
S C I E N C E
P A S S I O N

T E C H N O L O G Y

Kick-O� P2

Daniel Kales & Peter Peßl

Information Security – WT 2019/20

www.iaik.tugraz.at

Organizational

We have some solo groups a�er the first assignment

If you want to be merged with another solo group...

... come down to us a�er this lecture

... sendme amail today!

We will try to merge groups with similar point total

1 / 12

Kick-o� for P2: System-Security

�

Bugs in So�ware and Hardware

P2: Overview

2 main categories:

 Hacklets

� Faults

Your task:

Hacklets: exploit common errors in C ...

Faults: use (simulated) physical attacks ...

... to recover secret information

2 / 12

P2: Timeline

� Kicko� - Now

� “My first exploit” tutorial - 15.11.2019, 13:30

� Fault demo & Question hour - 22.11.2019, 13:30

� Question hour - 29.11.2019, 13:30

� Deadline - 06.12.2019, 23:59

3 / 12

P2: Assignment

q Detailed specification on a seperate assignment sheet

Available on course website
Read both the assignment sheet and these slides!

 Submission and file-distribution using git

use the same-repository (P2 subfolder)
pull the assignment files from the upstream repository

see course website for instructions!

Ë Points will be published online

Automated test systemwith daily tests for each task
Links on course website

4 / 12

P2: Assignment

q Detailed specification on a seperate assignment sheet

Available on course website
Read both the assignment sheet and these slides!

 Submission and file-distribution using git

use the same-repository (P2 subfolder)
pull the assignment files from the upstream repository

see course website for instructions!

Ë Points will be published online

Automated test systemwith daily tests for each task
Links on course website

4 / 12

P2: Assignment

q Detailed specification on a seperate assignment sheet

Available on course website
Read both the assignment sheet and these slides!

 Submission and file-distribution using git

use the same-repository (P2 subfolder)
pull the assignment files from the upstream repository

see course website for instructions!

Ë Points will be published online

Automated test systemwith daily tests for each task
Links on course website

4 / 12

P2: Framework

B You will get a VM

All tools are pre-installed

Do not use additional libraries, etc...

Î Where should you begin?

Download the VM

Setup the VM

Clone the assignment from the upstream repo

Read the task description, read the hints

5 / 12

P2: Framework

B You will get a VM

All tools are pre-installed

Do not use additional libraries, etc...

Î Where should you begin?

Download the VM

Setup the VM

Clone the assignment from the upstream repo

Read the task description, read the hints

5 / 12

Hacklets

Exploiting Common So�ware Errors

Overview

 For the hacklet task:

Analyze 7 small C and C++ programs
Findmistakes in the programs
Exploit these mistakes
Capture the flag (contents of a flag.txt file)

v Convince the program to give you the flag

Write an exploit using python3 (no actual C programming needed!)
But you need to understand the C source to find mistakes!

Print the flag to stdout and store it to solution.txt

6 / 12

Overview

 For the hacklet task:

Analyze 7 small C and C++ programs
Findmistakes in the programs
Exploit these mistakes
Capture the flag (contents of a flag.txt file)

v Convince the program to give you the flag

Write an exploit using python3 (no actual C programming needed!)
But you need to understand the C source to find mistakes!

Print the flag to stdout and store it to solution.txt

6 / 12

Where do I begin?

Take a look at the hacklets

Analyze the source code

Use GDB to debug the hacklets

Execute the hacklets, test di�erent inputs

Test strange input

Does the code behave like it should?

7 / 12

What kind of vulnerabilities will we find?

For example, and in no particular order:

Format String Vulnerabilities

char use r_ inpu t [1 0] ;
. . .
< read user input >
. . .
p r i n t f (u se r_ inpu t) ;

8 / 12

What kind of vulnerabilities will we find?

For example, and in no particular order:

Bu�er Overflows

char numbers [1 0] ;
. . .
p r i n t f ("%d" , numbers [1 0]) ;
. . .
numbers [1 0 0] = 17 ;

9 / 12

What kind of vulnerabilities will we find?

For example, and in no particular order:

Use A�er Free

char∗ temp = mal loc (1 0) ;
. . .
f r e e (temp) ;
. . .
p r i n t f ("%s " , temp) ;

10 / 12

What is a valid solution?

 A file called exploit (already present in each folder)
containing a python 3 script that exploits the main.elf such that

you get the flag (contents of flag.txt)
the flag is printed to stdout and/or stored to solution.txt

­ Stu� to keep in mind

We will test with a di�erent, random flag
The size of the flags can vary
We will test with the original main.elf
You should never hardcode the flag!

11 / 12

What is a valid solution?

 A file called exploit (already present in each folder)
containing a python 3 script that exploits the main.elf such that

you get the flag (contents of flag.txt)
the flag is printed to stdout and/or stored to solution.txt

­ Stu� to keep in mind

We will test with a di�erent, random flag
The size of the flags can vary
We will test with the original main.elf
You should never hardcode the flag!

11 / 12

Contact & Finding Help

Course website: https://www.iaik.tugraz.at/infosec

infosec@iaik.tugraz.at

If you need help for the exercises, try (in this order):

Newsgroup graz.lv.infosec
Don’t post your solution there...

Contact the responsible teaching assistant

Contact the responsible lecturer for the practicals

Come to the question hours

12 / 12

https://www.iaik.tugraz.at/infosec
mailto:infosec@iaik.tugraz.at

Faults
�

It’s only secure if executed correctly

We want to build a secure program…

• We use proven cryptography
• use standardized and highly scrutinized algorithms

• use implementation from a secure library

• avoid misuse (proper randomness, AEAD, …)

• …

• We avoid or detect programming mistakes
• address sanitization, stack canary, ASLR, …

• use „memory-safe“ programming language

• …

Are we secure?

• Some additional requirements, such as:

The program is executed correctly /
The processor works as intended

• What happens when it doesn‘t? What if it…
• „forgets“ to execute certain instructions

• performs incorrect computations, such as 2*3 = 4

• forgets data (memory reliability)

Example: PIN check

Example: PIN check

The Setting of Fault Attacks

• CPUs work correctly as long as operated within specification
• datasheet: supply voltage, clock speed, ambient temperature, etc.

• Problem: attacker can have physical access to device
• ex: stolen banking card

• Attacker does not care about specification
• carefully manipulate device to force errors (faults)

Means of Faulting

• Supply voltage spikes

• Clock glitching

• EM transient injections

• Laser

• …

Results of Faulting

• Possible faults
• skip instructions, incorrect computations, memory corruption

• Exploitation
• bypass security checks, disable countermeasures, recover cryptographic keys…

• We want you to try that!

• Problem: we don‘t have enough lasers for everyone

Fault Simulator

• For exploitation: don‘t care how fault is injected
• important: just its effect

• We give you a Fault Simulator
• lets you inject typical faults into execution of any binary
• configuration: specify which kind of fault you want to inject (and when)

• Examples:
• „skip the 1495th ASM instruction after startup“
• „flip bit at adress 0xbeef when instruction pointer is 0xdead“

Your Task

• 3 challenges: attack precompiled binaries with our simulator

• One or two steps
1. Specify your faults

• for each challenge, we restrict allowed number of faults and their type

2. Perform post-processing of faulty outputs (Python3 script)
• sometimes faulting alone is not enough, need post-processing of outputs

• ex: fault encryption, such that comparing faulted and correct output lets you recover key

Challenge: 01_password

• Bypass a password check

• using a single instruction skip

Challenge: 02_eddsa

• Problem: nonce reuse
• same nonce for different messages key recovery (see P1)

• Solution: make nonce generation deterministic
• n = Hash(m|h), where h is secret

• same nonce for different messages would mean hash collision

• Problem: achieving „nonce reuse“ is easy now
• But can you sign a different message with the reused nonce?

Challenge: 03_aes

• Fault attacks on symmetric crypto: more tricky

• Differential Fault Attack
• compare faulty and real output

• compute back to key

• You can flip bits (very precisely)

Cryptographic

Algorithm (Part)

ci

ki

vi

v =
Fault Model?

Cryptographic

Algorithm (Part)

ci

ki

vi

Framework

• Similar to P1 and hacklets
• Each challenge in separate folder

• Python scripts with provided helper functions and section for your code

• Secrets
• locally: you can access secrets, for developing, testing, debugging, etc.

• test system: new set of secrets, access is locked

• Important: solution for unmodified binary
• modifications for testing of course possible

More Information

• Assignment sheet

• Readme of fault simulator

• Demo exploits
• examples for fault simulator

• Lecture next week

• Tutorial with live demo of fault attack on microcontroller

• Question hours

Questions
ä

	Kick-off for P2: System-Security
	
	Hacklets
	
	Faults
	
	Questions
	

