System Security 1 - Memory Safety

Information Security

Michael Schwarz

November 8, 2019

www.iaik.tugraz.at

Memory safety is a concern in software development

Memory safety is a concern in software development that aims to *avoid software bugs* that cause security *vulnerabilities*

Memory safety is a concern in software development that aims to *avoid software bugs* that cause security *vulnerabilities* dealing with random-access memory (RAM) access,

Memory safety is a concern in software development that aims to *avoid software bugs* that cause security *vulnerabilities* dealing with random-access memory *(RAM) access*, such as buffer overflows and dangling pointers.

Memory Safety - More Details

• Access errors

- Access errors
 - Buffer overflow/over-read

- Access errors
 - Buffer overflow/over-read
 - Invalid pointer

- Access errors
 - Buffer overflow/over-read
 - Invalid pointer
 - Race condition

- Access errors
 - Buffer overflow/over-read
 - Invalid pointer
 - Race condition
 - Use after free

- Access errors
 - Buffer overflow/over-read
 - Invalid pointer
 - Race condition
 - Use after free
- Uninitialized variables

- Access errors
 - Buffer overflow/over-read
 - Invalid pointer
 - Race condition
 - Use after free
- Uninitialized variables
 - Null pointer access

- Access errors
 - Buffer overflow/over-read
 - Invalid pointer
 - Race condition
 - Use after free
- Uninitialized variables
 - Null pointer access
 - Uninitialized pointer access

- Access errors
 - Buffer overflow/over-read
 - Invalid pointer
 - Race condition
 - Use after free
- Uninitialized variables
 - Null pointer access
 - Uninitialized pointer access
- Memory leaks

Memory Safety - More Details

- Access errors
 - Buffer overflow/over-read
 - Invalid pointer
 - Race condition
 - Use after free
- Uninitialized variables
 - Null pointer access
 - Uninitialized pointer access
- Memory leaks
 - Stack/heap overflow

Memory Safety - More Details

- Access errors
 - Buffer overflow/over-read
 - Invalid pointer
 - Race condition
 - Use after free
- Uninitialized variables
 - Null pointer access
 - Uninitialized pointer access
- Memory leaks
 - Stack/heap overflow
 - Invalid free

- Access errors
 - Buffer overflow/over-read
 - Invalid pointer
 - Race condition
 - Use after free
- Uninitialized variables
 - Null pointer access
 - Uninitialized pointer access
- Memory leaks
 - Stack/heap overflow
 - Invalid free
 - Unwanted aliasing

Memory Safety Violation

Two types of memory safety violation

www.tugraz.at

Two types of memory safety violation

Spatial violation: memory access is out of object's bounds

- buffer overflow
- out-of-bounds reads
- null pointer dereference

www.tugraz.at

Two types of memory safety violation

Spatial violation: memory access is out of object's bounds

- buffer overflow
- out-of-bounds reads
- null pointer dereference

Temporal violation: memory access refers to an invalid object

- use after free
- double free
- use of uninitialized memory

Motivation

Memory Corruption Vulnerabilities¹

366 420 342 351 91 95 128 188

Year

The complexer the programs, the more bugs

¹Source: http://www.cvedetails.com/vulnerabilities-by-types.php

Michael Schwarz — www.iaik.tugraz.at

- There are two views on memory safety:
 - Attackers try to violate memory safety
 - Defenders try to ensure memory safety

- There are two views on memory safety:
 - Attackers try to violate memory safety
 - Defenders try to ensure memory safety
- Attackers and defenders are often seen as teams in a "security war game"

- There are two views on memory safety:
 - Attackers try to violate memory safety
 - Defenders try to ensure memory safety
- Attackers and defenders are often seen as teams in a "security war game"
- The Red Team tries to find security problems and mount attacks



- There are two views on memory safety:
 - Attackers try to violate memory safety
 - Defenders try to ensure memory safety
- Attackers and defenders are often seen as teams in a "security war game"
- The Red Team tries to find security problems and mount attacks

• The Blue Team tries to protect software and defend against attacks

- The Red Team are not (only) criminals, their work is essential for the Blue Team
- Blue Team develops defenses based on Red Team attacks

- The Red Team are not (only) criminals, their work is essential for the Blue Team
- Blue Team develops defenses based on Red Team attacks
- Red Team breaks them again

- The Red Team are not (only) criminals, their work is essential for the Blue Team
- Blue Team develops defenses based on Red Team attacks
- Red Team breaks them again
- \rightarrow More secure software and better defenses

- The Red Team are not (only) criminals, their work is essential for the Blue Team
- Blue Team develops defenses based on Red Team attacks
- Red Team breaks them again
- \rightarrow More secure software and better defenses
 - Ultimate goal: memory safe programs

Red Team aka Attacks

• What is an exploit?

Michael Schwarz — www.iaik.tugraz.at

- What is an exploit?
- "a software tool designed to take advantage of a flaw in a computer system" (Oxford)
- "[...] cause unintended or unanticipated behavior to occur on computer software" (Wikipedia)
- "If Achilless heel was his vulnerability in the Iliad, then Pariss poison tipped arrow was the exploit. " (Kaspersky)

- What is an exploit?
- "a software tool designed to take advantage of a flaw in a computer system" (Oxford)
- "[...] cause unintended or unanticipated behavior to occur on computer software" (Wikipedia)
- "If Achilless heel was his vulnerability in the Iliad, then Pariss poison tipped arrow was the exploit. " (Kaspersky)
- \rightarrow Quite fuzzy

What is a "normal" program?²

• Programs: machines solving a certain problem(?)

²Most of the following ideas are from Halvar Flake / Thomas Dullien

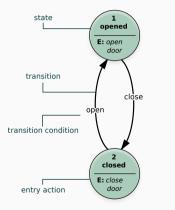
What is a "normal" program?²

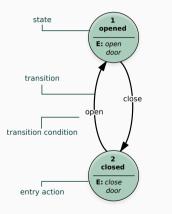
- Programs: machines solving a certain problem(?)
- Ideally, finite-state machines

 $^2\mbox{Most}$ of the following ideas are from Halvar Flake / Thomas Dullien

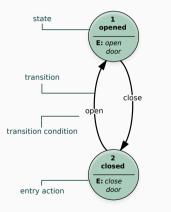
What is a "normal" program?²

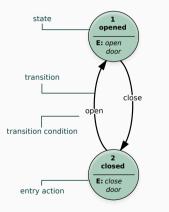
- Programs: machines solving a certain problem(?)
- Ideally, finite-state machines
- We don't build such machines → general-purpose hardware emulating them


²Most of the following ideas are from Halvar Flake / Thomas Dullien

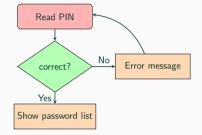

- Programs: machines solving a certain problem(?)
- Ideally, finite-state machines
- We don't build such machines → general-purpose hardware emulating them
- Programs: emulators for finite-state machines

²Most of the following ideas are from Halvar Flake / Thomas Dullien

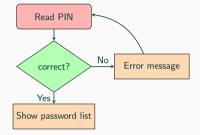

What is a "normal" program?


• Finite-state machines: states and transitions

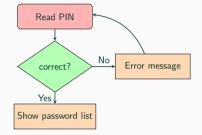
- Finite-state machines: states and transitions
- Input: changes state to different state



- Finite-state machines: states and transitions
- Input: changes state to different state
- Finite-state machine (FSM) solves your problem


- Finite-state machines: states and transitions
- Input: changes state to different state
- Finite-state machine (FSM) solves your problem
- Many different ways to implement FSM

An Example: Simple Password Manager


• Security properties for your FSM

An Example: Simple Password Manager

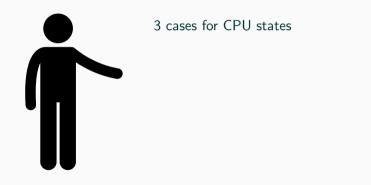
- Security properties for your FSM
- Security properties based on inputs and outputs

An Example: Simple Password Manager

- Security properties for your FSM
- Security properties based on inputs and outputs
- e.g., It should be practically infeasible for an attacker to get the password list (output) if he does not know the PIN (input)

• We have to write an emulator for our FSM

- We have to write an emulator for our FSM
- CPU has a lot more states than our FSM


- We have to write an emulator for our FSM
- CPU has a lot more states than our FSM
- Every FSM state is represented by one or more CPU states

- We have to write an emulator for our FSM
- CPU has a lot more states than our FSM
- Every FSM state is represented by one or more CPU states
- For example, reading the PIN requires multiple CPU states
- \rightarrow Keyboard interrups, reading keys, storing text in memory, ...

- We have to write an emulator for our FSM
- CPU has a lot more states than our FSM
- Every FSM state is represented by one or more CPU states
- For example, reading the PIN requires multiple CPU states
- \rightarrow Keyboard interrups, reading keys, storing text in memory, ...
- Not every CPU state is represented in the FSM

$3\ \text{cases}$ for CPU states

• Sane state: A CPU state corresponding to an FSM state

3 cases for CPU states

- Sane state: A CPU state corresponding to an FSM state
- Transitory state: A CPU state during a transition, leading to a sane state

3 cases for CPU states

- Sane state: A CPU state corresponding to an FSM state
- Transitory state: A CPU state during a transition, leading to a sane state
- Weird state: A CPU state which does not correspond to an FSM state

```
www.tugraz.at
```

```
int main() {
uint32 t pin, correct = 0;
while(1) {
 pin = readPIN();
 if(pin * 2654435761u == 324783883u)
     correct = 1:
 if(correct) {
   showPasswords():
  break:
  } else printf("\nWrong PIN!\n");
return 0;
```

States

CPU State: Transitory State: -

```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
```

```
void showPasswords() {
  FILE* stream;
  char* l = NULL;
  size_t len;
  stream = fopen("passwords", "r");
  if (stream == NULL) return;
```

```
while(getline(&l, &len, stream) != -1)
   puts(l);
free(l);
fclose(stream);
```

```
www.tugraz.at
```

```
int main() {
uint32 t pin, correct = 0;
while(1) {
 pin = readPIN();
 if(pin * 2654435761u == 324783883u)
     correct = 1:
 if(correct) {
   showPasswords():
  break:
  } else printf("\nWrong PIN!\n");
return 0;
```

States

CPU State: Transitory State: -

```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
```

ł

```
void showPasswords() {
  FILE* stream;
  char* l = NULL;
  size_t len;
  stream = fopen("passwords", "r");
  if (stream == NULL) return;
```

```
while(getline(&l, &len, stream) != -1)
   puts(l);
free(l);
fclose(stream);
```

```
int main() {
 uint32 t pin, correct = 0;
 while(1) {
  pin = readPIN();
  if(pin * 2654435761u == 324783883u)
     correct = 1:
  if(correct) {
   showPasswords():
  break:
  } else printf("\nWrong PIN!\n");
 return 0;
```

States

CPU State: Sane State: Read PIN

```
uint32 t readPIN() {
 char buffer[16];
 printf("Enter PIN:\n");
 gets(buffer);
 if(getenv("DEBUG")) printf(buffer);
 return atoi(buffer);
void showPasswords() {
 FILE* stream;
 char * 1 = NULL;
 size t len;
 stream = fopen("passwords", "r");
 if (stream == NULL) return;
```

```
while(getline(&l, &len, stream) != -1)
   puts(l);
free(l);
fclose(stream);
```

www.tugraz.at

```
int main() {
 uint32 t pin, correct = 0;
 while(1) {
  pin = readPIN();
  if (pin * 2654435761u == 324783883u)
     correct = 1:
  if(correct) {
   showPasswords():
  break:
  } else printf("\nWrong PIN!\n");
 return 0;
```

States

CPU State: Sane State: Read PIN

```
uint32 t readPIN() {
 char buffer[16];
 printf("Enter PIN:\n");
 gets (buffer);
 if(getenv("DEBUG")) printf(buffer);
 return atoi(buffer);
void showPasswords() {
 FILE* stream;
 char * 1 = NULL;
 size t len;
 stream = fopen("passwords", "r");
 if (stream == NULL) return;
 while(getline(&l, &len, stream) != -1)
  puts(1);
```

free(1);

fclose(stream):

```
Michael Schwarz — www.iaik.tugraz.at
```

www.tugraz.at

```
int main() {
 uint32 t pin, correct = 0;
 while(1) {
  pin = readPIN();
  if (pin * 2654435761u == 324783883u)
     correct = 1:
  if(correct) {
   showPasswords():
  break:
  } else printf("\nWrong PIN!\n");
 return 0;
```

States

CPU State: Sane State: Read PIN

```
uint32 t readPIN() {
 char buffer[16];
 printf("Enter PIN:\n");
 gets(buffer);
 if(getenv("DEBUG")) printf(buffer);
 return atoi(buffer);
void showPasswords() {
 FILE* stream;
 char * 1 = NULL;
 size t len;
 stream = fopen("passwords", "r");
 if (stream == NULL) return;
 while(getline(&l, &len, stream) != -1)
  puts(1);
 free(1);
```

fclose(stream):

www.tugraz.at

```
int main() {
 uint32 t pin, correct = 0;
 while(1) {
  pin = readPIN();
  if(pin * 2654435761u == 324783883u)
     correct = 1:
  if(correct) {
   showPasswords():
  break:
  } else printf("\nWrong PIN!\n");
 return 0;
```

States

CPU State: Transitory State: -

```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
```

ł

```
void showPasswords() {
  FILE* stream;
  char* l = NULL;
  size_t len;
  stream = fopen("passwords", "r");
  if (stream == NULL) return;
```

```
while(getline(&l, &len, stream) != -1)
   puts(l);
free(l);
fclose(stream);
```

```
int main() {
uint32 t pin, correct = 0;
while(1) {
 pin = readPIN();
 if(pin * 2654435761u == 324783883u)
     correct = 1:
 if(correct) {
   showPasswords():
  break:
  } else printf("\nWrong PIN!\n");
return 0;
```

States

CPU State: Sane State: correct?

```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
```

ł

```
void showPasswords() {
  FILE* stream;
  char* l = NULL;
  size_t len;
  stream = fopen("passwords", "r");
  if (stream == NULL) return;
```

```
while(getline(&l, &len, stream) != -1)
   puts(l);
free(l);
fclose(stream);
```



```
www.tugraz.at
```

```
int main() {
    uint32_t pin, correct = 0;
    while(1) {
        pin = readPIN();
        if(pin * 2654435761u == 324783883u)
            correct = 1;

    if(correct) {
        showPasswords();
        break;
    }
}
```

} else printf("\nWrong PIN!\n");

States

return 0;

CPU State: Sane State: correct?

```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
```

```
void showPasswords() {
  FILE* stream;
  char* l = NULL;
  size_t len;
  stream = fopen("passwords", "r");
  if (stream == NULL) return;
```

```
while(getline(&l, &len, stream) != -1)
   puts(l);
free(l);
fclose(stream);
```

```
www.tugraz.at
```

```
int main() {
    uint32_t pin, correct = 0;
    while(1) {
        pin = readPIN();
        if(pin * 2654435761u == 324783883u)
            correct = 1;
```

```
if(correct) {
   showPasswords();
   break;
   else printf("\nWrong PIN!\n");
   return 0;
```

States

CPU State: Sane State: correct?

```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
```

```
ł
```

```
void showPasswords() {
  FILE* stream;
  char* l = NULL;
  size_t len;
  stream = fopen("passwords", "r");
  if (stream == NULL) return;
```

```
while(getline(&l, &len, stream) != -1)
   puts(l);
free(l);
fclose(stream);
```

```
www.tugraz.at
```

```
int main() {
    uint32_t pin, correct = 0;
    while(1) {
        pin = readPIN();
        if(pin * 2654435761u == 324783883u)
            correct = 1;
```

```
if(correct) {
   showPasswords();
   break;
   else printf("\nWrong PIN!\n");
   return 0;
```

States

CPU State: Transitory State: -

```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
```

ł

```
void showPasswords() {
  FILE* stream;
  char* l = NULL;
  size_t len;
  stream = fopen("passwords", "r");
  if (stream == NULL) return;
```

```
while(getline(&l, &len, stream) != -1)
   puts(l);
free(l);
fclose(stream);
```

```
www.tugraz.<u>at</u>
```

```
int main() {
 uint32 t pin, correct = 0;
 while(1) {
  pin = readPIN();
  if(pin * 2654435761u == 324783883u)
     correct = 1:
  if(correct) {
   showPasswords():
  break:
  } else printf("\nWrong PIN!\n");
 return 0;
```

States

CPU State: Sane State: Show Password List

```
uint32 t readPIN() {
 char buffer[16];
 printf("Enter PIN:\n");
 gets(buffer);
 if(getenv("DEBUG")) printf(buffer);
 return atoi(buffer);
void showPasswords() {
 FILE* stream;
 char * 1 = NULL;
 size t len;
 stream = fopen("passwords", "r");
 if (stream == NULL) return;
```

```
while(getline(&l, &len, stream) != -1)
  puts(l);
free(l);
fclose(stream);
```

```
www.tugraz.at 📕
```

```
int main() {
 uint32 t pin, correct = 0;
 while(1) {
  pin = readPIN();
  if (pin * 2654435761u == 324783883u)
     correct = 1:
  if(correct) {
   showPasswords():
  break:
  } else printf("\nWrong PIN!\n");
 return 0;
```

States

CPU State: Sane State: Show Password List

```
uint32 t readPIN() {
 char buffer[16];
 printf("Enter PIN:\n");
 gets(buffer);
 if(getenv("DEBUG")) printf(buffer);
 return atoi(buffer);
void showPasswords() {
 FILE* stream;
 char* l = NULL;
 size t len;
 stream = fopen("passwords", "r");
 if (stream == NULL) return;
 while(getline(&l, &len, stream) != -1)
  puts(1);
 free(1);
 fclose(stream):
```

```
www.tugraz.at 🗖
```

```
int main() {
 uint32 t pin, correct = 0;
 while(1) {
  pin = readPIN();
  if (pin * 2654435761u == 324783883u)
     correct = 1:
  if(correct) {
   showPasswords():
  break:
  } else printf("\nWrong PIN!\n");
 return 0;
```

States

CPU State: Sane State: Show Password List

```
uint32 t readPIN() {
 char buffer[16];
 printf("Enter PIN:\n");
 gets(buffer);
 if(getenv("DEBUG")) printf(buffer);
 return atoi(buffer);
void showPasswords() {
 FILE* stream;
 char * 1 = NULL;
 size t len;
 stream = fopen("passwords", "r");
 if (stream == NULL) return;
 while(getline(&l, &len, stream) != -1)
  puts(1);
 free(1);
 fclose(stream):
```

```
www.tugraz.at
```

```
int main() {
 uint32 t pin, correct = 0;
 while(1) {
  pin = readPIN();
  if (pin * 2654435761u == 324783883u)
     correct = 1:
  if(correct) {
   showPasswords():
  break:
  } else printf("\nWrong PIN!\n");
 return 0:
```

States

CPU State: Sane State: Show Password List

```
uint32 t readPIN() {
 char buffer[16];
 printf("Enter PIN:\n");
 gets(buffer);
 if(getenv("DEBUG")) printf(buffer);
 return atoi(buffer);
void showPasswords() {
 FILE* stream;
 char * 1 = NULL;
 size t len;
 stream = fopen("passwords", "r");
 if (stream == NULL) return;
```

```
while(getline(&l, &len, stream) != -1)
   puts(l);
free(l);
fclose(stream);
```

```
www.tugraz.at 🗖
```

```
int main() {
 uint32 t pin, correct = 0;
 while(1) {
  pin = readPIN();
  if (pin * 2654435761u == 324783883u)
     correct = 1:
  if(correct) {
   showPasswords():
  break:
  } else printf("\nWrong PIN!\n");
 return 0;
```

States

CPU State: Sane State: Show Password List

```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
  }
void showPasswords() {
    FILE* stream;
}
```

```
char* 1 = NULL;
size_t len;
stream = fopen("passwords", "r");
if (stream == NULL) return;
```

```
while(getline(&l, &len, stream) != -1)
   puts(l);
free(l);
fclose(stream);
```

```
www.tugraz.at 📕
```

```
int main() {
 uint32 t pin, correct = 0;
 while(1) {
  pin = readPIN();
  if (pin * 2654435761u == 324783883u)
     correct = 1:
  if(correct) {
   showPasswords():
  break:
  } else printf("\nWrong PIN!\n");
 return 0:
```

States

CPU State: Sane State: Show Password List

```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
}
```

```
void showPasswords() {
  FILE* stream;
  char* l = NULL;
  size_t len;
  stream = fopen("passwords", "r");
  if (stream == NULL) return;
```

```
while(getline(&l, &len, stream) != -1)
  puts(l);
free(l);
fclose(stream);
```

```
www.tugraz.at 📕
```

```
int main() {
 uint32 t pin, correct = 0;
 while(1) {
  pin = readPIN();
  if (pin * 2654435761u == 324783883u)
     correct = 1:
  if(correct) {
   showPasswords():
  break:
  } else printf("\nWrong PIN!\n");
 return 0;
```

States

CPU State: Sane State: Show Password List

```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
}
```

```
void showPasswords() {
  FILE* stream;
  char* l = NULL;
  size_t len;
  stream = fopen("passwords", "r");
  if (stream == NULL) return;
```

```
while(getline(&l, &len, stream) != -1)
   puts(l);
free(l);
fclose(stream);
```

Example continued: A Simple Password Manager

```
www.tugraz.<u>at</u>
```

```
int main() {
 uint32 t pin, correct = 0;
 while(1) {
  pin = readPIN();
  if (pin * 2654435761u == 324783883u)
     correct = 1:
  if(correct) {
   showPasswords():
  break:
  } else printf("\nWrong PIN!\n");
 return 0;
```

States

CPU State: Sane State: Show Password List

```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
}
```

```
void showPasswords() {
  FILE* stream;
  char* 1 = NULL;
  size_t len;
  stream = fopen("passwords", "r");
  if (stream == NULL) return;
```

```
while(getline(&1, &len, stream) != -1)
  puts(1);
free(1);
fclose(stream);
```


- CPU emulates the FSM
- $\rightarrow\,$ Should only be in sane or tranistory state

The Weird State

- CPU emulates the FSM
- $\rightarrow\,$ Should only be in sane or tranistory state
- How can the CPU enter the weird state?

The Weird State

- CPU emulates the FSM
- $\rightarrow\,$ Should only be in sane or tranistory state
 - How can the CPU enter the weird state?
 - Programming mistakes
 - Broken hardware (e.g., bit flips in memory)
 - Hardware bugs (e.g., CPU bugs)
 - ...

The Weird State

- CPU emulates the FSM
- $\rightarrow\,$ Should only be in sane or tranistory state
 - How can the CPU enter the weird state?
 - Programming mistakes
 - Broken hardware (e.g., bit flips in memory)
 - Hardware bugs (e.g., CPU bugs)
 - ...
- Program does not know it is in weird state

• Program continues executing

- Program continues executing
- Transitions might still be applied → on a weird state instead of a sane state

- Program continues executing
- Transitions might still be applied → on a weird state instead of a sane state
- Usually transforms one weird state into another weird state

- Program continues executing
- Transitions might still be applied → on a weird state instead of a sane state
- Usually transforms one weird state into another weird state
- Weird machine, with many weird states

- Program continues executing
- Transitions might still be applied → on a weird state instead of a sane state
- Usually transforms one weird state into another weird state
- Weird machine, with many weird states
- We can "program" the weird machine to do something different than the original FSM

Programming the Weird Machine

 \bullet Write program using code \rightarrow translated into instructions executed by the CPU

- $\bullet\,$ Write program using code \rightarrow translated into instructions executed by the CPU
- To program a device we have to generate instructions

Programming the Weird Machine

- Write program using code \rightarrow translated into instructions executed by the CPU
- To program a device we have to generate instructions

• Get rid of the mindset that we require code for programming

Get rid of the mindset that we require code for programming
Applications accept input

- Get rid of the mindset that we require code for programming
- Applications accept input
- Does different things depending on input

- $\bullet\,$ Get rid of the mindset that we require code for programming
- Applications accept input
- Does different things depending on input
- \rightarrow Input programs the application

- Get rid of the mindset that we require code for programming
- Applications accept input
- Does different things depending on input
- \rightarrow Input programs the application
 - Fine if input only leads from one sane state to another sane state

• If application is in weird state and programmed using input...

- If application is in weird state and programmed using input...
- ...the attacker is controlling your computer

- If application is in weird state and programmed using input...
- ...the attacker is controlling your computer

• An abstract definition of exploitation

1. Setup: choose the right sane state which "allows" to get to a weird state

- 1. Setup: choose the right sane state which "allows" to get to a weird state
- 2. Instantiation: transition from sane state to weird state

- 1. Setup: choose the right sane state which "allows" to get to a weird state
- 2. Instantiation: transition from sane state to weird state
- 3. Programming: program the weird machine

with the goal to break the security properties of the $\ensuremath{\mathsf{FSM}}$

• We want to enter a weird state

- We want to enter a weird state
- Can we find a bug in the program?

- We want to enter a weird state
- Can we find a bug in the program?
- Can we abuse it to enter a weird state?

- We want to enter a weird state
- Can we find a bug in the program?
- Can we abuse it to enter a weird state?
- First hint of a bug when compiling:

pwdman.c:(.text+0x2e): warning: the `gets' function is dangerous and should not be used.

- We want to enter a weird state
- Can we find a bug in the program?
- Can we abuse it to enter a weird state?
- First hint of a bug when compiling:

pwdman.c:(.text+0x2e): warning: the `gets' function is dangerous and should not be used.

 \rightarrow Check the man page of gets

NAME

gets - get a string from standard input (DEPRECATED)

SYNOPSI

#include <stdio.h>

char *gets(char *s);

DESCRIPTION

Never use this function.

gets() reads a line from stdin into the buffer pointed to by s until either a terminating newline or #D#, which it replaces with a null byte ('\0'). No check for buffer overrun is performed (see BUGS below).

RETURN VALUE

gets() returns s on success, and NULL on error or when end of file occurs while no characters have been read. However, given the lack of buffer overrun checking, there can be no guarantees that the function will even return.

ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).

Interface	Attribute	Value
gets()	Thread safety	MT-Safe

CONFORMING TO

C89, C99, POSIX.1-2001.

LSB deprecates gets(). POSIX.1-2008 marks gets() obsolescent. ISO C11 removes the specification of gets() from the C language, and since version 2.16, glibc header files don't expose the function declaration if the __ISOCI1_SUMCE feature test macro is defined.

BUGS

Never use **gets()**. Because it is impossible to tell without knowing the data in advance how many characters **gets()** will read, and because **gets()** will continue to store characters past the end of the buffer, it is extremely dangerous to use. It has been used to break computer security. Use **top(s()** instead.

For more information, see CWE-242 (aka "Use of Inherently Dangerous Function") at http://cwe.mitre.org/data/definitions/242.html

SEE ALSO

read(2), write(2), ferror(3), fgetc(3), fgets(3), fgetwc(3), fgetws(3), fopen(3), fread(3), fseek(3), getLine

Where is the Bug?

• Code part where gets is used:

```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
}
```

Where is the Bug?

• Code part where gets is used:

```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
}
```

• The buffer array has space for 16 characters

Where is the Bug?

• Code part where gets is used:

```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
}
```

- The buffer array has space for 16 characters
- gets reads until EOF...

% ./pwdman		
Enter PIN:		
1234		
Wrong PIN!		
Enter PIN:		

% ./pwdman	
Enter PIN:	
1234	
Wrong PIN!	
Enter PIN:	
0123456789012345678901234567890123456789	

% ./pwdman		
Enter PIN:		
1234		
Wrong PIN!		
Enter PIN:		
0123456789012345678901234567890123456789		
[1] 7106 segmentation fault (core dumped) ./pwdman		
pwdman[7486]: segfault at 31303938 ip 000000031303938		
sp 00000000ffffcdc0 error 14 in		
libc-2.23.so[f7de2000+1b0000]		

• We crash the program

- We crash the program
- Crashing \rightarrow not a state in our FSM

- We crash the program
- Crashing \rightarrow not a state in our FSM
- \rightarrow Weird state due to a programming mistake

We are in a Weird State!

- We crash the program
- Crashing \rightarrow not a state in our FSM
- \rightarrow Weird state due to a programming mistake
- #1: Why did we get into this weird state?

- We crash the program
- Crashing \rightarrow not a state in our FSM
- \rightarrow Weird state due to a programming mistake
- #1: Why did we get into this weird state?
- #2: What is this weird state?

- We crash the program
- Crashing \rightarrow not a state in our FSM
- \rightarrow Weird state due to a programming mistake
- #1: Why did we get into this weird state?
- #2: What is this weird state?
- #3: How can we program our weird machine to do something useful (instead of crashing)?

• gets reads from the user until EOF

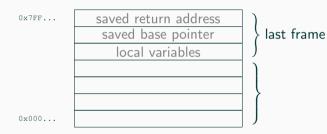
- gets reads from the user until EOF
- Everything read is stored in an array

- gets reads from the user until EOF
- Everything read is stored in an array
- Arrays have a defined size

- gets reads from the user until EOF
- Everything read is stored in an array
- Arrays have a defined size
- What if we write more data into the array?

- gets reads from the user until EOF
- Everything read is stored in an array
- Arrays have a defined size
- What if we write more data into the array?
- We write into something else adjacent in memory

• What is next to the variable?


- What is next to the variable?
- It is a local variable, therefore it is on the stack

- What is next to the variable?
- It is a local variable, therefore it is on the stack
- Other local variables adjacent (none here)

- What is next to the variable?
- It is a local variable, therefore it is on the stack
- Other local variables adjacent (none here)
- What else is on the stack?

0x7FF...

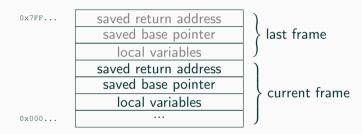
saved return address saved base pointer local variables

saved return address

last frame

0×000...

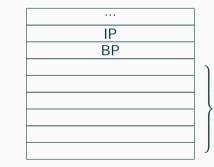
current frame

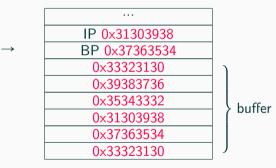

0x7FF...

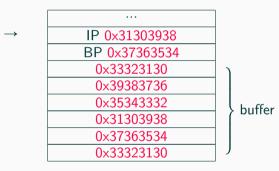
	saved return address
	saved base pointer
	local variables
	saved return address
Г	saved base pointer

last frame

0×000...


current frame


```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(
        buffer);
    return atoi(buffer);
}
```



 \rightarrow


```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(
        buffer);
    return atoi(buffer);
}
```



```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(
        buffer);
    return atoi(buffer);
}
```


Return, continue at 0x31303938

• We are somewhere (more specific: at address 0x31303938)

- We are somewhere (more specific: at address 0x31303938)
- CPU tries to execute code at this address

- We are somewhere (more specific: at address 0x31303938)
- CPU tries to execute code at this address
- Probably nothing mapped at this address \rightarrow pagefault

- We are somewhere (more specific: at address 0x31303938)
- CPU tries to execute code at this address
- Probably nothing mapped at this address \rightarrow pagefault
- Operating system kills application with a segmentation fault

- We are somewhere (more specific: at address 0x31303938)
- CPU tries to execute code at this address
- Probably nothing mapped at this address \rightarrow pagefault
- Operating system kills application with a segmentation fault
- Weird state: CPU trying to execute code at an invalid address

• Bring the CPU in weird state by entering too many characters

- Bring the CPU in weird state by entering too many characters
- Control what the CPU executes by setting the instruction pointer

- Bring the CPU in weird state by entering too many characters
- Control what the CPU executes by setting the instruction pointer
- We want to either
 - stay in a weird, but useful state, or
 - go to a (useful) sane state again

- Bring the CPU in weird state by entering too many characters
- Control what the CPU executes by setting the instruction pointer
- We want to either
 - stay in a weird, but useful state, or
 - go to a (useful) sane state again
- Let's try to get to the sane state "Show Password List" first...

• We can let the CPU execute code at an arbitrary location

- We can let the CPU execute code at an arbitrary location
- The showPasswords function is at some location

% readelf -s pwdman | grep showPasswords 64: 08048604 121 FUNC GLOBAL DEFAULT 14 showPasswords

- We can let the CPU execute code at an arbitrary location
- The showPasswords function is at some location

% readelf -s pwdman | grep showPasswords 64: 08048604 121 FUNC GLOBAL DEFAULT 14 showPasswords

- PIN should look like this:
- padding fills the buffer (plus saved base pointer), address overwrites the saved instruction pointer

echo "AAAAAAAAAAAAAAAAAAAAAAAAAAAA\x04\x86\x04\x08" | ./pwdman

echo " Enter	"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
	toor	
user:p	:password1234	
	17074 segmentation fault (core dumped) ./pwdman	

• We broke the security properties of the FSM

- We broke the security properties of the FSM
- Setup: We started in the sane state "Read PIN"

- We broke the security properties of the FSM
- Setup: We started in the sane state "Read PIN"
- Instantiation: Too many characters led to a weird state

- We broke the security properties of the FSM
- Setup: We started in the sane state "Read PIN"
- Instantiation: Too many characters led to a weird state
- **Programming**: We "programmed" the weird state using the input to move to the sane state "Show Password List"

- We broke the security properties of the FSM
- Setup: We started in the sane state "Read PIN"
- Instantiation: Too many characters led to a weird state
- **Programming**: We "programmed" the weird state using the input to move to the sane state "Show Password List"
- We have successfully developed an exploit

• Spatial memory safety violation to overwrite data

- Spatial memory safety violation to overwrite data
- \rightarrow Weird state

- Spatial memory safety violation to overwrite data
- \rightarrow Weird state
- Do we have to overwrite the saved instruction pointer?

- Spatial memory safety violation to overwrite data
- \rightarrow Weird state
- Do we have to overwrite the saved instruction pointer?
- Other memory safety violations?

- Spatial memory safety violation to overwrite data
- \rightarrow Weird state
- Do we have to overwrite the saved instruction pointer?
- Other memory safety violations?
- Write in a more powerful "weird machine language"?

• No \rightarrow just one "trick" to get into weird state

- No \rightarrow just one "trick" to get into weird state
- Controlling the control flow \rightarrow weird state

- No \rightarrow just one "trick" to get into weird state
- Controlling the control flow \rightarrow weird state
- More ways to change instruction pointer
- $\rightarrow\,$ function pointers, vtables, ...

- \bullet No \rightarrow just one "trick" to get into weird state
- Controlling the control flow \rightarrow weird state
- More ways to change instruction pointer
- \rightarrow function pointers, vtables, ...
- Controlling the instruction pointer is not a requirement

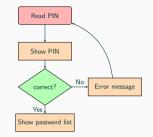
- \bullet No \rightarrow just one "trick" to get into weird state
- Controlling the control flow \rightarrow weird state
- More ways to change instruction pointer
- $\rightarrow\,$ function pointers, vtables, ...
- Controlling the instruction pointer is not a requirement
- Control-flow hijacking is a "category of tricks"

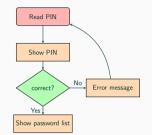
• Got rid of the mindset that we require code to program

- Got rid of the mindset that we require code to program
- Input as a way of programming a device

- Got rid of the mindset that we require code to program
- Input as a way of programming a device
- Modify data used in an FSM state (transition)

- Got rid of the mindset that we require code to program
- Input as a way of programming a device
- Modify data used in an FSM state (transition)
- Changing data to something not intended in the original FSM
 → weird state

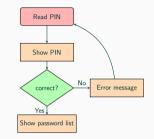

- Got rid of the mindset that we require code to program
- Input as a way of programming a device
- Modify data used in an FSM state (transition)
- Changing data to something not intended in the original FSM
 → weird state
- Assume gets bug is fixed, e.g., replaced by fgets


```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    fgets(buffer, 16, stdin);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
```

```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    fgets(buffer, 16, stdin);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
}
```

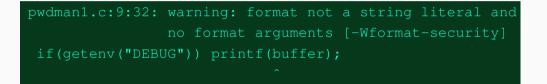
• We ignored the "debug mode" before...


```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    fgets(buffer, 16, stdin);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
}
```



- We ignored the "debug mode" before...
- One additional state in the FSM \rightarrow echos the input

```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    fgets(buffer, 16, stdin);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
}
```


- We ignored the "debug mode" before...
- One additional state in the FSM \rightarrow echos the input
- Security property stays the same


```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    fgets(buffer, 16, stdin);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
}
```


- We ignored the "debug mode" before...
- One additional state in the FSM \rightarrow echos the input
- Security property stays the same
- It should be practically infeasible for an attacker to get the password list (output) if he does not know the PIN (input)

• Compile with all warnings enabled (-Wextra)

- Compile with all warnings enabled (-Wextra)
- Still a warning

- Compile with all warnings enabled (-Wextra)
- Still a warning

<pre>pwdman1.c:9:32:</pre>	warning:	format	not		string	literal	and		
no format arguments [-Wformat-security]									
if(getenv("DEBUG"))									
^									

• What does the man page of printf say?

- Compile with all warnings enabled (-Wextra)
- Still a warning

• What does the man page of printf say?

man 3 printf

Code such as printf (foo); often indicates a bug, since foo may contain a character. If foo comes from untrusted user input, it may contain n, causing the printf() call to write to memory and creating a security hole.

• printf can create a security hole?

- printf can create a security hole?
- Why can printf write to memory?

- printf can create a security hole?
- Why can printf write to memory?
- It is supposed to print text to the standard output...

We remember how to use printf: printf("%d = 0x%x\n", 20, 20);

- We remember how to use printf: printf("%d = 0x%x\n", 20, 20);
- Format string parameters (%d, %s, ...) convert function parameters to strings

- We remember how to use printf: printf("%d = 0x%x\n", 20, 20);
- Format string parameters (%d, %s, ...) convert function parameters to strings
- What if the number of format string parameters does not match the number of arguments?

- We remember how to use printf: printf("%d = 0x%x\n", 20, 20);
- Format string parameters (%d, %s, ...) convert function parameters to strings
- What if the number of format string parameters does not match the number of arguments?
- The function does not know

- We remember how to use printf: printf("%d = 0x%x\n", 20, 20);
- Format string parameters (%d, %s, ...) convert function parameters to strings
- What if the number of format string parameters does not match the number of arguments?
- The function does not know
- Fetched form registers (first) and stack (afterwards)

• printf(user_input); → user input is format string

- printf(user_input); \rightarrow user input is format string
- No parameters to the function

- printf(user_input); \rightarrow user input is format string
- No parameters to the function
- Input does not contain a format string parameter \rightarrow fine

- printf(user_input); \rightarrow user input is format string
- No parameters to the function
- Input does not contain a format string parameter \rightarrow fine
- Format string parameter in the input → output a register value or stack value

% DEBUG=1 ./pwdman1 Enter PIN: %x %x %x %x % DEBUG=1 ./pwdman1

Enter PIN:

%x %x %x %x

10 f76b55a0 f76f5858 25207825

Wrong PIN! Enter PIN:

% DEBUG=1 ./pwdman1
Enter PIN:
%x %x %x
10 f76b55a0 f76f5858 25207825
Wrong PIN!
Enter PIN:

• Weird state - printing values from memory is not in our FSM

% DEBUG=1 ./pwdman1
Enter PIN:
%x %x %x %x
10 f76b55a0 f76f5858 25207825
Wrong PIN!
Enter PIN:

- Weird state printing values from memory is not in our FSM
- How can we "program" this weird state?

• A little-known format string parameter: %n

Format Strings - Data Manipulation

• A little-known format string parameter: %n

man 3 printf

n The number of characters written so far is stored into the integer pointed to by the corresponding argument. That argument shall be an int *, or variant whose size matches the (optionally) supplied integer length modifier.

www.tugraz.at

Format Strings - Data Manipulation

• A little-known format string parameter: %n

man 3 printf

n The number of characters written so far is stored into the integer pointed to by the corresponding argument. That argument shall be an int *, or variant whose size matches the (optionally) supplied integer length modifier.

• Example:

int count; printf("Some string %n\n", &count); printf("Wrote %d charachters\n", count);

Format Strings - Data Manipulation

• A little-known format string parameter: %n

man 3 printf

n The number of characters written so far is stored into the integer pointed to by the corresponding argument. That argument shall be an int *, or variant whose size matches the (optionally) supplied integer length modifier.

• Example:

int count; printf("Some string %n\n", &count); printf("Wrote %d charachters\n", count);

Prints Wrote 12 characters

Michael Schwarz — www.iaik.tugraz.at

• If there is an address on the stack, we can write to it

- If there is an address on the stack, we can write to it
- Format string is on the stack → we can put any value onto the stack

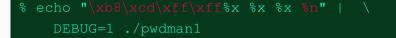
- If there is an address on the stack, we can write to it
- Format string is on the stack → we can put any value onto the stack
- Can be the address to write to

% echo "\x01\x02\x03\x04%x %x %x %x" | \ DEBUG=1 ./pwdman1

Playing around...

% echo "\x01\x02\x03\x04%x %x %x %x" \
DEBUG=1 ./pwdman1
Enter PIN:
10 f7f945a0 f7fd4858 4030201
Wrong PIN!
Enter PIN:

Playing around...


% echo "\x01\x02\x03\x04%x %x %x %x" \
DEBUG=1 ./pwdman1
Enter PIN:
10 f7f945a0 f7fd4858 <mark>4030201</mark>
Wrong PIN!
Enter PIN:

% echo "\xb8\xcd\xff\xff%x %x %x %x" | \
DEBUG=1 ./pwdman1

Playing around...

% echo "\x01\x02\x03\x04%x %x %x %x %x" | \
 DEBUG=1 ./pwdman1
Enter PIN:
10 f7f945a0 f7fd4858 4030201
Wrong PIN!
Enter PIN:

user:password1234

• With %n, we overwrote the correct variable at address 0xffffcdb8

- With %n, we overwrote the correct variable at address 0xffffcdb8
- Programmed the weird machine using the input...

- With %n, we overwrote the correct variable at address 0xffffcdb8
- Programmed the weird machine using the input...
- ...to transition to sane state "Show Password List"

• There are many different memory safety violations

- There are many different memory safety violations
- All of them can get us into a weird state

- There are many different memory safety violations
- All of them can get us into a weird state
- We have only seen 2 of them, but there are a lot more

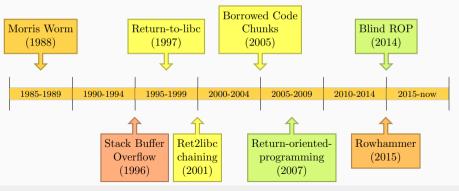
- There are many different memory safety violations
- All of them can get us into a weird state
- We have only seen 2 of them, but there are a lot more
- Memory safety violations are a "bag of tricks" from which we can take one to get into a weird state

• Our "weird machine programs" were quite simple

- Our "weird machine programs" were quite simple
- $\rightarrow\,$ Jumped to a sane state of the FSM

- Our "weird machine programs" were quite simple
- $\rightarrow\,$ Jumped to a sane state of the FSM
 - Instead

- Our "weird machine programs" were quite simple
- $\rightarrow\,$ Jumped to a sane state of the FSM
- Instead
 - Inject own code and jump to that


- Our "weird machine programs" were quite simple
- $\rightarrow\,$ Jumped to a sane state of the FSM
 - Instead
 - Inject own code and jump to that
 - Jump into the middle of a sane state

- Our "weird machine programs" were quite simple
- $\rightarrow\,$ Jumped to a sane state of the FSM
 - Instead
 - Inject own code and jump to that
 - Jump into the middle of a sane state
 - ...

For three decades

- people came up with tricks to get into weird states,
- and "programming languages" to program weird machines

• There are many techniques and cool tricks

- There are many techniques and cool tricks
- Did not look at them \rightarrow more important to understand concept

- There are many techniques and cool tricks
- Did not look at them \rightarrow more important to understand concept
- Theory might be boring but helps understanding the techniques

- There are many techniques and cool tricks
- Did not look at them \rightarrow more important to understand concept
- Theory might be boring but helps understanding the techniques
- Participate in a CTF and try it yourself

• We got rid of gets

- We got rid of gets
- We got rid of the format-string vulnerability

- We got rid of gets
- We got rid of the format-string vulnerability
- We could not find any other bugs

- We got rid of gets
- We got rid of the format-string vulnerability
- We could not find any other bugs
- The FSM emulator (= our code) looks secure

• Can we show that our code is now not exploitable?

- Can we show that our code is now not exploitable?
- Not really \rightarrow check all weird states whether they are exploitable

- Can we show that our code is now not exploitable?
- Not really \rightarrow check all weird states whether they are exploitable
- How to know which weird states are reachable?

- Can we show that our code is now not exploitable?
- Not really \rightarrow check all weird states whether they are exploitable
- How to know which weird states are reachable?
- Depends on the attacker model \rightarrow what can an attacker do?

- Can we show that our code is now not exploitable?
- \bullet Not really \rightarrow check all weird states whether they are exploitable
- How to know which weird states are reachable?
- Depends on the attacker model \rightarrow what can an attacker do?
- Hard to think of attacker models not yet discovered

Criminals

Criminals

Vendors

Criminals

Vendors

Governments

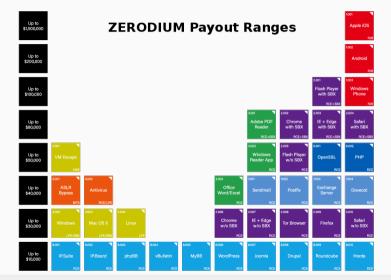
• Jailbreaks (e.g., getting root) on various devices:

- Jailbreaks (e.g., getting root) on various devices:
 - iOS (multiple exploits)

- Jailbreaks (e.g., getting root) on various devices:
 - iOS (multiple exploits)
 - Wii (buffer overflow in *The Legend of Zelda: Twilight Princess*).

- Jailbreaks (e.g., getting root) on various devices:
 - iOS (multiple exploits)
 - Wii (buffer overflow in *The Legend of Zelda: Twilight Princess*).
 - PS2 (buffer overflow in the BIOS)

- Jailbreaks (e.g., getting root) on various devices:
 - iOS (multiple exploits)
 - Wii (buffer overflow in *The Legend of Zelda: Twilight Princess*).
 - PS2 (buffer overflow in the BIOS)
 - PS3 (heap overflow)



- Jailbreaks (e.g., getting root) on various devices:
 - iOS (multiple exploits)
 - Wii (buffer overflow in *The Legend of Zelda: Twilight Princess*).
 - PS2 (buffer overflow in the BIOS)
 - PS3 (heap overflow)
 - Xbox (buffer overflow in savegames)

Bug Bounty Programs

• Computer and network surveillance

- Computer and network surveillance
- Sometimes use state-sponsored trojan horses (govware)

- Computer and network surveillance
- Sometimes use state-sponsored trojan horses (govware)

• Bundestrojaner (Germany)

- Computer and network surveillance
- Sometimes use state-sponsored trojan horses (govware)

- Bundestrojaner (Germany)
- MiniPanzer and MegaPanzer (Switzerland)

- Computer and network surveillance
- Sometimes use state-sponsored trojan horses (govware)

- Bundestrojaner (Germany)
- MiniPanzer and MegaPanzer (Switzerland)
- "Sicherheitspaket" (Austria)

- Computer and network surveillance
- Sometimes use state-sponsored trojan horses (govware)

- Bundestrojaner (Germany)
- MiniPanzer and MegaPanzer (Switzerland)
- "Sicherheitspaket" (Austria)
- NSA Exploits (Shadow Broker Leak)

Blue Team aka Defenses

• Defense in CS is surprisingly hard

- Defense in CS is surprisingly hard
- In "classical war games", there is the 3:1 rule

- Defense in CS is surprisingly hard
- In "classical war games", there is the 3:1 rule
- $\rightarrow\,$ An attacker needs 3 times as many soldiers as the defender

- Defense in CS is surprisingly hard
- In "classical war games", there is the 3:1 rule
- $\rightarrow\,$ An attacker needs 3 times as many soldiers as the defender
- Not a law (there are many exceptions) but rule of thumb

• In CS, the defender has a disadvantage

- In CS, the defender has a disadvantage
- Attacker: find one vulnerability

- In CS, the defender has a disadvantage
- Attacker: find one vulnerability
- Defender: protect against all possible attacks

- In CS, the defender has a disadvantage
- Attacker: find one vulnerability
- Defender: protect against all possible attacks
- If the defender misses one vulnerability, the attacker wins

- In CS, the defender has a disadvantage
- Attacker: find one vulnerability
- Defender: protect against all possible attacks
- If the defender misses one vulnerability, the attacker wins
- "The best defense is a good offense" does not work

• Mainly two strategies

- Mainly two strategies
- Strategy #1: Red Team finds all bugs \rightarrow Blue Team fixes them

- Mainly two strategies
- Strategy #1: Red Team finds all bugs \rightarrow Blue Team fixes them
- Strategy #2: Find generic mechanisms → Red Team cannot exploit the program

• Often, Strategy #1 is used \rightarrow seems simple (and cheap)

- Often, Strategy #1 is used \rightarrow seems simple (and cheap)
- If a bug is discovered, fix it, done

www.tugraz.at

- Often, Strategy #1 is used \rightarrow seems simple (and cheap)
- If a bug is discovered, fix it, done
- "It took an attacker/researcher more than n months to find a bug, so the cost of finding the next bug is ≥ n months"

- Often, Strategy #1 is used \rightarrow seems simple (and cheap)
- If a bug is discovered, fix it, done
- "It took an attacker/researcher more than n months to find a bug, so the cost of finding the next bug is ≥ n months"

www.tugraz.at

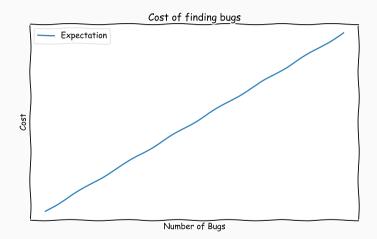
- We defined exploitation as a three-step procedure
 - 1. Setup: choose sane state which "allows" getting to a weird state

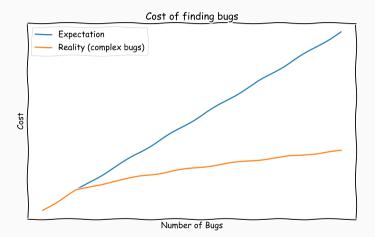
- We defined exploitation as a three-step procedure
 - 1. Setup: choose sane state which "allows" getting to a weird state
 - 2. Instantiation: transition from sane state to weird state

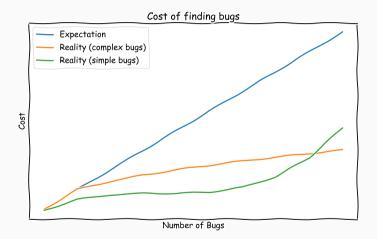
- We defined exploitation as a three-step procedure
 - 1. Setup: choose sane state which "allows" getting to a weird state
 - 2. Instantiation: transition from sane state to weird state
 - 3. Programming: program the weird machine

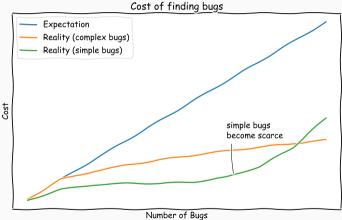
- We defined exploitation as a three-step procedure
 - 1. Setup: choose sane state which "allows" getting to a weird state
 - 2. Instantiation: transition from sane state to weird state
 - 3. Programming: program the weird machine
- The fix prevents one weird machine (or its "program")

- We defined exploitation as a three-step procedure
 - 1. Setup: choose sane state which "allows" getting to a weird state
 - 2. Instantiation: transition from sane state to weird state
 - 3. Programming: program the weird machine
- The fix prevents one weird machine (or its "program")
- Similar bugs \rightarrow similar weird machines


• If an attacker found one bug, there might be other similar bugs




- If an attacker found one bug, there might be other similar bugs
- A lot easier to find and exploit similar bugs



- If an attacker found one bug, there might be other similar bugs
- A lot easier to find and exploit similar bugs
- True until there are no similar bugs anymore

• Better: defense killing whole class of bugs, e.g. buffer overflows

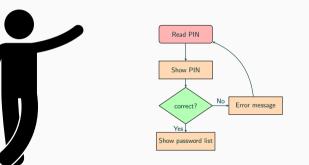
- Better: defense killing whole class of bugs, e.g. buffer overflows
- Can be extremely hard \rightarrow not easy to find bug-free programs

- Better: defense killing whole class of bugs, e.g. buffer overflows
- $\bullet\,$ Can be extremely hard \rightarrow not easy to find bug-free programs
- We already win if we prevent exploitation

- Better: defense killing whole class of bugs, e.g. buffer overflows
- $\bullet\,$ Can be extremely hard $\rightarrow\,$ not easy to find bug-free programs
- We already win if we prevent exploitation
- And we have a solid definition of exploitation

• Prevent one step of exploitation

- Prevent one step of exploitation
- Cannot prevent Setup step \rightarrow every transition is sane and the state is defined


- Prevent one step of exploitation
- Cannot prevent Setup step \rightarrow every transition is sane and the state is defined
- Try to prevent Instantiation and Programming step

- Prevent one step of exploitation
- Cannot prevent Setup step \rightarrow every transition is sane and the state is defined
- Try to prevent Instantiation and Programming step
- Start with Instantiation step

- Prevent one step of exploitation
- Cannot prevent Setup step \rightarrow every transition is sane and the state is defined
- Try to prevent Instantiation and Programming step
- Start with Instantiation step
- We again use the Simple Password Manager as an example

uint32_t readPIN() {
 char buffer[16];
 printf("Enter PIN:\n");
 gets(buffer);
 if(getenv("DEBUG"))
 printf(buffer);
 return atoi(buffer);
}

• We assume that the Red Team did not find the bugs (yet)

- We assume that the Red Team did not find the bugs (yet)
- We don't know about the gets and printf bug

- We assume that the Red Team did not find the bugs (yet)
- We don't know about the gets and printf bug
- The problem the Blue Team has when defending:
 - The Blue Team has to roughly know about possible attacks

- We assume that the Red Team did not find the bugs (yet)
- \bullet We don't know about the gets and printf bug
- The problem the Blue Team has when defending:
 - The Blue Team has to roughly know about possible attacks
 - Protecting against a (yet) unknown attack is often not possible or comes with great costs (e.g. performance overhead)

- We assume that the Red Team did not find the bugs (yet)
- $\bullet~$ We don't know about the gets and printf bug
- The problem the Blue Team has when defending:
 - The Blue Team has to roughly know about possible attacks
 - Protecting against a (yet) unknown attack is often not possible or comes with great costs (e.g. performance overhead)
- Assume we know about stack-buffer overflows

- Want to prevent Instantiation step
- Attacker should not get into weird state using a buffer overflow

- Want to prevent Instantiation step
- Attacker should not get into weird state using a buffer overflow
- Program should rather die than being attacker controlled

- Want to prevent Instantiation step
- Attacker should not get into weird state using a buffer overflow
- Program should rather die than being attacker controlled
- Remember: Stack overflow \rightarrow overwrite the saved return address

- Want to prevent Instantiation step
- Attacker should not get into weird state using a buffer overflow
- Program should rather die than being attacker controlled
- Remember: Stack overflow \rightarrow overwrite the saved return address
- Cannot make it readonly (write permissions have page-level granularity)

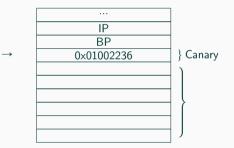
• Simple idea: put a known (random) value between the buffer and the saved return address

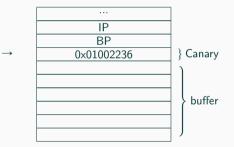
- Simple idea: put a known (random) value between the buffer and the saved return address
- We call this value canary (yes, like the yellow bird)

- Simple idea: put a known (random) value between the buffer and the saved return address
- We call this value canary (yes, like the yellow bird)
- Canary is overwritten first

- Simple idea: put a known (random) value between the buffer and the saved return address
- We call this value canary (yes, like the yellow bird)
- Canary is overwritten first
- On return, check whether the canary has the correct value

- Simple idea: put a known (random) value between the buffer and the saved return address
- We call this value canary (yes, like the yellow bird)
- Canary is overwritten first
- On return, check whether the canary has the correct value
- If not \rightarrow buffer overflow, kill program


```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
}
```



 \rightarrow


```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
}
```



```
uint32_t readPIN() {
    char buffer[16];
    printf("Enter PIN:\n");
    gets(buffer);
    if(getenv("DEBUG")) printf(buffer);
    return atoi(buffer);
}
```



```
IP 0x35343332
                                                    \rightarrow
                                                                BP 0x31303938
                                                            0x01002236 0x37363534
uint32_t readPIN() {
                                                                 0x33323130
 char buffer[16];
                                                                 0x39383736
printf("Enter PIN:\n");
                                                                 0x35343332
gets(buffer);
                                                                 0×31303938
 if(getenv("DEBUG")) printf(buffer);
                                                                 0x37363534
 return atoi(buffer);
                                                                 0x33323130
```

Before return, check canary \rightarrow 0x01002236 \neq 0x37363534 \rightarrow exit } Canary

buffer

• Stack canaries are default in gcc

- Stack canaries are default in gcc
- However, only buffers larger than 8 bytes are protected

- Stack canaries are default in gcc
- However, only buffers larger than 8 bytes are protected
- We can use -fstack-protector-all to protect all buffers

% gcc pwdman.c -fstack-protector-all -o pwdman

- Stack canaries are default in gcc
- However, only buffers larger than 8 bytes are protected
- We can use -fstack-protector-all to protect all buffers

```
% gcc pwdman.c -fstack-protector-all -o pwdman
% ./pwdman
Enter PIN:
012345678901234567890123456789
```

- Stack canaries are default in gcc
- However, only buffers larger than 8 bytes are protected
- We can use -fstack-protector-all to protect all buffers

```
% gcc pwdman.c -fstack-protector-all -o pwdman
% ./pwdman
Enter PIN:
012345678901234567890123456789
*** stack smashing detected ***: ./pwdman terminated
[1] 7569 abort (core dumped) ./pwdman
```

• We fixed the class of stack-overflow bugs

www.tugraz.at

We fixed a class of bugs

- We fixed the class of stack-overflow bugs
- The canary protects every stack buffer from being used to get into a "weird state"

We fixed a class of bugs

• The canary protects every stack buffer from being used to get into a "weird state"

www.tugraz.at

7

• Simple stack-buffer overflow cannot get into an exploitable weird state

- Simple stack-buffer overflow cannot get into an exploitable weird state
- Leak canary using a different trick (e.g., printf bug, or out-of-bounds read)

- Simple stack-buffer overflow cannot get into an exploitable weird state
- Leak canary using a different trick (e.g., printf bug, or out-of-bounds read)
- $\rightarrow\,$ Only prevented a part of a class of bugs

- Simple stack-buffer overflow cannot get into an exploitable weird state
- Leak canary using a different trick (e.g., printf bug, or out-of-bounds read)
- $\rightarrow\,$ Only prevented a part of a class of bugs
- Still other ways to get into a weird state

- Simple stack-buffer overflow cannot get into an exploitable weird state
- Leak canary using a different trick (e.g., printf bug, or out-of-bounds read)
- $\rightarrow\,$ Only prevented a part of a class of bugs
 - Still other ways to get into a weird state
 - We want something more generic, even if less powerful

• Alternative to prevent the Instantiation step?

- Alternative to prevent the Instantiation step?
- Overwritting saved instruction pointer on the stack \rightarrow weird state

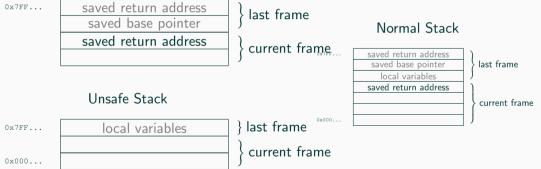
- Alternative to prevent the Instantiation step?
- Overwritting saved instruction pointer on the stack \rightarrow weird state
- \rightarrow Separate saved return addresses and buffers

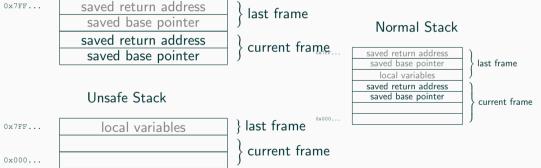
• Simple idea: two different stacks, a safe stack and an unsafe stack

- Simple idea: two different stacks, a safe stack and an unsafe stack
- Simple variables and return values on the safe stack

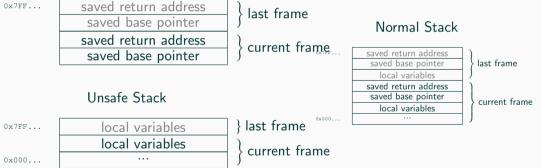
- Simple idea: two different stacks, a safe stack and an unsafe stack
- Simple variables and return values on the safe stack
- Buffers on the unsafe stack

www.tugraz.at


- Simple idea: two different stacks, a safe stack and an unsafe stack
- Simple variables and return values on the safe stack
- Buffers on the unsafe stack
- Buffer overflows cannot overwrite the return address anymore


Safe Stack

0×7FF...


Safe Stack

0×7FF...

Safe Stack

0×7FF...

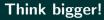
• clang supports safe stacks with a compile flag (not yet implemented in gcc)

- clang supports safe stacks with a compile flag (not yet implemented in gcc)
- % clang pwdman.c -fsanitize=safe-stack -o pwdman % ./pwdman Enter PIN: 1234 Wrong PIN! Enter PIN:

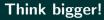
• clang supports safe stacks with a compile flag (not yet implemented in gcc)

% clang pwdman.c -fsanitize=safe-stack -o pwdman % ./pwdman Enter PIN: 1234 Wrong PIN! Enter PIN: 0123456789012345678901234567890123456789 • clang supports safe stacks with a compile flag (not yet implemented in gcc)

```
./pwdman
Enter PIN:
Wrong PIN!
0123456789012345678901234567890123456789
Wrong PIN!
Enter PIN:
```


www.tugraz.at

• Until now, we only prevented a small class of bugs



- Until now, we only prevented a small class of bugs
- It looks like a cat-and-mouse game

- Until now, we only prevented a small class of bugs
- It looks like a cat-and-mouse game
- It works and adds protection, but we have to combine a lot of countermeasures if we continue that way

- Until now, we only prevented a small class of bugs
- It looks like a cat-and-mouse game
- It works and adds protection, but we have to combine a lot of countermeasures if we continue that way
- Every countermeasures costs (performance, memory, ...)

Think bigger!

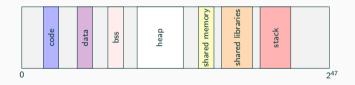
- Until now, we only prevented a small class of bugs
- It looks like a cat-and-mouse game
- It works and adds protection, but we have to combine a lot of countermeasures if we continue that way
- Every countermeasures costs (performance, memory, ...)
- We want something more generic, even if it is not as powerful as specific countermeasures

• Randomness is often used in security \rightarrow probabilistic approach

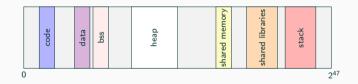
- Randomness is often used in security \rightarrow probabilistic approach
- Assumption: attacker can jump to any memory location


- Randomness is often used in security \rightarrow probabilistic approach
 - Assumption: attacker can jump to any memory location
- What if all memory locations are unpredictable?

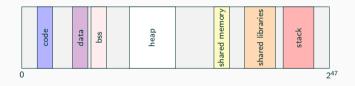
- Randomness is often used in security \rightarrow probabilistic approach
 - Assumption: attacker can jump to any memory location
- What if all memory locations are unpredictable?
- Attacker cannot reliably jump to a specific location anymore



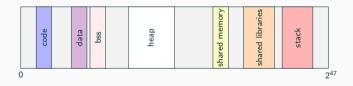
• Address Space Layout Randomization (ASLR) randomizes the position of program parts



• Address Space Layout Randomization (ASLR) randomizes the position of program parts



 Address Space Layout Randomization (ASLR) randomizes the position of program parts


 Address Space Layout Randomization (ASLR) randomizes the position of program parts

• Attacker cannot predict the location of a sane or injected state

• Address Space Layout Randomization (ASLR) randomizes the position of program parts

- Attacker cannot predict the location of a sane or injected state
- Powerful on 64-bit systems \rightarrow huge address space (128 TB)

• ASLR is only a probabilistic countermeasure relying on two assumptions

- ASLR is only a probabilistic countermeasure relying on two assumptions
 - No leak of addresses \rightarrow breaks ASLR immediately

- ASLR is only a probabilistic countermeasure relying on two assumptions
 - No leak of addresses \rightarrow breaks ASLR immediately
 - Randomization range is large enough \rightarrow brute force breaks ASLR

- ASLR is only a probabilistic countermeasure relying on two assumptions
 - No leak of addresses \rightarrow breaks ASLR immediately
 - Randomization range is large enough \rightarrow brute force breaks ASLR
- On 64-bit systems, ASLR makes exploitation really hard

- ASLR is only a probabilistic countermeasure relying on two assumptions
 - No leak of addresses \rightarrow breaks ASLR immediately
 - Randomization range is large enough \rightarrow brute force breaks ASLR
- On 64-bit systems, ASLR makes exploitation really hard
- Advantage of ASLR: it costs nearly nothing \rightarrow widespread use

• As ASLR is a cheap but nevertheless effective countermeasure, it is widely used

ASLR in the real world

- As ASLR is a cheap but nevertheless effective countermeasure, it is widely used
 - Linux since 2005 (since 2014 in the kernel)
 - Windows since 2007
 - Android and iOS since 2011
 - Mac OS since 2011 (since 2012 in the kernel)

- As ASLR is a cheap but nevertheless effective countermeasure, it is widely used
 - Linux since 2005 (since 2014 in the kernel)
 - Windows since 2007
 - Android and iOS since 2011
 - Mac OS since 2011 (since 2012 in the kernel)
- Prevented many single bug exploits, as they fail with a high probability

• Assumption: attacker still found a way to get into a weird state

Assumption: attacker still found a way to get into a weird state
Last ressort to prevent exploitation → make the Programming step infeasible

- Assumption: attacker still found a way to get into a weird state
 - Last ressort to prevent exploitation → make the Programming step infeasible
 - Attacker uses the input stream to program the weird machine

- Assumption: attacker still found a way to get into a weird state
 - Last ressort to prevent exploitation → make the Programming step infeasible
 - Attacker uses the input stream to program the weird machine
 - We could filter the input stream but this is not always possible

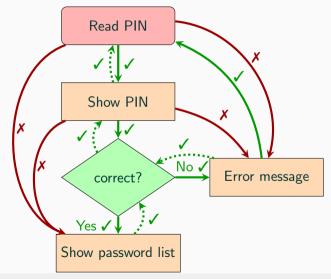
• Idea: make the FSM aware of itself!

- Idea: make the FSM aware of itself!
- The FSM should know which states and transitions are allowed

- Idea: make the FSM aware of itself!
- The FSM should know which states and transitions are allowed
- \rightarrow Prevent all transitions which are not in the original FSM

- Idea: make the FSM aware of itself!
- The FSM should know which states and transitions are allowed
- \rightarrow Prevent all transitions which are not in the original FSM
- Every state has to check whether

- Idea: make the FSM aware of itself!
- The FSM should know which states and transitions are allowed
- \rightarrow Prevent all transitions which are not in the original FSM
- Every state has to check whether
 - target of an indirect jump is correct according to the FSM


- Idea: make the FSM aware of itself!
- The FSM should know which states and transitions are allowed
- \rightarrow Prevent all transitions which are not in the original FSM
- Every state has to check whether
 - target of an indirect jump is correct according to the FSM
 - saved return address points to a previous state

- Idea: make the FSM aware of itself!
- The FSM should know which states and transitions are allowed
- \rightarrow Prevent all transitions which are not in the original FSM
- Every state has to check whether
 - target of an indirect jump is correct according to the FSM
 - saved return address points to a previous state
- Forces the program to stay inside the FSM

Allowed and Disallowed transitions

• Control-flow integrity sounds simple \rightarrow difficult to implement

- Control-flow integrity sounds simple \rightarrow difficult to implement
 - Control-flow graph must be correctly constructed

- \bullet Control-flow integrity sounds simple \rightarrow difficult to implement
 - Control-flow graph must be correctly constructed
 - Function pointers cannot be protected if destination set is large

Control-flow integrity

- Control-flow integrity sounds simple \rightarrow difficult to implement
 - Control-flow graph must be correctly constructed
 - Function pointers cannot be protected if destination set is large
 - Some functions (e.g., library functions) have many call locations and therefore return locations

- Control-flow integrity sounds simple \rightarrow difficult to implement
 - Control-flow graph must be correctly constructed
 - Function pointers cannot be protected if destination set is large
 - Some functions (e.g., library functions) have many call locations and therefore return locations
- Still, usable implementations in clang and from Microsoft

- Control-flow integrity sounds simple \rightarrow difficult to implement
 - Control-flow graph must be correctly constructed
 - Function pointers cannot be protected if destination set is large
 - Some functions (e.g., library functions) have many call locations and therefore return locations
- Still, usable implementations in clang and from Microsoft
- Exploitation is still possible → integrity checks are often coarse-grained

Control-flow integrity - Example

```
typedef void (*function)();
void help() {
 printf("Display this help message\
    n");
void unlock() {
 unlockPasswordManager();
void quit() {
 printf("Bye!\n");
 exit(0);
void usage() {
 printf("Usage: pwdman-ui <0-2>\n")
     ;
```

```
void debug() {
 printf("Here is your shell\n");
 system("/bin/bash");
int main(int argc, char* argv[]) {
 function commands [] = {
  help, unlock, quit
 };
 function debugging[] = {
  debuq
 };
 if(argc > 1) {
  commands[atoi(argv[1])]();
 } else usage();
```

% ./pwdman-u:

% ./pwdman-ui

Usage: pwdman-ui <0-2>

% ./pwdman-ui

Usage: pwdman-ui <0-2>

% ./pwdman-ui (

% ./pwdman-ui
Usage: pwdman-ui <0-2>
% ./pwdman-ui 0
Display this belp messad

% clang pwdman-ui.c -o pwdman-ui % ./pwdman-ui Usage: pwdman-ui <0-2> % ./pwdman-ui 0 Display this help message % ./pwdman-ui 1

```
% clang pwdman-ui.c -o pwdman-ui
% ./pwdman-ui
Usage: pwdman-ui <0-2>
% ./pwdman-ui 0
Display this help message
% ./pwdman-ui 1
Enter PIN: ^C
```

```
% clang pwdman-ui.c -o pwdman-ui
% ./pwdman-ui
Usage: pwdman-ui <0-2>
% ./pwdman-ui 0
Display this help message
% ./pwdman-ui 1
Enter PIN: ^C
% ./pwdman-ui 2
```

```
% clang pwdman-ui.c -o pwdman-ui
% ./pwdman-ui <0-2>
% ./pwdman-ui 0
Display this help message
% ./pwdman-ui 1
Enter PIN: ^C
% ./pwdman-ui 2
Bwe!
```

```
% clang pwdman-ui.c -o pwdman-ui
% ./pwdman-ui
Usage: pwdman-ui <0-2>
% ./pwdman-ui 0
Display this help message
% ./pwdman-ui 1
Enter PIN: ^C
% ./pwdman-ui 2
Bye!
% ./pwdman-ui 10
```

% clang pwdman-ui.c -o pwdman-ui
% ./pwdman-ui
Usage: pwdman-ui <0-2>
% ./pwdman-ui 0
Display this help message
% ./pwdman-ui 1
Enter PIN: ^C
% ./pwdman-ui 2
Bye!
% ./pwdman-ui 10
<pre>[1] 20659 segmentation fault (core dumped) ./pwdman-ui 10</pre>

```
% clang pwdman-ui.c -o pwdman-ui
% ./pwdman-ui
Usage: pwdman-ui <0-2>
% ./pwdman-ui 0
Display this help message
% ./pwdman-ui 1
Enter PIN: ^C
% ./pwdman-ui 2
Bye!
% ./pwdman-ui 10
[1] 20659 segmentation fault (core dumped) ./pwdman-ui 10
% ./pwdman-ui -1
```

% clang pwdman-ui.c **-fsanitize=cfi -flto -fvisibility=hidden** '

- -fno-sanitize-trap=all -o pwdman-ui
- % ./pwdman-ui

% clang pwdman-ui.c -fsanitize=cfi -flto -fvisibility=hidden

-fno-sanitize-trap=all -o pwdman-ui

% ./pwdman-ui

Usage: pwdman-ui <0-2>

% clang pwdman-ui.c -fsanitize=cfi -flto -fvisibility=hidden \ -fno-sanitize-trap=all -o pwdman-ui % ./pwdman-ui Usage: pwdman-ui <0-2> % ./pwdman-ui 0

% clang pwdman-ui.c -fsanitize=cfi -flto -fvisibility=hidden \
 -fno-sanitize-trap=all -o pwdman-ui
% ./pwdman-ui
Usage: pwdman-ui <0-2>
% ./pwdman-ui 0
Display this help message

```
% clang pwdman-ui.c -fsanitize=cfi -flto -fvisibility=hidden \
    -fno-sanitize-trap=all -o pwdman-ui
% ./pwdman-ui
Usage: pwdman-ui <0-2>
% ./pwdman-ui 0
Display this help message
% ./pwdman-ui 10
```

```
% clang pwdman-ui.c -fsanitize=cfi -flto -fvisibility=hidden \
    -fno-sanitize-trap=all -o pwdman-ui
% ./pwdman-ui <0-2>
% ./pwdman-ui 0
Display this help message
% ./pwdman-ui 10
pwdman-ui.c:43:9: runtime error: control flow integrity check
for type 'void ()' failed during indirect function call
0x2079616c70736944: note: (unknown) defined here
% ./pwdman-ui -1
```

```
-fno-sanitize-trap=all -o pwdman-ui
```


• We discussed techniques to prevent the Instantiation step

- We discussed techniques to prevent the Instantiation step
 - Canary
 - ASLR

- We discussed techniques to prevent the Instantiation step
 - Canary
 - ASLR
- And control-flow integrity to prevent Programming step

- We discussed techniques to prevent the Instantiation step
 - Canary
 - ASLR
- And control-flow integrity to prevent Programming step
- They provide good protection but can be circumvented

- We discussed techniques to prevent the Instantiation step
 - Canary
 - ASLR
- And control-flow integrity to prevent Programming step
- They provide good protection but can be circumvented
- Why use the countermeasures if they can be circumvented?

• Often arguments such as

- Often arguments such as
 - "We have to increase the costs/raise the bar for an attacker"
 - "Many layers of security make it a lot harder for an attacker"

- Often arguments such as
 - "We have to increase the costs/raise the bar for an attacker"
 - "Many layers of security make it a lot harder for an attacker"
- That is partly true, however...

- Often arguments such as
 - "We have to increase the costs/raise the bar for an attacker"
 - "Many layers of security make it a lot harder for an attacker"
- That is partly true, however...
- ...in most cases there is a trade-off

- Often arguments such as
 - "We have to increase the costs/raise the bar for an attacker"
 - "Many layers of security make it a lot harder for an attacker"
- That is partly true, however...
- ...in most cases there is a trade-off
- Increased cost for the attacker usually comes with increased cost for the user as well

- Often arguments such as
 - "We have to increase the costs/raise the bar for an attacker"
 - "Many layers of security make it a lot harder for an attacker"
- That is partly true, however...
- ...in most cases there is a trade-off
- Increased cost for the attacker usually comes with increased cost for the user as well
- $\rightarrow\,$ slower programs, increased memory consumption, \ldots

• User has to pay the costs all the time

- User has to pay the costs all the time
- Attacker only has to pay them once

- User has to pay the costs all the time
- Attacker only has to pay them once
- A defender has to decide whether such a trade-off is worth for individual cases

• Presented countermeasures provide a good trade-off between cost and security

- Presented countermeasures provide a good trade-off between cost and security
- This is one reason why they are widely used

- Presented countermeasures provide a good trade-off between cost and security
- This is one reason why they are widely used
- Future hardware might implement some countermeasures to reduce the costs

- Presented countermeasures provide a good trade-off between cost and security
- This is one reason why they are widely used
- Future hardware might implement some countermeasures to reduce the costs
- What else can we do in the meantime?

• Might not prevent attack from a sophisticated attacker

- Might not prevent attack from a sophisticated attacker
- \rightarrow Restrict the attacker after the exploit

- Might not prevent attack from a sophisticated attacker
- \rightarrow Restrict the attacker after the exploit
- Protect our system, even if application is controlled by the attacker

Sandboxing

• Simple sandboxing with Docker can be as easy as running one command

Sandboxing - Demo

```
    Simple sandboxing with Docker can be as easy as running one command

   Enter PIN: 📀 📀 📀 📀 📀 📀
```


• An attacker cannot do much anymore

- An attacker cannot do much anymore
 - The file system is readonly, no files can be changed/created
 - No files of the host computer are visible, except the program and the password list
 - There is no network connection to easily exfiltrate data

- An attacker cannot do much anymore
 - The file system is readonly, no files can be changed/created
 - No files of the host computer are visible, except the program and the password list
 - There is no network connection to easily exfiltrate data
- Even if our program is owned by an attacker, the attacker can at least not harm the rest of the system

• Always expect the worst case that could happen!

- Always expect the worst case that could happen!
- In this case: attacker found exploitable bug, circumvented all countermeasures, got a shell in the sandbox and was able to read the password file

- Always expect the worst case that could happen!
- In this case: attacker found exploitable bug, circumvented all countermeasures, got a shell in the sandbox and was able to read the password file
- $\bullet \rightarrow$ No problem if file is encrypted, and key is derived from PIN

- Always expect the worst case that could happen!
- In this case: attacker found exploitable bug, circumvented all countermeasures, got a shell in the sandbox and was able to read the password file
- $\bullet \rightarrow$ No problem if file is encrypted, and key is derived from PIN
- (Assuming the crypto is good, and you used it correctly)

• If we encrypt the data, do we even benefit from a sandbox?

Why use a Sandbox then?

- If we encrypt the data, do we even benefit from a sandbox?
- Attacker cannot read the password file anyway

Michael Schwarz — www.iaik.tugraz.at

www.tugraz.at

Why use a Sandbox then?

- If we encrypt the data, do we even benefit from a sandbox?
- Attacker cannot read the password file anyway

www.tugraz.at

• Without sandbox, attacker can create/modify files

- Without sandbox, attacker can create/modify files
- Attacker could install a keylogger or other malicious software

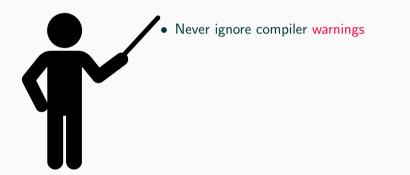
- Without sandbox, attacker can create/modify files
- Attacker could install a keylogger or other malicious software
- Or replace the password manager with a manipulated one leaking the PIN

- Without sandbox, attacker can create/modify files
- Attacker could install a keylogger or other malicious software
- Or replace the password manager with a manipulated one leaking the PIN
- Best crypto does not help if system is compromised

• Never assume perfect countermeasures or bug-free code

- Never assume perfect countermeasures or bug-free code
- Encrypt your data in case it leaks (it will at some point)

- Never assume perfect countermeasures or bug-free code
- Encrypt your data in case it leaks (it will at some point)
- Minimize privileges (e.g., a server should not run as root)



- Never assume perfect countermeasures or bug-free code
- Encrypt your data in case it leaks (it will at some point)
- Minimize privileges (e.g., a server should not run as root)
- Log everything in case of an attack, you have a chance to find (and sue) the attacker

- Never assume perfect countermeasures or bug-free code
- Encrypt your data in case it leaks (it will at some point)
- Minimize privileges (e.g., a server should not run as root)
- Log everything in case of an attack, you have a chance to find (and sue) the attacker
- Compiler can help to harden your application, e.g., using compile flags such as -D_FORTIFY_SOURCE=2

102

- Never ignore compiler warnings
- Don't disable default counteremeasures (e.g., stack canaries)

- Don't disable default counteremeasures (e.g., stack canaries)
- Enable countermeasures that are cheap, e.g., ASLR

- Don't disable default counteremeasures (e.g., stack canaries)
- Enable countermeasures that are cheap, e.g., ASLR
- Consider stronger countermeasures, such as CFI

- Don't disable default counteremeasures (e.g., stack canaries)
- Enable countermeasures that are cheap, e.g., ASLR
- Consider stronger countermeasures, such as CFI
- Always consider sandboxing your application

• Defending software is hard, but not impossible

- Defending software is hard, but not impossible
- Defenses are important to raise the cost for an attacker

- Defending software is hard, but not impossible
- Defenses are important to raise the cost for an attacker
- Security is a cat-and-mouse game full of repetitions

- Defending software is hard, but not impossible
- Defenses are important to raise the cost for an attacker
- Security is a cat-and-mouse game full of repetitions
- The best countermeasure: don't have bugs in your code

- Defending software is hard, but not impossible
- Defenses are important to raise the cost for an attacker
- Security is a cat-and-mouse game full of repetitions
- The best countermeasure: don't have bugs in your code
- Realistic view: impossible to have bug free code, but try to reduce the number of bugs

Any Questions?