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Literature

The slides are based on the following books

Algebra of Cryptologists, Alko R. Meijer

Algebra, Gisbert Wüstholz

A Mind at Play: How Claude Shannon Invented the Information Age, Jimmy Soni,
Rob Goodman
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Rings



Recap from Group Theory

A group is a set G together with a binary operation ∗ ∶ G × G→ G, where ∗ is
associative, has an identity element, and every element has an inverse element.

Examples:

{Z,+}

{Zn,+}.
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Rings

Definition (Ring)

A (commutative) ring is a set R together with two binary operations + ∶ R × R→ R
and ⋅ ∶ R × R→ R, such that the following is satisfied:

{R,+} is an abelian group.

{R, ⋅} is associative and has an identity element.

∀r, s, t ∈ R ∶ r(s + t) = rs + rt (distributive).

Note: We write 0 resp. 1 for the identity in {R,+} resp. {R, ⋅}.
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Rings: Examples

{Z,+, ⋅}

{Zn,+, ⋅}
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Why algebra matters

The current would pass through if only z were switched on, or if y and z were switched
on, or if x and z were switched on, or if x and y were switched on, or if all three were
switched on.

x′y′z + x′yz + xy′z + xyz′ + xyz
[distributive] ⇒ yz(x + x′) + y′z(x + x′) + xyz′

[x + x′ = 1] ⇒ yz + y′z + xyz′

[distributive, y + y′ = 1] ⇒ z + xyz′

[x + x′y = x + y] ⇒ z + xy
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Units

Definition (Unit)

Let R be a ring. An element x ∈ R is called a unit of R if

∃y ∈ R ∶ xy = 1.

We denote the set of all units of R by R∗, which together with the multiplication is
an abelian group.

Z∗ =?.

Z∗n =?.
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Ring Homomorphisms

Recall: A map φ ∶ G→ G′ between two groups is called group homomorphism if

φ(gh) = φ(g)φ(h) ∀g,h ∈ G.

Definition (Ring homomorphism)

Amap φ ∶ R→ S between to rings is called (ring) homomorphism if for all r, s ∈ R:

φ(r + s) = φ(r) + φ(s),

φ(rs) = φ(r)φ(s),

φ(1R) = 1S.

Note: If φ is an injective homomorphism, we sometimes call it embedding.
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Ring Homomorphisms: Examples

The "modulo nmap"

φ ∶ ZÐ→ Z/nZ
az→ a + nZ

is a ring homomorphism.

Let R and S be rings such that R ⊂ S. Then we always have the trivial embedding:

φ ∶ RÐ→ S
r z→ r
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Characteristic: Examples

The characteristic of a ring R is the smallest n ∈ N such that n ⋅ 1 = 1 + ⋅ ⋅ ⋅ + 1 = 0.

char(Z) = 0.

char(Zn) = n, because 0̄ = n ⋅ 1̄.

There exists infinite rings with a non-zero characteristic (see section about
polynomial rings).
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Frobenius Homomorphism

Proposition (The Freshman’s Dream)

Let p be prime and let R be a ring of characteristic p. Further, let x, y ∈ R, then

(x + y)p = xp + yp.

Thereby, the map

Frobp ∶ RÐ→ R
x z→ xp

is a ring homomorphism, called the Frobenius homomorphism.

Note: Frobp can be used as indicator for weaknesses of elliptic curves.
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Ideals

A subset R′ ⊂ R of a ring R is called a subring of R if

{R′,+} is a subgroup of {R,+},

R′ is closed under multiplication.

Definition (Ideal)

Let R be a ring. A subring I ⊂ R is called an ideal in R if

∀r ∈ R∀a ∈ I ∶ ar ∈ I.
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Ideal: Examples

nZ inZ.

Z is only a subring inR. Why?
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Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let a1, . . . ,ak ∈ Z and n1, . . . ,nk pairwise coprime. Then there exists an element
x ∈ Z such that

x ≡ a1 mod (n1)
⋮
x ≡ ak mod (nk).

Z/NZ ≅ Z/n1Z ×⋯ ×Z/nkZ
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Decomposition

Corollary

Letm1, . . . ,mn ∈ N pairwise co-prime withm = m1m2⋯mn. It follows that

Zm ≅ Zm1 × ⋅ ⋅ ⋅ ×Zmn .

m1 = 4,m2 = 5,m3 = 3

m1 = 7,m2 = 2,m3 = 3

m1 = 2,m2 = 5,m3 = 6
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Quotient Rings

Recall: Let H ⊂ G be a subgroup of G. Then G/H = {gH ∶ g ∈ G}with the operation
(gH,g′H) ↦ (gg′H) is the corresponding quotient group.

Definition (Quotient Ring)

Let R be a ring and let I ⊂ R be an ideal of R. The quotient group R/I = {r + I ∶ r ∈ R}
together with the following multiplication

⋅ ∶ R/I × R/IÐ→ R/I
(r + I, r′ + I) z→ (rr′) + I.

is called a quotient ring.

R = Z, I ∶= (5)Z ⊂ Z
R/I = Z/5Z = Z5 = {a + 5Z ∈ Z/5Z ∣ a ∈ Z} = {0̄, 1̄, 2̄, 3̄, 4̄}.
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Chinese Remainder Theorem for Ideals

Notation: In analogy to the integers we write r ≡ s mod I, if r − s ∈ I.

Theorem (Chinese Remainder Theorem for Ideals)

Let R be a ring, and let x1, . . . , xn ∈ R. Further, let I1, . . . , In ⊂ R be ideals of Rwith
Ii + Ij = R, for i ≠ j. Then there exists an element x ∈ R such that

x ≡ xi mod Ii, for 1 ≤ i ≤ n.
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What you should remember!

Definition of ring.

Definition of an ideal.

Chinese Remainder Theorem.
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Polynomial rings



Polynomials

Definition (Polynomial)

Let R be a ring. We define a polynomial over R as a finite formal sum of the form

f(X) =
n

∑
i=0
aiX i,

where ai ∈ R, called the coe�icients of f . Further, we assume that an ≠ 0 ∈ R, except
all ai’s are zero.

The leading coe�icient of f(X) is an.
The constant term of f(X) is a0.
The degree of f(X) is deg f(X) = n.

The symbol X is called indeterminate or variable. 19 / 26



Polynomials: Examples

Let R = Z, then
f(X) = −3X10 + 20X7 + 4X3 + 8

is a polynomial over Z, with

leading coe�icient −3,
constant term 8, and
deg f(X) = 10.

Note:
g(X) = 1

2
X2 − X + 1

is a polynomial overQ, but not over the smaller ring Z.
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Binary Operations on Polynomials

Let R be a ring and let f(X) = ∑n
i=0 aiX

i and g(X) = ∑m
i=0 biX

i be two polynomials over R.
(Assume w.l.o.g n > m, and set bi = 0 form < i ≤ n)
We define the polynomial addition componentwise:

f(X) + g(X) ∶=
n

∑
i=0

(ai + bi)X i.

Multiplication is defined as follows

f(X)g(X) ∶=
m+n

∑
j=0

cjX j, with cj ∶=
j

∑
i=0
aibj−i.
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Binary Operations on Polynomials: Examples

Consider polynomials overZ, i.e. all polynomials with integer coe�icients. Let
f(X) = 1 + X2,g(X) = 1 + X2 + X4 ∈ Z[X]. Then

f(X) + g(X) = 2 + 2X2 + X4

f(X)g(X) = 1 + X2 + X4 + X2 + X4 + X6 = 1 + 2X2 + 2X4 + X6

Consider polynomials overZ2, i.e. all polynomials with coe�icients in {0̄, 1̄}. Let
f(X) = 1̄ + X2,g(X) = 1̄ + X2 + X4 ∈ Z2[X]. Then

f(X) + g(X) = 2̄ + 2̄X2 + X4 = X4

f(X)g(X) = 1̄ + X2 + X4 + X2 + X4 + X6 = 1̄ + X6
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Polynomial Rings

Definition (Polynomial ring)

Let R be a ring. The polynomial ring R[X] over R is defined as the set of all
polynomials over R, together with the operations defined above.

Let R be a ring.

The proof that the polynomial ring R[X] actually is a ring, is not di�icult but
tedious andmessy.

The construction of the polynomial in one variable can be generalized to the
polynomial ring in n variable R[X1, . . . ,Xn].

For elliptic curves the polynomial rings R[X, Y] and R[X, Y,Z] are important.
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Polynomial vs. Polynomial function

Given f(X)with coe�icients in R, we can view f(X) as either

a polynomial, if we consider X merely as a placeholder,

or as a polynomial function, if we allow X to take values in R (or a overring of R).

Example: Let f(X) = 2X2 − 3 ∈ Z[X] and s = 1
2 ∈ Q. Then we can evaluate f(X) at s and

get − 52 ∈ Q.
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Long Division

The greatest common divisor of a and b (write gcd(a,b)) is a divisor d of a and b,
which gets divided by every common divisor of a and b.

There exists a greatest common divisor d(X) = gcd(f(X),g(X)). It is computed in
analogy to the integers.

Long Division: Let f(X) = X5 + X4 + X2 + 1,g(X) = X4 + X2 + X + 1 ∈ Z2[X]:

X5 + X4 + X2 + 1 = (X + 1)(X4 + X2 + X + 1) + (X3 + X2)
X4 + X2 + X + 1 = (X + 1)(X3 + X2) + (X + 1)

X3 + X2 = X2(X + 1) + 0

This shows that
gcd(f(X),g(X)) = X + 1 ∈ Z2[X].
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Irreducible Polynomials

Definition (Irreducible Polynomial)

A non-constant polynomial f(X) ∈ R[X] is called irreducible in R[X] if it cannot be
factored in two non-constant polynomials with coe�icients in R.

X5 + X4 + 1 ∈ Z2[X] is reducible, since X5 + X4 + 1 = (X2 + X + 1)(X3 + X + 1).

f(X) = X2 + X + 1 ∈ Z2[X] is irreducible. Assume to the contrary f(X) is reducible,
i.e. f(X) = (X − α)(X − β), with α,β ∈ Z2. But then f(α) = 0, a contradiction.

Irreducibility highly depends on the underlying field, e.g. X2 + 1 is irreducible in
R[X], but reducible inC[X], since X2 + 1 = (X − i)(X + i).
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