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Literature

The slides are based on the following books
= Algebra of Cryptologists, Alko R. Meijer

= An Introduction to Mathematical Cryptography, Hoffstein, Jeffrey, Pipher, Jill,
Silverman, J.H.

®  Algebra, Gisbert Wiistholz
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Congruences



Congruences 1

Let a,n € N be integers. The set of all multiples of n is denoted by
nZ:={kn:keZ}={...,-2n,-n,0,n,2n,... },in analogy define
a+nZ:={...,a-2n,a-n,a,a+n,a+2n,...}.
The set of congruence or residue classes modulo n is then defined as follows
Zn=7|nZ:={a+nZ|acZ}.
The fact that two congruence classes a + nZ and b + nZ are the same is often denoted

by
a=b modn,

which isitself definedasn |a-b,i.e. 3k e Z:nk=a-b.



Congruences 2

We can equip Z, with two operations induced by the operations on Z

tg, Lp X Lip —> Lp
(a+nZ,b+nZ)— (a+,b) +nZ,

'zn:ZnXZn_’Zn
(a+nZ,b+nZ)— (a-,b) +nZ.

Notation: By @ € Z,, we actually mean a + nZ.
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Groups



Group

Definition (Group)

A group is a set G together with a binary operation * : G x G — G, such that the
following is satisfied:

Va,b,ceG:ax* (bx*c)=(axb) = c(associative).
JeeGVaeG:e*a=a=xe=a(identity element).
VaeG3ia' € G:ax*a’ =a’ *a=e(inverses).

We call G commutative/abelianifa x b = b x aforalla, b € G.
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Groups: Examples

= {Z,+}isan abelian group
= {Z,-}isnotagroup.

= {Zp,+}isan abelian groups.

In particular, {Z,, +} = {{0,1},+} is an abelian group.

= The Rubik’s Cube structure is non-abelian group.
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Immediate Consequences

= Theidentity element is unique.

= Theinverse element is unique.

Fora € {G, +}, define

n

a =qx*---

%G,

e
ntimes

a®=eanda” = (a1)"ifn<0.

ifn>0,

7/22



Subgroups

Definition (Subgroup)

Let {G, } be a group and let H c G be a non-empty subset of G such that
m Va,beH:axbeH (closed under *)
= VaeH:a!eH (closed under taking inverses)

Then H is called a subgroup of G.

subgroup?
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Quotient Groups
Notation: Let {G,-} be an abelian group, g € G and let M be a non-empty set, then

gM = {gm:m e Mj}.
Definition (Quotient group)

Let {G, -} be an abelian group and let H c G be a subgroup of G. The quotient group
{G/H, o} is defined as follows G/H := {gH : g € G}, with the operation

o:G/Hx G/H — GJH
(gH,g'H) — (99")H.

E.g. G={Z,+},and H:=nZ c Z for some n € N ~ G/H = Z/n’Z, with the operation

(a+nZ,b+nZ)— (a+b)+nZ.
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Direct Sum

Definition (Direct sum)

The direct sum of two abelian groups G; and G, is again a group
G=G1xGy ={(a1,a2) : g € Gj},
with component-wise addition

(a1,a2) + (b1,b2) = (a1 + by, a; + by).

Example: The Klein four-group

Z]2Z x ZJ27 = {(0,0), (1,0),(0,1),(1,1)}.
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Homomorphisms 1

Definition (Homomorphism)

A map ¢ : G - G’ between two groups is called (group) homomorphism if

¢(gh) = ¢(g)o(h) Vg,heG.

The kernel and the image of ¢ are defined as the following sets
ker¢:={geG:p(g) =€} im¢:={s(g):9geGC}.

We call ¢ an isomorphism if in addition ¢ is bijective.
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Homomorphisms 2

Let ¢ : G —> G’ be a group homomorphism, then the kernel ker ¢ c G and the image
im ¢ c G are subgroups. Further, ¢ is injective if and only if ker ¢ = {e}.

Examples:
= Z/(mn)Z = Z]mZ x Z|nZ, for the case that gcd(m,n) = 1.
" Z[p*Z ¢ Z|pZ x 7| pZ.
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What you should remember!
= Definition of a group.

® 7, and how to compute with it.

= Homomorphisms can make computations simpler.
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Cyclic Groups



Order

Definition (Order)

Let G be a group and let g € G. The order of g, denoted by ord(g) is the smallest
positive integer n such that g" = e, if there is no such n, then g has infinite order.
The order (exponent) of the group G is its cardinality and denoted by |G| or #G.

Examples:

= Take the group (Z3,,-), and the residue class 7 := 7 + 30Z. We get that ord(7) = 4,
because

7' =7 (mod30), 72=19 (mod30), 7=13 (mod30), 7*=1 (mod 30).
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Cyclic Group

Definition (Cyclic group)
A group G (and implicitly a subgroup) is called cyclic if
dgeG:{(g):={g" |neN} =G.

Note, for a € G, the subgroup (a) is the smallest possible subgroup of G which contains
the element g, and is often referred to as the subgroup generated by a.

Every finite cyclic group is isomorphic to Z/nZ for some n € N and every cyclic
group with infinitely many elements is isomorphic to the integers Z.
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Generators of cyclic groups

Let G = (g) be afinite cyclic group. Then g” is a generator of G if r # 0 and
ged(r,ord(g)) = 1. In particular, the number of generators of G is ¢(#G).

Example: Take the group (Z11, +).

From the last proposition we get that this group has ¢(11) = 10 generators, i.e. every
element besides the neutral element is a generator.

In contrast if we look at the larger group (Z14, +), we see that this group has only
¢(14) = 6-1 = 6 generators.
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Discrete Logartihm Problem

Definition (Discrete Logarithm Problem (DLP))

Given a finite cyclic group (G, -), a generator g € G, and a € G arbitrarily, computing
X € Z such that
g (1)

= Forthe DLP to be well-defined, it is necessary that (g) = G.

= Usually, one implicitly looks for the smallest positive x satisfying equation (1).
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Application of DLP: Zero Knowledge Proof

Secret: x € Z.
Public: Finite cyclic group G with a generator g, and a = g*.

Zero Knowledge Proof:

Alice Bob

—2  befo,1}

Verify: ¢ = ca®
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What you should remember!

m  Cyclic groups are very handy because they have a generator.
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Lagrange’s Theorem

and its applications



Lagrange’s Theorem

Lemma

Let G be a finite group. Then every element of G has finite order. Further, if a € G has
orderd and if a* = e, then d | k.
Proposition (Lagrange’s Theorem)

Let G be afinite group and let a € G. Then the ord(a) | #G.
More precisely, let n = #G and let ord(a) = d. Then

a"=e and d|n.

Further, let H c G be a subgroup then #H | #G.
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Applications from Lagrange 1

Corollary (Euler’s theorem)

LetneNandaeZ,. Then
a®™ =1

Example: Let n = pq with p, q primes. We choose a public key € € Z;. Further, let
d € Z) betheinverse elementoféinZ;,i.e.

de=1 mod ¢(n).
Thenforalla € Z;, we have:

(ae)d = gttke(n) _ 4. (a¢(”))k =a-1=a modn.
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Applications from Lagrange 2

Corollary (Fermat’s little theorem)

Let p be primeand @ € Z;. Then
a’t=1.
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