Information Security
P1 Crypto-Misuse Challenge v1.1

Winter term 2019/2020

Introduction

There are many pitfalls when using cryptographic algorithms. Most of these pitfalls do not come from
the basic building blocks, such as the Advanced Encryption Standard (AES); they are secure when
implemented correctly. Instead, most of the pitfalls come from the incorrect usage of these blocks, often
by inexperienced engineers.

In this challenge, you have to exploit some of the most common mistakes. And bear in mind: All
these things happened! The concrete scenarios are constructed, but the underlying errors appeared
countless times, not only in some hobbyist project but often in high-profile applications.

Framework

There are a total of 7 challenges. The number of points awarded for each challenge is stated in this
document. If you have any questions, please contact the responsible teaching assistants:
lena.heimberger@student.tugraz.at, haubenwallner@student.tugraz.at, or ask a question in the
newsgroup: tu-graz.lv.infosec.

The challenges are written and have to be solved in Python (Python3). The following packages must
be installed, use, e.g., pip install <package name> --user

e pycryptodomex

e ecdsa

You get two archives, one contains code, the other challenge files. They have the same file structure,
unpack them in the same location (i.e., unpack the challenge files in your code directory). Each challenge
is contained in a subdirectory, the concrete folder is stated for each challenge in this document. After
unpacking both archives, each challenge folder contains the following:

e Python source file (<folder name>.py), sometimes with additional source files

e challengex file(s), such as ciphertexts that you need to decrypt. The names of these files can vary.

e x_solution file, which allows you to test your implementation

Each challenge script offers a small command-line interface, type ”python3 <challenge_name>.py
--help” to get an overview of the implemented sub-commands. Many scripts offer an encryption/de-
cryption functionality, which can be invoked via ”python3 <challenge name>.py e file list” and
"python3 <challenge name>.py d file_list”, respectively. All challenge files were generated using
the provided scripts. Thus, you should have a look at how things are implemented there and can also
generate new challenges yourself.

You can run the challenges by calling ”python3 <challenge name>.py c”. By default, this tries to
solve the provided challenges, but you can specify your own ones by simply giving a file list. This calls
the function solve_challenge, which you have to extend such that it solves the challenge. Put all
your code in the specified block (you can also add new sub-routines and include standard Python
packages). Immediately before the specified block, a secret variable is initialized to a dummy value.
Your code has to recover the value of this secret variable.

Finally, the outcome is compared to the provided solution and the script will tell you if you solved the
challenge correctly. For testing, we will run your program with fresh challenges. On our test system, the
maximum execution time is 10 seconds per challenge, for challenge textbook_rsa you have 2 minutes.

Crypto-Misuse Challenge Information Security

1 The ECB Mode of Operation (3P)
Folder: ecb

Block ciphers operate on data blocks of fixed size, typically 128 bits. You usually want to encrypt data
of arbitrary size; the easiest way to achieve this is to simply cut the data into blocks and encrypt them
individually (Figure 1)). This is called the Electronic Code Book (ECB) mode.

Po P: P2
ex e e | . ECB
I ! I
Co C: C,
Figure 1: The ECB mode of operation Figure 2: The problem with ECB

However, there is a major problem with ECB: same input blocks always lead to the same output
blocks. The downsides of this can be seen in [Figure 2] White patches always encrypt to some ciphertext
Cwhite, black patches to a different ciphertext cpacr. This makes it very easy to spot patterns and in this
case still recognize the image.

Scenario. A hardware vendor not well versed in security produces a wireless keyboard. As he wants
to prevent sniffing of the input, he encrypts the communication but does a bad job at it. Since there
cannot be any delays when sending a keystroke to the PC, he takes the code for the keystroke, pads
it to 128 bits, then encrypts it (in ECB mode), and finally sends it the ciphertext to the PC. For this
challenge, we make a simplification and do not look at individual keystrokes, but have an ASCII text
that is encrypted character-wise.

Challenge. BruceEl is an avid blogger and uses the insecure keyboard described above. You are able to
get in his vicinity and sniff the encrypted communication between keyboard and PC. Around that time,
you note that one of his blog posts goes online, so you can assume that some of the sniffed ciphertext
corresponds to the text of the blog post. You can also assume that he has to login to his site before he
can submit a post. Retrieve his password!

You can use the following assumptions:

e His username is bruce. His password can be found between his username and the first letter of the
blog post.

e All characters found in his password also appear in the blog post.

e He typed in the blog post in one piece, without any corrections and other inputs happening in this
time. In other words: some part of the ciphertext directly corresponds to the text.

e You do not know when exactly the text was typed in and have to assume that before and afterward
other things, not related to the blog, were typed in. That is, you have to determine which part of
the ciphertext corresponds to the blog post.

Hint: for finding the correct offset, focus on one specific character (e.g., all the spaces in the text)

Thttps://www.schneier.com/

https://www.schneier.com/

Crypto-Misuse Challenge Information Security

2 Nonce Reuse (2P + 2P)

There do exist secure alternatives to ECB, in which encrypting the same plaintext block does not result in
the same ciphertext block. Examples are the Counter Mode (CTR) and Cipher Block Chaining (CBC),
but you can also use stream ciphers. These alternatives, however, require initialization with a random
number, the so-called Initialization Vector (IV), often also called the “nonce” (number used once). The
second name already implies that you have to use a fresh nonce each time you encrypt something, reusing
the nonce (or, at least in some settings, using a related nonce) can have drastic consequences.

Still, there have been many instances where the nonce was reused, e.g., by using a random number

generator similar to the one shown in

int getRo.ndomNumber—O

return Y, /# chosen by fair dice roll.
// quaranteed to be random.

Figure 3: The XKCD random number generator (https://xkcd.com/221/)

2.1 Symmetric Cryptography (2P)

Folder: nonce_reuse_sym

For nonce reuse in the symmetric-key setting, we focus on a stream cipher. A stream cipher takes
as input a secret key and a random initialization value (IV), and then generates an arbitrarily long
keystream, which is XORed (@) to the plaintext to receive the ciphertext. When using the same IV
twice (for the same key), then the same keystream is generated. In other words, the stream cipher
then behaves like a reused One-Time Pad.

Scenario A car manufacturer uses a keyless entry system based on rolling codes. In a rolling codeﬂ
both the key and the car share a common secret state. Upon pressing a button on the key fob, the
key updates the state in some manner and then securely sends this updated state. Upon receiving the
command, the car updates its own local state in the same way and then checks if the received state
matches the local result. As keys can be pressed accidentally (without the car receiving the message),
the car actually computes multiple state updates, checks if the received state matches any of them, and
then advances the state accordingly. Commonly, the shared secret state is simply a counter, which is
sent encrypted using a shared secret keyEI

The system you are supposed to attack uses an n = 64-bit linear feedback shift register (LFSR)
instead of a simple counter. Figure [4] shows the structure of such an LFSR. The positions of the XORs
are known (for instance, through reverse engineering) and are included in the script. The state, however,
is secret. For each button press, the current state of the LFSR is encrypted using a stream cipher and
then sent, and finally the LFSR is clocked n times to update the state.

any M
N N

e T = T = = T = I = N = R o

Figure 4: An n = 8-bit linear feedback shift register (LFSR). Bits are represented as squares, the
rightmost bit is used as output.

2https://en.wikipedia.org/wiki/Rolling_code
Shttps://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_garcia.pdf

https://xkcd.com/221/
https://en.wikipedia.org/wiki/Rolling_code
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_garcia.pdf

Crypto-Misuse Challenge Information Security

Challenge. You find out, that the manufacturer did not include a random-number generator on the
key and thus always uses the same IV for the stream cipher. Then, by placing a receiving device
near a car you want to steal, you can sniff many messages sent from a real key. Your task is to predict
the next message sent by the key, and thus be able to unlock the car while the owner is not around.

Hints. LFSRs consist solely of XORs. Thus, they are linear in this regard. This means that when
having two LFSR states a, b, then LFSR(a @ b) = LFSR(a) ® LFSR(b).

This happened. The KRACK attackﬂ was able to break the security of WPA2, which is used to secure
WIFI (WLAN). By carefully manipulating and replaying messages, an attacker can achieve that the key
is “reinstalled” (KRACK: Key Reinstallation Attack). Reinstalling the key also means that the counter
is reset to its initial value. Thus the nonce is reused. WPA2 uses the counter mode for encryption.
Hence, the exploitation is similar to the one in the challenge.

2.2 Asymmetric Cryptography (2P)

Folder: nonce_reuse_asym

It’s not only symmetric-key cryptography which requires randomness, but most secure asymmetric
(public-key) schemes also require a nonce. One example is the Elliptic Curve Digital Signature Standard
(ECDSA). The algorithm is now briefly described. For solving the challenge, no knowledge about elliptic
curve-arithmetic is required. You do however need some discrete maths.

ECDSA is now briefly explained. For the challenge, you can ignore all parts apart from line [§] which
contains a simple modular equation.

In ECDSA, one has public parameters G (a point on the elliptic curve) and n (the group order).
The private key d 4 is a random number (integer) in the range [1,n — 1]. The public key Q4 = d4 X G.
Signing works as follows:

Algorithm 1 ECDSA Signing Algorithm

Input: Message m, private key d4, public parameters (n, G)

Output: Signature (r,s)

e = HASH(m)

z = leftmost n’ bits of e, with n’ the bit length of n

Select a random integer k in the range [1,n — 1].

Compute (z1,11) =k X G > Point-Scalar Multiplication
r=x1 mod n

s=k Y (z+7-da) mod n

return (r,s)

NPT W

As a hint, have a look at the description of ECDSA in Wikipedia, which also discusses what can
happen when you reuse the nonce kE|

Challenge. You are given two messages and their according signatures. To save on randomness, only
the first nonce is generated randomly. The nonce for the second signature is derived from the previous
nonce as k = a - k+ b mod n, with (a = 2,b = 1). Recover the private key d 4.

This happened. Sony used a constant nonce for signing firmware packages of their PlayStation3
console. This allowed simple recovery of the signing keyﬂ

4https://www.krackattacks.com/
Shttps://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
Shttps://www.bbc.co.uk/news/technology-12116051

https://www.krackattacks.com/
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://www.bbc.co.uk/news/technology-12116051

Crypto-Misuse Challenge Information Security

3 Encryption without Authentication (3P)

Folder: enc_without_auth

Encryption provides confidentiality, which means that nobody can recover the message without having
the key. It, however, does not provide integrity /authenticity. In other words, you do not know if the
ciphertext was truly generated by someone having the key, or if it is just random or specially crafted
data. This is easy to see for stream ciphers, where the ciphertext c is the XOR of a keystream k and the
plaintext m: ¢ = m@k. When the attacker intercepts the ciphertext, flips one bit in it, and then forwards
it, the receiver will after decryption have the same bit-flip in the plaintext, and have no ability to detect
this flip. Other encryption modes, such as CBC, suffer from the same fate, although exploitation might
not be as straightforward.

Challenge. A company uses contactless smart-cards for access control (opening doors). The company
has two security domains: standard cards can only open the front door, whereas high-security cards
can only unlock the highly confidential lab. You are able to install a sniffing device on the front door,
and can thus intercept as many protocol executions as you want. You are also in possession of a portable
device allowing the injection of packets containing data of your choosing. Your goal is to open the lab
door.

The system uses the challenge-response protocol shown in Figure 5| For encryption, all parties (cards
and scanners for both security domains) share the same key secret key k (which you do not know). In
this protocol, the two parties prove knowledge of the shared secret key to each other using a challenge-
response approach. The card chooses a random challenge n¢, sends n¢ in plain (unencrypted) to the
scanner, who then returns the encryption of the challenge, a.k.a., the response Ej(n¢). The card then
tests if the decryption of the response matches the sent challenge. The same is repeated in the other
direction.

On top of that, all cards and scanners keep lists of authorized devices. That is, each scanner keeps
a list of authorized cards (their IDs), and refuses to talk to unknown IDs; the same applies for cards.
Thus, a low-security card will not receive an answer from the high-security scanner, even though they
share the same key. However, you know all IDs through a database leak.

Card Scanner
idc ids
[

I
|
Encrypt idc :
Choose random challenge n)

gene Ex(ide) |1 ne |

T

I Test if decrypted id, is in authorization list
| Choose random challenge ns
I
I

Ex(ide || ids || o) || s Encryptk (idc || ids || nc)

Test if decrypted idc matches own idc
Test if decrypted ids is in authorization list
Test if decrypted nc matches sent nc
Choose random session-id sess

Ex(idc || ids || sess || ns || cmd
Encrypt (idc || ids || sess || ns || cmd) (ide || ids Ilns |l emd)

Test if decrypted idc matches previous idc
Test if decrypted ids matches own ids

Test if decrypted ns matches sent ns
Execute command

Store sess in case further commands arrive

Figure 5: The used challenge-response protocol

Crypto-Misuse Challenge Information Security

A random session-id sess is also generated by the card, it allows sending subsequent commands that
should be linked to the first, if needed. The command cmd to open any door is simply the ASCII-encoding
of “opendoor”.

All encryptions are performed using AES-128 in CBC mode. The plaintext is first padded using
PKCST7 padding, the IV used for CBC is prepended to the ciphertext. That is, encrypted packets have
the form: [IV || CBC-Enc(Pad(Data))]. No data authentication is used. All IDs are 64 bits long,
challenges and the session-id are 128 bits long.

Hints. You can break the system by exploiting that data is encrypted but not authenticated. That is,
you can manipulate the ciphertexts without being detected (if you do it properly). You can, for example,
rearrange message blocks, replace IVs, and flip bits in blocks. Your goal is to craft valid packets using
only attainable information (sniffed packets, responses to proper packets, responses to injected packets,
etc.).

Try to draw the CBC decryption process of the targeted packet and think of ways how to acquire all
the needed information.

Crypto-Misuse Challenge Information Security

4 Bad Randomness (2P + 2P)

Most cryptographic protocols (like the ones above) require some sort of randomness coming from a
random number generator (RNG). However, there are some important requirements that the RNG must
fulfill in order to allow security. For instance, when you get any number of bits produced by the RNG,
e.g., as part of the public nonce, then you should still not be able to predict what the RNG will output
next, or what it has output before. RNGs having this property are called Cryptographically Secure
Pseudo-Random Number Generator (CSPRNGs) (“pseudo” because the process is deterministic and
depends on a seed value). Using non-cryptographic RNGs or improper initialization of CSPRNGs in a
cryptographic context can have a catastrophic impact.

Scenario. You are given a file-encryption tool. This tool takes an input file, generates a random IV
and key, encrypts the file content, and finally stores the ciphertext and the encryption key in separate
files. This way, you can upload your files to some untrusted storage provider and keep the keys on your
local computer (Note: there are much better solutions for this problem).

A new random key is generated for each file, but the used RNG is flawed. Recover the key used to
encrypt the challenges, and then decrypt the challenges!

There are two implementations having different flaws. Both generate the IV before generating the
key. The IV is included as the first 16 bytes of the encrypted file, the remainder of the file contains the
actual encrypted content.

4.1 Insecure RNGs (2P)
Folder: bad_rand_rng

The first implementation uses a re-implementation of C’s rand () function. The concrete implementation
of this function is up to the developers of the used C standard library. For this challenge, we use the
linear-congruential generator included in glibc. It has an internal 32-bit state next. When calling the
RNG, the state is updated using:

next = ((next * 1103515245) + 12345) & Ox7fffffff

Then, the updated next is returned as the random number.

Challenge. Recover the plaintext of the challenge file! Hint: observe that the IV is public and gener-
ated before the key.

4.2 Insecure Initialization (2P)

Folder: bad_rand_seed

CSPRNGs are not random algorithms, but entirely deterministic. Thus, they need to be initialized
with a truly random value, the so-called seed. Using the same seed twice will result in the exact same
output. Generating such a truly random seed is not a trivial task, especially on smaller devices such as
microcontrollers. It is also easy to make mistakes in this generation.

This second implementation of the file encryption tool uses a proper CSPRNG but makes an error
in the generation of the seed.

Challenge. Find the error in the seed generation and recover the plaintext of the challenge file! Hint:
use side-channel information. The OS and filesystem stores more about a file than just its contents.

Crypto-Misuse Challenge Information Security

5 Textbook RSA (2P)

Folder: textbook_rsa

The most simple variant of RSA is called “textbook RSA”, because this version is often presented in
textbooks (german: Lehrbiicher). When you want to encrypt a message m with a public key (e,n),
you compute ¢ = m® mod n, for decryption with the private key d you compute m = ¢ mod n. This
straight-forward approach has two undesirable properties:

1: Malleability. The ciphertext is malleable (german: “formbar”), which means you can manipulate
it to something related without knowing the plaintext. Example: you intercept a ciphertext c,
compute ¢ - 2° mod n, and forward this. The receiver will decrypt this to 2m, which means you
altered the plaintext in some known way.

2: Determinism. Encrypting the same m twice will lead to the same c.
Challenge. You are given an RSA public key and a ciphertext. You happen to know that the corre-

sponding message is a 3-letter English word ([a-z], all lowercase). Recover the plaintext!
Hint: use one of the undesirable properties. Do not try to recover the key.

This happened. In the Chinese QQ browser (see [Section 7.2)).

Crypto-Misuse Challenge Information Security

6 Version History

6.1 vl.1

Fixed wrong values for a and b in the nonce_reuse_asym assignment. The new values of a = 2,0 =1
now reflect the numbers used in the code.

Crypto-Misuse Challenge Information Security

7 Further Reading

The above mistakes are some of the most common ones, but by far not the only ones you can make. Some
more errors are now given, as well as methods to prevent them without requiring in-depth knowledge of
cryptography. This section is not required for solving the challenges, but reading still recommended.

7.1 Other Mistakes

The article “Top 10 Developer Crypto Mistakes’ﬂ gives a nice overview of many errors. Some of the ones
not covered in the challenges are:

Hard-coded keys. When secret keys are included in a binary that is then distributed (via download,
in a firmware that can be read out, etc.), it is easy to recover the key from this binary.

No key diversity. If the same symmetric key is used by a large number of similar devices, then recov-
ering the key just once allows attacks on all devices. This makes, e.g., invasive attacks much more
lucrative. As an example, the remote keyless entry system of VW used the same symmetric key
for all shipped cars and their keys for many years. After extracting this key once, researchers were
able to unlock a vast number of carsf]

Outdated cryptography. Many applications still use outdated and insecure cryptographic algorithms.
For instance, RSA keys should nowadays be at least 2048 bits long, but 1024-bit and even 512-bit
keys can still be found. An even more extreme case was given in For hash functions,
MD5 and SHA-1 should not be used anymore. The use of MD5 allowed a group to create forged
digital certiﬁcatesﬂ

Passwords, passwords, passwords. Passwords are a very sensitive topic where many things can go
wrong. On servers, passwords should never be stored in plain text. Otherwise, an attacker having
access to the server can simply read out all passwords. Storing a hash of a password is more secure,
but can be defeated with so-called Rainbow Tables, which store the hashes of many “popular”
passwords. The most secure variant is to use dedicated hash functions which also take as input a
so-called salt. Similar things are also true for password-based key derivation.

Invent your own crypto / security by obscurity. Never roll/invent your own crypto! Toying around
is, of course, fine, but never deploy it. This is also nicely captured by “Schneier’s Law”: Anyone,
from the most clueless amateur to the best cryptographer, can create an algorithm that he himself
can’t break. It’s not even hard. What is hard is creating an algorithm that no one else can break,
even after years of analysis. And the only way to prove that is to subject the algorithm to years of
analysis by the best cryptographers around.

The above already implies that keeping your algorithm secret (security by obscurity) is not a
remedy. As soon as the algorithm is reverse-engineered or leaked, it will fall apart. A very
prominent example of this is the CRYPTO1 algorithm used in Mifare Chipcards. As soon as
the CRYPTOL1 algorithm became public, it was broken. You could use that, e.g., to have free rides
on the London Tubem Another very recent example is the proprietary crypto used by Tesla car
keys, which can be broken in just 2 secondsﬂ

"https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/

Shttps://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_garcia.pdf

9Researchers Use PlayStation Cluster to Forge a Web Skeleton Key, https://wuw.wired.com/2008/12/berlin/
Ohttps://www.wired.com/2008/06/hackers—crack-1/
https://www.engadget.com/2018/09/10/tesla-model-s-key-fob-cloning-vulnerability/

https://littlemaninmyhead.wordpress.com/2017/04/22/top-10-developer-crypto-mistakes/
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_garcia.pdf
https://www.wired.com/2008/12/berlin/
https://www.wired.com/2008/06/hackers-crack-l/
https://www.engadget.com/2018/09/10/tesla-model-s-key-fob-cloning-vulnerability/

Crypto-Misuse Challenge Information Security

7.2

The Ultimate Example

The Chinese Mobile Browser QQ is the ultimate amalgamation of the discussed flaws. It features{E

7.3

Hard-coded keys (Section 7.1)
Textbook RSA ([Section 5|
An insecure RNG (Section 4.1)) with an easy-to-guess initialization (Section 4.2))

Outdated Cryptography and insufficient key lengths (Section 7.1). An earlier version used 128-bit
RSA keys, which are trivial to factor. A newer version upgraded to 1024-bit keys, which also should
not be used anymore.

ECB mode (Section 1))

How To Avoid Mistakes

There are some simple rules to stay clear of the most basic mistakes.

Never implement cryptographic algorithms on your own! Always use some tried and tested libraries.
The only exceptions are educational purposes (but then never use it in a productive environment)
or if you absolutely have to and know exactly what you are doing.

Use misuse-resistant libraries. Good cryptographic libraries do not give the user access to low-level
algorithms and thus simply do not allow the user to make the mistakes. This means, for instance,
that textbook RSA is disabled, that it is not possible to have a user-defined nonce (the library
chooses a nonce for you), that secure random-number generation is already in-built, or that only
one (or a selected few) secure authenticated modes of operation are supported. Some examples of
such libraries are NaCl (pronounced “salt”)E and Google’s Tinkfﬂ

2When Textbook RSA is Used to Protect the Privacy of Hundreds of Millions of Users: https://arxiv.org/pdf/1802.
03367 .pdf

Shttps://nacl.cr.yp.to/

Mhttps://github.com/google/tink

https://arxiv.org/pdf/1802.03367.pdf
https://arxiv.org/pdf/1802.03367.pdf
https://nacl.cr.yp.to/
https://github.com/google/tink

	The ECB Mode of Operation (3P)
	Nonce Reuse (2P + 2P)
	Symmetric Cryptography (2P)
	Asymmetric Cryptography (2P)

	Encryption without Authentication (3P)
	Bad Randomness (2P + 2P)
	Insecure RNGs (2P)
	Insecure Initialization (2P)

	Textbook RSA (2P)
	Version History
	v1.1

	Further Reading
	Other Mistakes
	The Ultimate Example
	How To Avoid Mistakes

