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Literature

The slides are based on the following books

Algebra of Cryptologists, Alko R. Meijer

An Introduction to Mathematical Cryptography, Ho�stein, Je�rey, Pipher, Jill,
Silverman, J.H.

Algebra, Gisbert Wüstholz
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Congruences



Congruences 1

Let a,n ∈ N be integers. The set of all multiples of n is denoted by
nZ ∶= {kn ∶ k ∈ Z} = {. . . ,−2n,−n,0,n,2n, . . .}, in analogy define

a + nZ ∶= {. . . ,a − 2n,a − n,a,a + n,a + 2n, . . .}.

The set of congruence or residue classes modulo n is then defined as follows

Zn ∶= Z/nZ ∶= {a + nZ ∣ a ∈ Z}.

The fact that two congruence classes a + nZ and b + nZ are the same is o�en denoted
by

a ≡ b mod n,

which is itself defined as n ∣ a − b, i.e. ∃k ∈ Z ∶ nk = a − b.
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Congruences 2

We can equip Zn with two operations induced by the operations onZ

+Zn ∶ Zn ×Zn Ð→ Zn
(a + nZ,b + nZ) z→ (a +Z b) + nZ,

⋅Zn ∶ Zn ×Zn Ð→ Zn
(a + nZ,b + nZ) z→ (a ⋅Z b) + nZ.

Notation: By ā ∈ Zn, we actually mean a + nZ.
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Groups



Group

Definition (Group)

A group is a set G together with a binary operation ∗ ∶ G × G→ G, such that the
following is satisfied:

∀a,b, c ∈ G ∶ a ∗ (b ∗ c) = (a ∗ b) ∗ c (associative).

∃e ∈ G∀a ∈ G ∶ e ∗ a = a ∗ e = a (identity element).

∀a ∈ G∃a′ ∈ G ∶ a ∗ a′ = a′ ∗ a = e (inverses).

We call G commutative/abelian if a ∗ b = b ∗ a for all a,b ∈ G.
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Groups: Examples

{Z,+} is an abelian group

{Z, ⋅} is not a group.

{Zn,+} is an abelian groups.
In particular, {Z2,+} = {{0̄, 1̄},+} is an abelian group.

The Rubik’s Cube structure is non-abelian group.
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Immediate Consequences

The identity element is unique.

The inverse element is unique.

For a ∈ {G,∗}, define
an ∶= a ∗ ⋅ ⋅ ⋅ ∗ a

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

, if n > 0,

a0 = e and an = (a−1)n if n < 0.
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Subgroups

Definition (Subgroup)

Let {G,∗} be a group and let H ⊂ G be a non-empty subset of G such that

∀a,b ∈ H ∶ a ∗ b ∈ H (closed under ∗)

∀a ∈ H ∶ a−1 ∈ H (closed under taking inverses)

Then H is called a subgroup of G.

Example: Consider {Z6,+} = {{0̄, 1̄, 2̄, 3̄, 4̄, 5̄},+}. Which of the following sets form a
subgroup?

{0̄}, {0̄, 1̄, 2̄},{0̄, 2̄, 4̄}

8 / 22



Quotient Groups
Notation: Let {G, ⋅} be an abelian group, g ∈ G and letM be a non-empty set, then
gM ∶= {gm ∶ m ∈ M}.

Definition (Quotient group)

Let {G, ⋅} be an abelian group and let H ⊂ G be a subgroup of G. The quotient group
{G/H, ○} is defined as follows G/H ∶= {gH ∶ g ∈ G}, with the operation

○ ∶ G/H × G/HÐ→ G/H
(gH,g′H) z→ (gg′)H.

E.g. G = {Z,+}, and H ∶= nZ ⊂ Z for some n ∈ N↝ G/H = Z/nZ, with the operation

(a + nZ,b + nZ) z→ (a + b) + nZ.
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Direct Sum

Definition (Direct sum)

The direct sum of two abelian groups G1 and G2 is again a group

G = G1 × G2 = {(a1,a2) ∶ ai ∈ Gi},

with component-wise addition

(a1,a2) + (b1,b2) ∶= (a1 + b1,a2 + b2).

Example: The Klein four-group

Z/2Z ×Z/2Z = {(0̄, 0̄), (1̄, 0̄), (0̄, 1̄), (1̄, 1̄)}.
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Homomorphisms 1

Definition (Homomorphism)

A map φ ∶ G→ G′ between two groups is called (group) homomorphism if

φ(gh) = φ(g)φ(h) ∀g,h ∈ G.

The kernel and the image of φ are defined as the following sets

kerφ ∶= {g ∈ G ∶ φ(g) = e} imφ ∶= {φ(g) ∶ g ∈ G}.

We call φ an isomorphism if in addition φ is bijective.
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Homomorphisms 2

Proposition

Let φ ∶ G→ G′ be a group homomorphism, then the kernel kerφ ⊂ G and the image
imφ ⊂ G′ are subgroups. Further, φ is injective if and only if kerφ = {e}.

Examples:

Z/(mn)Z ≅ Z/mZ ×Z/nZ, for the case that gcd(m,n) = 1.

Z/p2Z /≅ Z/pZ ×Z/pZ.
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What you should remember!

Definition of a group.

Zn and how to compute with it.

Homomorphisms canmake computations simpler.
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Cyclic Groups



Order

Definition (Order)

Let G be a group and let g ∈ G. The order of g, denoted by ord(g) is the smallest
positive integer n such that gn = e, if there is no such n, then g has infinite order.
The order (exponent) of the group G is its cardinality and denoted by ∣G∣ or#G.

Examples:

Take the group (Z∗30, ⋅), and the residue class 7 ∶= 7 + 30Z. We get that ord(7) = 4,
because

71 ≡ 7 (mod 30), 72 ≡ 19 (mod 30), 73 ≡ 13 (mod 30), 74 ≡ 1 (mod 30).

14 / 22



Cyclic Group

Definition (Cyclic group)

A group G (and implicitly a subgroup) is called cyclic if

∃g ∈ G ∶ ⟨g⟩ ∶= {gn ∣ n ∈ N} = G.

Note, for a ∈ G, the subgroup ⟨a⟩ is the smallest possible subgroup of Gwhich contains
the element a, and is o�en referred to as the subgroup generated by a.

Proposition

Every finite cyclic group is isomorphic toZ/nZ for some n ∈ N and every cyclic
group with infinitely many elements is isomorphic to the integersZ.
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Generators of cyclic groups

Proposition

Let G = ⟨g⟩ be a finite cyclic group. Then gr is a generator of G if r ≠ 0 and
gcd(r,ord(g)) = 1. In particular, the number of generators of G is φ(#G).

Example: Take the group (Z11,+).
From the last proposition we get that this group has φ(11) = 10 generators, i.e. every
element besides the neutral element is a generator.
In contrast if we look at the larger group (Z14,+), we see that this group has only
φ(14) = 6 ⋅ 1 = 6 generators.
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Discrete Logartihm Problem

Definition (Discrete Logarithm Problem (DLP))

Given a finite cyclic group (G, ⋅), a generator g ∈ G, and a ∈ G arbitrarily, computing
x ∈ Z such that

gx = a. (1)

For the DLP to be well-defined, it is necessary that ⟨g⟩ = G.

Usually, one implicitly looks for the smallest positive x satisfying equation (1).

17 / 22



Application of DLP: Zero Knowledge Proof

Secret: x ∈ Z.
Public: Finite cyclic group Gwith a generator g, and a = gx.

Zero Knowledge Proof:

Alice Bob
r ← Z,
c← gr

c
ÐÐÐÐÐ→

b
←ÐÐÐÐÐ b ∈ {0,1}

y ← xb + r
y

ÐÐÐÐÐ→

Verify: gy = cab
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What you should remember!

Cyclic groups are very handy because they have a generator.
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Lagrange’s Theorem

and its applications



Lagrange’s Theorem

Lemma

Let G be a finite group. Then every element of G has finite order. Further, if a ∈ G has
order d and if ak = e, then d ∣ k.

Proposition (Lagrange’s Theorem)

Let G be a finite group and let a ∈ G. Then the ord(a) ∣#G.
More precisely, let n = #G and let ord(a) = d. Then

an = e and d ∣ n.

Further, let H ⊂ G be a subgroup then#H ∣#G.
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Applications from Lagrange 1

Corollary (Euler’s theorem)

Let n ∈ N and ā ∈ Z∗n . Then
āφ(n) = 1̄.

Example: Let n = pqwith p,q primes. We choose a public key ē ∈ Z∗n . Further, let
d̄ ∈ Z∗n be the inverse element of ē in Z∗n , i.e.

de ≡ 1 mod φ(n).

Then for all ā ∈ Z∗n , we have:

(ae)d = a1+kφ(n) = a ⋅ (aφ(n))k ≡ a ⋅ 1k ≡ a mod n.
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Applications from Lagrange 2

Corollary (Fermat’s little theorem)

Let p be prime and ā ∈ Z∗p . Then
āp−1 = 1̄.
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