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Introduction

When developing software applications, most of the effort is usually spent fulfilling the basic functionality
requirements. Often, security is left as an afterthought. However, many programming languages such
as C are neither memory-safe or type-safe, allowing mistakes to happen very quickly and frequently,
while often being hard to detect during normal program flow. More and more data breaches or “hack-
ing attacks” are reaching the mainstream news, with many of them being enabled by a quite trivial
programming mistake.

In this challenge, you have to exploit some of the most common mistakes. The concrete scenarios
for your exercises are constructed, but the underlying errors appeared countless times, not only in some
hobbyist project but often in high-profile applications. Remember: All these things still happen,
and there are countless bugs being discovered in software that is still used today. Furthermore, hardware
manufacturers spent a lot of time and development efforts to protect against physical attacks, as these
are often even more problematic because it is much harder to fix an oversight in a hardware product.

There are 2 main categories of tasks: Hacklets and Fault challenges. There are a total of 7 challenges
in the hacklet category and 3 challenges in the fault category. The number of points awarded for each
challenge is stated in this document. If you have any questions, please contact the responsible teaching
assistants:
lukas.lamster@student.tugraz.at (hacklets), ehrenreich@student.tugraz.at (faults), or ask a ques-
tion in the newsgroup: tu-graz.lv.infosec.

For local testing, you we provide you with the secret files, so you can compare your solution. For
testing, we will run your program with fresh challenges. On our test system, the maximum execution
time is 10 seconds per challenge for the hacklet tasks, for the fault challenges you have 1 minute each.
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1 Hacklets

The first part of this assignment is focused around common errors that happen when developing software
applications. Many of these errors are specific to the C language, but their general concepts can be
found in many other programming languages as well. In fact, many modern programming languages
(e.g., Rust) are specifically designed to prevent (or at least make them as unlikely to occur as possible)
many of these errors by design. Nevertheless, C and C++ still have a large market share, especially in
the area of embedded systems and microcontrollers.

Your task is to analyze the following programs, find the errors and then take on the role of an attacker:
Exploit the mistakes in the following short hacklets to gain more privileges than originally intended by
the authors. Concretely, for all of the following hacklets the goal is to read the contents of a file called
flag.txt in the same folder.

Framework

The challenges are written in standard C or C++ and have to be solved in Python (Python3). We
recommend the following packages to be installed:
• pwntools

On a standard GNU/Linux system, the following should install pwntools for python3:

sudo apt−get update
sudo apt−get i n s t a l l python3 python3−pip python3−dev g i t l i b s s l −dev l i b f f i −dev bui ld−e s s e n t i a l
python3 −m pip i n s t a l l −−upgrade −−user pip
python3 −m pip i n s t a l l −−upgrade −−user g i t+https :// github . com/Gal l ops l ed /pwntools . git@4 . 0 . 0 beta0

We provide a virtual machine for ease of development, which has an identical setup to the automated
test system and also has all necessary packages and libraries pre-installed. A link to this virtual machine
image can be found on the course website.

Each challenge is contained in a subdirectory, the concrete folder is stated for each challenge in this
document. For the hacklet category, each challenge folder contains the following:
• C/C++ file (<folder name>.c/c++)
• Binary ELF executable (main.elf), a pre-compiled version of the binary which is identical to the

one used on the test system
• Makefile, to show you the compilation options for the binary
• exploit, a template to get you started for your exploit. You can choose to use python3 or even a

plain bash script, just change the shebang accordingly.
• flag.txt file. These files contain the information you need to read by exploiting the given binary.
• Optional: additional files (e.g., password files)

For all tasks, make sure your exploits work with the precompiled, unmodified binary, which is
the one that you are given. You are free to modify and compile the source file yourself and try to attack
this modified version if that helps you to arrive at a final solution, but your submitted solution has to
work on the precompiled, unmodified binary.

1.1 Warnings Matter! (1P)

Folder: hacklets/01_auth

Compiler errors arise when there are situations the compiler can not recover from, e.g., syntax er-
rors. In contrast, compiler warnings are messages that report constructions that may not be inherently
erroneous, but are often misused or point to risky sections of code. Still, many of these error messages
are ignored by novice programmers, since the resulting binary file appears to have the correct behavior
for their (often limited) test cases and furthermore, not all warnings are reported using the default com-
pilation options for e.g., gcc. In situations like that, attackers might exploit the problems at the root of
these warnings to force unintended behavior.
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Challenge. In this task, you are given an executable that reads a password from a file and then
compares it to the password the user entered. If both match, the contents of the flag file are printed.
Exploit a problem in the program to gain access without knowledge of the real password.

Hints. One way to enforce the developer to care about warnings when using gcc is to use the compiler
flags -Wall -Werror which turns on almost all warnings (one can enable even more warnings using
-Wextra) and classifies them as errors, so the compilation aborts if warnings are present. Is there
anything to be concerned about with this program?

1.2 Format String Attacks (1P)

Folder: hacklets/02_encrypt

IO functionality, i.e., the ability for a program to send output to a user or read input from the
terminal or a file, is one of the most crucial parts of software development. Pretty much every program
has a way to get some input from the user and to then react dynamically to that input, producing an
output in some fashion. In C, the most well known function for printing characters is printf, which
prints formatted data to the standard output.

The definition of printf is as follows: int printf(const char* format, ...);. The first argu-
ment is a so-called format string, which can include format specifiers (e.g., "%d"). Additionally, printf is
a variadic function, which can take a variable number of elements to enable the combination of multiple
format specifiers in a single format string. Each format specifier should be paired with a corresponding
argument to printf, e.g. printf("%d", 5); prints 5 as a signed integer.

Problems can occur if the number of format specifiers and additional arguments are mismatched.
If there are too many format specifiers, the program will just try to get a value from the expected
position the stack, where a corresponding argument’s value would normally reside. This can, however,
leak information about other variables on the stack that were never intended to be printed. The situation
gets even worse when the format string itself is under the control of the user, since a malicious user can
now force situations as described before on purpose.

Challenge. You are given a small encryption program that takes user input from the standard input,
“encrypts” this input and prints it back to the standard output. Abuse an error in this functionality to
execute unintended functionality and read the secret input.

Hints. The program does not terminate after one encryption process, you can call it as often as you
like as long as you do not break it.

1.3 Buffer Overflows (1P + 2P)

Arrays are one of the most fundamental data structures that are used in programs. They allow the
storage of a fixed amount of values of a certain data type and usually cannot be resized once created.
In C, an array can be created using type array name[ array size ];. If we, for example, write int

numbers[3];, we declare an array of 3 integer variables, that can subsequently be accessed using int a =

numbers[0], b = numbers[1], c = numbers[2];. Notice the zero-based indices, which lead to a very
common error for programming novices, who try to access the array in the following way instead: int

a = numbers[1], b = numbers[2], c = numbers[3];. While the variables a and b are well defined,
but probably do not point to the intended value, what value does the variable c hold?

C, unlike many other modern programming languages, does not have runtime checks for bounds
during array accesses. While this is obviously better for performance, since no time is spent doing
comparisons for every array access, this can lead to very critical bugs, since the variable c just gets
assigned whatever is at the position in the memory following the original numbers array. This can again
lead to unintended information leaks. The situation gets even more dangerous when the user is allowed
to write outside the intended bounds of the array, potentially overwriting the content of other, maybe
security critical variables or divert the control flow of the program by overwriting return addresses or
function pointers.
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1.3.1 Echo Service (1P)

Folder: hacklets/03_echo

Challenge. You are given a small utility, implementing an echo service that is intended to check the
responsiveness of a network device. Use a flaw in the programs logic to recover the secret (content of the
flag.txt file) used to initialize the device.

Hint. A serious vulnerability with a somewhat medical name shook the internet infrastructure in
2014, resulting in the need to patch over two thirds of all servers connected to the internet. You need to
communicate with the provided binary using network sockets. If you are using pwntools, have a look at
its remote (pwnlib.tubes.remote) functionality.

1.3.2 Average (2P)

Folder: hacklets/04_average

Challenge. You are given a small data processing program, that reads a certain amount of integers
and then produces their average value. Exploit a flaw in the program to call some debug functionality
left in the program by accident and read the value stored in the flag file.

Hint. You may want to analyze the ELF file using some tools as readelf or the ELF class of pwntools.
These can help you in finding the location of functions in the binary.

1.4 Shellcode (1P)

Folder: hacklets/05_exe

A compilers job is to translate the source code written in a high-level programming language to a
low-level target language, e.g., assembly or machine code. The generated machine code for the target
architecture is then stored as part of the binary executable, where it will later be loaded and executed.

This machine code is just a combination of specific bit sequences that are then interpreted by the
CPU, which then performs the desired operation. During normal execution, memory of a program is
segmented into different sections, so that the executable machine code is at different location in memory
than, for example, the content of a local variable. The special instruction pointer register points to the
location in memory that holds the currently executed instruction and, during normal program flow, the
instruction pointer should never point to memory locations not designated for code.

However, different bugs can lead to a violation of this fact and cause the instruction pointer to point
to attacker-controlled memory.

Challenge. You are given a very minimal program, that reads an address and jumps to the given
location. Exploit this functionality to gain access to the contents of the secret file.

Hints. This type of exploit would not work on most modern systems due to a countermeasure called
W ⊕ X or “write xor execute”. This, in short, means that a section of memory is either writable or
executable, but never both. This simple policy prevents simple attacks like modifying the binary code of
the program or executing code that you wrote into a stack array. However, if you look at the Makefile,
you may see some specific compiler options that are beneficial for an attacker.
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1.5 Combo (2P)

Folder: hacklets/06_calculator

Modern programs often get quite complex, and this complexity naturally results in many bugs.
However, many of the bugs we previously explored have countermeasures and can nowadays even be
detected by the compiler in some cases.

For attackers, this added complexity means more bugs in total, but the improved countermeasures
also can mean that each of these bugs has a much smaller impact and can maybe not be exploited to
achieve the attackers goal. In modern exploits, attackers often combine multiple small errors to create
an exploit that would not be possible by just abusing a single one of these bugs.

Challenge. You are given a binary implementing a modular calculator. Abuse the multiple problems
in the program to gain access to the secret inside the flag.txt file.

Hints. Try to find and analyze the individual errors first. What kind of capabilities do they give you,
the attacker? Then devise a strategy to combine them to achieve your goal.

1.6 Use After Free (C++) (2P)

Folder: hacklets/07_shelter

Dynamic memory allocations are standard feature in most programming languages, as it is often
useful to allocate a dynamic amount of memory to store data based on the user’s input. One example
could be an image editor, where the program needs to allocate a buffer to store the content of the
arbitrarily sized image.

Usually, such a dynamic memory allocation can be thought of in terms of resources. The program
makes a request for a resource, this resource gets allocated and a resource handle is returned, which can
be thought of as a reference to the specific resource. Once the resource is no longer needed, it can be
returned by invoking a function on the resource handle. In C, we can request memory via the malloc

library function, which returns a pointer to the allocated memory. This pointer is our resource handle.
We can return the memory by passing the resource handle to the free function.

Observe a problem with this previous workflow: The free function does return the resource (the
allocated memory), but does not invalidate the resource handle (the pointer). Even zeroing the pointer
does not help, since it could have been copied or passed to another thread in the past. We are left with
a so-called dangling pointer, a pointer that points to previously freed memory.

While this obviously is bad, since accessing this pointer after the underlying memory has been freed
will most likely crash the program, it can get even worse. What if instead the memory location that was
previously assigned to some request (and we have a pointer to), gets freed and then reused for some other
request. Now we could have a pointer that was originally pointing to, e.g., an array for the username
of our user, but is now actually pointing at a security-critical data structure, e.g., a map of users and
passwords. Now a simple functionality such as changing one’s username can have catastrophic results
such as leaking or overwriting sensitive data.

Challenge. You are given a small C++ implementation of an animal shelter. Exploit a problem in
the program to gain access to the contents of the secret file.

Hints. Although the concept of use after free was described using C in the above text, C++ also has
functions to allocate and delete memory. Additionally, C++ has support for object orientated program-
ming concepts such as inheritance. Have a look at the concept of virtual tables, used to implement
runtime polymorphism.
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Useful Resources

Here is a short list of tools and resources you might find helpful.

• Pwntools documentation: http://docs.pwntools.com/en/dev/ (for python2, but API is the same
for python3)

• gdb <executable>, the GNU Project debugger

• Plugins for gdb (only activate one at a time, as they will probably clash with each other)

– peda, a gdb plugin for exploit development

– pwndbg, a gdb plugin for exploit development

– gef, a gdb plugin for exploit development

• valgrind --tool=memcheck <executable>, a memory checker

• readelf [-a] <executable>, displays information about ELF files

• objdump, and its -d flag for disassembling a section of code

• radare2, an advanced disassembler and debugger

http://docs.pwntools.com/en/dev/
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2 Fault Attacks

The second part of this exercise is focused around fault attacks. In such an attack, the adversary somehow
brings a device briefly outside of its specification and thereby causes errors in the computation.
Faults can be introduced using, for instance, brief over- or undervolting, temporary overclocking (clock
glitches), EM pulses, and lasers. When done carefully, these methods can cause, e.g., instruction skips
and memory corruption of various sorts. These effects can be used to recover cryptographic keys and
bypass many security checks, thereby gaining access to secure systems.

Fault Simulator

In this exercise, we do not cover fault-injection techniques, but rather focus on ways how certain faults
can be exploited. To do this, we provide a fault simulator, which performs single stepping of a binary
and allows manipulation of its execution (corrupting memory, changing the instruction pointer, etc.).

Injected faults are specified in a file. Faults are triggered either by a given value of the instruction
pointer RIP (example: @0x12ab), or by counting the number of executed operations (example: #3000).
The latter is a rough measure for the time since startup. Possible faults include manipulation of the
instruction pointer (e.g., to skip instructions) and memory manipulation (havoc randomizes bytes, zero
sets bytes to zero, bitflip flips a single bit in a byte). The attacked binaries specify which trigger types
and which fault types are allowed for the attack. The simulator is called with two arguments, the first
points to the file specifying the faults, the second argument is the targeted binary. For the challenges, a
simulator with hardcoded arguments is provided.

For further information on the simulator, have a look at the README located in the faults folder. For
demonstration purposes, we included demo attacks. You can run them using:
./simulator demos/victim<nr>.fault demos/victim<nr>

Framework

You have to solve several challenges, each one requires injecting faults in the execution of a provided
binary. Each challenge is contained in a subdirectory, the concrete folder is stated for each challenge in
this document. Challenge folders contain the following:
• C sources of the attacked binary ((<folder name>.c and sources of included libraries, if any)
• Binary ELF executable (<folder name>), a pre-compiled version of the binary which is identical

to the one used on the test system
• Fault simulator configuration script <folder name>.fault specifying all faults you want to inject
• Fault simulator binary simulator performing fault injection on the target executable <folder name>

with the script <folder name>.fault. Call as ./simulator <victim args>

• exploit.py file for challenges requiring post-processing of the faulty output. This script contains
functions for calling the fault simulator and parsing the output.

• exploit.sh file for challenges that do not require any post-processing. Call this script as a short-
hand for the fault simulator with the correct inputs

• Makefile, to show you the compilation options for the binary
• Optional: additional files (e.g., key files, auxiliary python scripts, etc.)

The attack is started by running exploit.{py|sh}. For solving the challenge, you are supposed
to modify the configuration file <folder name>.fault and the python script exploit.py (for
some challenges). For all tasks, make sure that your exploits work with the precompiled, unmodified
binary, which is the one that you are given. Also note: on the test system, access to all secret files (keys
etc.) is locked.



System-Security Challenge Information Security

2.1 Password-Check Bypass (1P)

Folder: faults/01_password

The security of any program can only be guaranteed as long as it is executed correctly. Even seem-
ingly minor faults, such as skipping over a single instruction, can have catastrophic consequences. This
introductory challenge demonstrates this.

Challenge. You are given a binary which, when given the correct password, prints a secret message.
The correct password and the secret message are stored as files in the challenge folder, the entered
password is given as first command-line argument: ./password <password>

Your task is to print the secret message without knowing the password. You should do that
by injecting a single skipping fault in the execution. That is, at a chosen point during execution,
you should manipulate the instruction pointer (add or subtract some small number) and thus skip over
one or multiple instructions.

This challenge should be solved by simply adding an appropriate line in password.fault. No post-
processing is required, so simply run exploit.sh for starting the simulator. Do not change exploit.sh,
as we test using this script, and exploits may depend on the length of the specified password.

Hints. Have a look at the disassembly and try to determine an instruction that, when skipped, allows
bypassing the security check. Then try to determine the correct instruction-pointer offset to skip over
this instruction.

2.2 Fault Attacks on Deterministic Signature Schemes (2P)

Folder: faults/02_eddsa

Secure and correct generation of random nonces has often been a problem in the past (see also
nonce reuse asym in P1). For this reason, some more recent protocols don’t use a random nonce, but
instead use a deterministic nonce generation. This can be done by setting the nonce to the hash
of the message m together with a secret value h. That way, a nonce reuse for different messages is
equivalent to finding a hash collision, which should not be possible for a cryptographic hash function.

One example of such a protocol is the Edwards-curve Digital Signature Algorithm (EdDSA). All of
its algorithms are given below.

Algorithm 1 EdDSA Key Generation

Input: Public parameters (q,B)
Output: Private key (a, h), public key A
1: Pick a random a mod q
2: Pick a random bit string h
3: Compute public key A = a×B . Point-Scalar Multiplication
4: return sk = (a, h), pk = A

Algorithm 2 EdDSA Signing Algorithm

Input: Message m, private key (a, h), public parameters (q,B)
Output: Signature (R, s)
1: r = H(h,m) . Deterministic derivation of nonce r
2: R = r ×B . Point-Scalar Multiplication
3: s = (r + H(R,A,m) · a) mod q
4: return (R, s)
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Algorithm 3 EdDSA Verification Algorithm

Input: Message m, signature (R, s), public key A, public parameters (q,B)
1: Signature is valid if s×B = R + H(R,A,m)×A

Challenge. You are given a binary that runs the EdDSA signing algorithm. As input, it uses a
message string given as command line argument: ./eddsa <tobesignedmessage>. As output, the
program prints the signed message (signature and message) as a hex-string. The key is read in from the
file in the directory. Your goal is to recover the signing key a with a fault attack. You can use
memory corruption (bitflip, zero, havoc), but only with an instruction-count trigger.

Hints. Observe that in the signing algorithm, the message m is processed twice (line 1, line 3). What
happens when you corrupt/change the message in between? Compare to the case of signing without
faults. Think back to nonce reuse asym of P1.

The point-scalar multiplication (line 2) is by far the most time consuming operation in signing. Also
note that m gets copied into the global buffer signed message at the start of the algorithm and is then
only read from there (see ref10/sign.c). A single fault injection should be sufficient for key recovery.

2.3 Differential Fault Attacks on AES (3P)

Folder: faults/03_aes

Symmetric cryptography can also be target of fault attacks. There, injected faults often need to be
more precise (in terms of timing). Key recovery then often works in a divide-and-conquer fashion. Pieces
of the key, such as its bytes, are recovered individually by trying all possible values and determining
which one fits the injected fault.

Challenge. You are given a binary which performs AES decryption of a single 128-bit block. The
ciphertext is given as the first command-line argument as a hex string, the output is written to stdout.
The key is taken from a file. Your task is to recover the key k with a fault attack. You are only
allowed to use bit flips in combination with an instruction-pointer (RIP) trigger

Hints. You are supposed to perform a differential fault attack. That is, you run decryption twice,
once with fault, once without fault. For each possible value of a key byte, use the output and compute
back to the point where the fault was injected. Then, for each possible byte value, check if the difference
between the true and the faulty value corresponds to the injected fault.
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Figure 1: AES decryption, last operations for 4 of 16 output bytes

As a first step, determine where in the decryption process you want to inject your faults. You should
pick an intermediate which, when computing backwards, only depends on a small number of key bits,
i.e., a byte. To help you, the last couple of operations in the decryption process are shown in Figure 1.

As a hint, first look for fault locations such that a single bit flip causes only one output byte to be
different. Such a fault might not allow an attack, but it is a good start. The solution will require more
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than a single fault per execution. First, however, focus on recovering a single key byte. The attack will
require running decryption more than once (with different inputs).

Our AES implementation works in place. That is, the input array ct is directly used for storage
of the AES state. Thus, in the end of the algorithm, the plaintext can be found in the same memory
location.

Decryption vs. Encryption. Encryption can be attacked in exactly the same way (except for the
reversed roles of plaintext and ciphertext). We chose to target decryption, since an attack can then
directly recover the master key k. An attack on encryption would recover the last round key instead. As
the key schedule of AES is reversible, the master key k can still be computed with an additional step.

More powerful attacks. In reality, attackers rarely have the ability to flip bits with such high preci-
sion. However, there do exist many more powerful attacks capable of exploiting, e.g., randomization of
entire bytes.
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3 Version History

v1.0

Initial release of P2 assignment sheet.

v1.1

Fixed incorrect statement regarding triggering in faults/03 aes
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