chosen according to the table below. The number d to the
corresponding [ is the exponent of the group E(FFy), i.e. the smallest natural
number d such that [d]R = Oforall R € E(F).

e £/ /29 +/3q +2./G

t
[ 2 3 4 6 1
dlg+l @zl ¢*+1 ¢+1 /g1
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Anomalous Curves
An elliptic curve E over I, is called anomalous if #E(FF,,) = p.

The SSSA algorithm computes the discrete logarithm in anomalous curves in
O(log(p)?) steps.
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Implication for key sizes

Fastest generic algorithms: O (/)
Fastest algorithm for F5: L,[2,+/2] = exp((v/2 + 0(1)) Inp)*/*(InIn p)*/2)

Securhy\ RSA DH/DSA ECDH/ECDSA

128 3072 3072 256
256 15360 15360 512
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