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Algebraic Cheat Sheet

Groups + , −

Rings + , − , ×

Fields + , − , ×, ÷
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“A system with a certain completeness, fullness and
self-containedness; a naturally unified organic whole.”
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“A system of [...] numbers, which is complete and
self-contained, such that addition, subtraction,

multiplication and division of any two of these numbers
bring forth a number of the same system.”
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Fields

Roughly speaking, the field axioms are a means to enable elementary arithmetic with
more general objects (not just in Q, R, C).

Definition

A set F together with two functions+ ∶ F ×F → F and ⋅ ∶ F ×F → F is called a field, if

(F,+) is an abelian group (with identity element 0),

(F ∖ {0}, ⋅) is an abelian group and

it holds (a + b) ⋅ c = ac + bc, for every a,b, c ∈ F.

Examples: For which n ∈ N is the ring of congruence classes Z/nZ a field? What about
the set of all real multiples of the identity matrix, i.e. all matrices of the form a ⋅ In for
a ∈ R?
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Homomorphisms

Homomorphisms link algebraic structures (e.g. vector spaces, groups, rings, fields)
with “compatible” structure. They are VERY important!

Definition

A field homomorphism is a map ϕ ∶ E → F between two fields E and F such that ϕ is
a homomorphism of rings, i.e. such that for every a,b ∈ E

ϕ(a + b) = ϕ(a) + ϕ(b) and

ϕ(a ⋅ b) = ϕ(a) ⋅ ϕ(b).

Examples: Complex conjugation ϕ ∶ C→ C, ϕ(a + ib) = a − ib, is a field
homomorphism (try to check!). Is the function ϕ ∶ R→ R with ϕ(x) = x2 a field
homomorphism? What about ϕ(x) = xd (with d ∈ N)?
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Subfields and Extension Fields

Subfields (and extension fields) help us to better understand the base field.

Definition

A field E is called a subfield of a field F, if there is a field homomorphism ι ∶ E → F. In
this case, the field F is also called an extension field of E.

Remark: We write F ⊇ E (or E ⊆ F) to indicate that F is an extension field of E (or E is a
subfield of F).
Examples: Let C ∶= R ×R be the set of all real 2-tuples with canonical addition and
multiplication that makes it a field. Then the function ι ∶ R→ C with ι(a) ∶= (a,0) is a
field homomorphism (why?). Thus R is a subfield of C. Another example: let p < q be
two primes. Is Zp a subfield of Zq?
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Characteristic of a Field I

Important: The characteristic of a field gives us a first hint with what kind of
arithmetic we are dealing. E.g.,

1 + 1 = 2 in Z but 1 + 1 = 0 in Z/2Z.

Remember: The characteristic of a ring is either 0 or a positive integer n.

Question: What about the characteristic of a field E ?
Let char(E) =∶ n ≥ 2 and suppose n is composite, i.e., n = k ⋅m. Then

0 = n ⋅ 1 = (k ⋅m) ⋅ 1 = (k ⋅ 1) ⋅ (m ⋅ 1).

Therefore k ⋅ 1 = 0 or m ⋅ 1 = 0 (why?). A contradiction, since n is the smallest such
integer. Thus n is prime.
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Characteristic of a Field II

Proposition (Characteristic of a Field)

The characteristic of a field is either zero or a prime number.

Nota Bene:

Knowing about the characteristic (of a ring or field) is important because it tells us
how to do arithmetic (see e.g. Freshman’s Dream).

Furthermore, the characteristic helps us classify finite fields (see “Structure of
Finite Fields”).
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Field Theory and Linear Algebra

Remember: Vector spaces are algebraic structures where we can add objects and
multiply objects with a scalar from a field.

Lemma (Field Extensions as Vector Spaces)

Every field extension F ⊇ E can be regarded as an E-vector space.

Sketch of the Proof

Vector addition is addition in F. Scalar multiplication is multiplication in F (this is
meaningful since F ⊇ E is a field extension).
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Field of Fractions I

Idea: We have a (certain) ring and want to construct the smallest field in which it can
be embedded.
Example: Construction of the rationals Q via the integers Z

Typically, a rational number is written in the form m
n , for m,n ∈ Z, n ≠ 0, and thus

can be described by the 2-tuple (m,n) ∈ Z ×Z.

Two fractions m1
n1

and m2
n2

represent the same rational number, if and only if
m1 ⋅ n2 = m2 ⋅ n1.

Observation: Roughly speaking, by adding multiplicative inverses to the integers we
get the rationals.
We abstract these principles and introduce a generalised version of this construction!
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Field of Fractions II

Definition

Let (R,+, ⋅) be a commutative ring with identity that doesn’t contain zero divisors.
Then the following construction on top of R × R ∖ {0}

Frac(R) ∶= {[(m,n)]∼ ∶ m,n ∈ R,n ≠ 0},

where for (m1,n1), (m2,n2) ∈ R × R ∖ {0} we define the equivalence relation

(m1,n1) ∼ (m2,n2) ∶⇔ m1 ⋅ n2 = m2 ⋅ n1,

is called the field of fractions of R. Instead of [(m,n)]∼ we also write m
n .

Remark: Together with canonical addition and multiplication this is indeed a field (try
to check!).
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Finite Fields



Importance of Finite Fields in Crypto

Fundamental finite algebraic structure to do calculations

Used in block ciphers or cryptographic permutations (e.g. the AES operates in F28

or one instance of MiMC in F2129 )

Used to define elliptic curves (e.g. Curve25519 over Fp with p = 2255
− 19)

Used to implement Shamir’s Secret Sharing (e.g. over F2128 )
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Finite Fields

Definition

A finite field is a field that comprises finitely many elements.

Remark: We also write Fq to denote a finite field with q elements.
Most basic example: Ring of congruence classes Zp (or Fp) modulo a prime number p.
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Structure of Finite Fields

Theorem (Existence and Uniqueness of Finite Fields)

The number of elements in a finite field Fq is a prime power, i.e. q = pn, for some
n ∈ N and some prime p. Conversely, for every n ∈ N and every prime p there is a
finite field with pn elements, which is unique up to isomorphism.

Lagrange’s theorem helps us to classify all subfields of a finite field.

Theorem (Subfield Criterion for Finite Fields)

A field Fpm is a subfield of Fqn if and only if p = q and m divides n.
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Prime vs. Irreducible I

Remember: A natural number p greater than one and whose only divisors are 1 and p
itself is called a prime number. In other words

p = a ⋅ b⇒ a = 1 or b = 1.

This aspect of primality leads us to the concept of irreducibility.

Definition

Let R be a commutative ring with identity that doesn’t contain zero divisors. An
element r ∈ R which is not a unit is called irreducible, if

r = a ⋅ b⇒ a ∼ 1 or b ∼ 1.
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Prime vs. Irreducible II

Remember: A fundamental property of a prime number p ∈ N is

p ∣ a ⋅ b⇒ p ∣ a or p ∣ b

This aspect of being prime motivates a more general definition of primality.

Definition

Let R be a commutative ring with identity that doesn’t contain zero divisors. An
element r ∈ R which is not a unit is called prime, if

r ∣ a ⋅ b⇒ r ∣ a or r ∣ b.

Note: In general, being prime is not equivalent to being irreducible, but in the
polynomial ring F[X] over a field F it is!

18 / 25



Construction of Finite Fields I

Remark: There are two di�erent types of finite fields, prime fields (Fp) and extension
fields (Fpn ).
Observation: Prime fields are constructed by taking the integers modulo a prime
number p.
Question: What about extension fields?
Answer: Same principle!

Prime Fields Extension Fields

Base structure Z Fp[X]

Modulus prime number p prime polynomial f

Resulting model Z/(p) = Fp Fp[X]/(f) = Fpn
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Construction of Finite Fields II

In Zp elements are congruence classes (of integers) modulo some prime p. This is the
reason why we write

Fp = {0,1, . . . ,p − 1},

whereas on a technical level in Zp the element i represents the set

i = {i + kp ∶ k ∈ Z} = {. . . , i − 2p, i − p, i, i + p, i + 2p, . . .}.

In Fpn , elements are congruence classes (of polynomials over Fp) modulo some prime
polynomial f of degree n, hence we write

Fpn = {an−1Xn−1
+ an−2Xn−2

+⋯ + a1X + a0 ∶ ai ∈ Fp},

again with the technicality that

an−1Xn−1
+⋯ + a0 = {(an−1Xn−1

+⋯ + a0) + kf ∶ k ∈ Fp[X]}.
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Construction of Finite Fields III

More formally we have

Theorem (Construction of Extension Fields)

Let Fp be a field with p elements. If f ∈ Fp[X] is a prime polynomial of degree n, then
the quotient ring Fp[X]/(f) is a finite field with pn elements.

The justification is straightforward and mimics the proof for Fp over Z. In essence, the
only prerequisite is the following

Theorem (Extended Euclidean Algorithm)

For every two elements a,b in Z (or Fp[X]) we can compute elements x, y in Z (or
Fp[X]) such that

a ⋅ x + b ⋅ y = gcd(a,b).
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Example: Construction of F4

Question: How can we construct the finite field F4 with 4 elements?
Answer: Since 4 = 22, we know the construction! It is an extension field and given by

F4 = F2[X]/(f),

where f is an irreducible (=prime) polynomial in F2[X] of degree 2. For f we take the
irreducible polynomial X2

+ X + 1 (check!). Then

F4 = {0,1, X, X + 1}.

Addition is clear (how?). For multiplication consider, e.g.,

X ⋅ (X + 1) ≡ X2
+ X ≡ 1 mod f .
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Maps over Finite Fields

Remark: Every polynomial f ∈ E[X] induces a polynomial function f ∶ E → E, a↦ f(a).
Remember: Over R, for a data set of m points (x1, y1), . . . , (xm, ym) there is a unique
polynomial f with degree at most m − 1 that interpolates these points, i.e. f(xi) = yi for
all i.

Theorem (Every Function over a Finite Field is a Polynomial Function)

Every map Fpn → Fpn can be uniquely described as a univariate polynomial with
maximum degree pn

− 1.

Important: Above property is the basis for several approaches in (symmetric)
cryptanalysis (e.g. Interpolation and Higher-Order Di�erentials)!
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Questions?
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Questions for Self-Control

1. What are the main di�erences between a commutative ring (with identity) and a
field?

2. Describe the construction of prime and extension fields and discuss the
similarities/di�erences in the construction process.

3. Can every map over a finite field be described as a polynomial? Justify your
answer.

4. What is the connection between linear algebra and field theory? Why is it
beneficial?
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