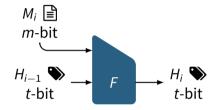

Cryptography 3: Cryptography 3:

Maria Eichlseder

Information Security - WT 2019/20

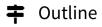
>www.iaik.tugraz.at/infosec

	Asymmetric	
	Asymmetric Cryptography	
D (Auth. Tyption) metric nitives	 Establishing communication Key exchange Signatures Asymmetric 	
	metric itives	


Recap of Last Week (1): Schemes for Message Authentication

Cryptographic schemes for message authentication compute a short, fixed-length Tag T \longrightarrow from the Message $M \supseteq$ and (in some cases) a Key $K \curvearrowright$.

Hash Function \mathcal{H}	MAC $\mathcal{H}_{K_{AB}}$	Signature S_{κ_A}
 Unkeyed	Symmetric Key K _{AB}	Asymmetric Key K _A
Anyone can compute T	A, B can compute T	🖴 A can compute T
Anyone can verify T	A, B can verify T	📽 Anyone can verify T


Recap of Last Week (2): Merkle–Damgård Hashing

Primitive: Compression Function *F* (fixed-size inputs)

Mode: Merkle–Damgård (MD) Hash Function $\mathcal{H}(M) = T$ (variable-size inputs)

$$0 = H_0 \xrightarrow{M_1} F \xrightarrow{M_2} F \xrightarrow{M_\ell} F \xrightarrow{$$

- I)
- Confidentiality
- Goals and Applications

- Symmetric Primitives
- Block Ciphers
- The AES

- Encryption
 - Definition and Security
 - Constructions

- Authenticated Encryption
- Definition
- Constructions

Entropy and Randomness

Confidentiality

I)

Introduction

Confidentiality

Confidentiality of Data

Prevent unauthorized entities from learning information (messages, data) that authorized parties are communicating or processing.

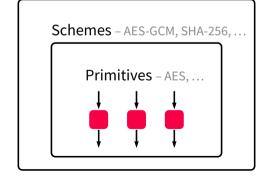
There are several related, but different concepts:

- Anonymity: The users' identity is unknown, they are not identifiable within a certain set of users
- Privacy: The users are able to seclude themselves, or information about themselves, and thereby express themselves selectively. This often refers to sensitive personal information.

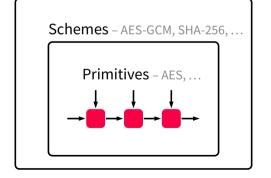
Cryptographic Schemes for Encryption

Encryption schemes transform a plaintext Message $M \supseteq$ of arbitrary length to a Ciphertext $C \supseteq$ of about the same length based on a Key $K \triangleleft$ of fixed length.

Schemes may require additional inputs or produce an authentication Tag T 🌭.


Examples (1): Secure Communication with HTTPS

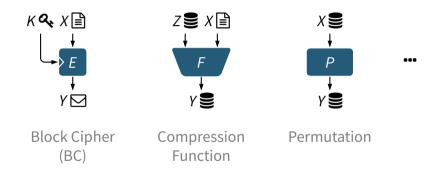
Ġ Google 🛛 🗙 🕂			
\leftrightarrow \rightarrow (i) a https://www.google.com			
General Media Permissions			
Website Identity Website: www.google.com Owner: This website does not suppl Verified by: Google Trust Services Expires on: December 26, 2019	y ownership information.	<u>V</u> iew Certificate	
Privacy & History Have I visited this website prior to today?	Yes, 2,390 times		Google
Is this website storing information on my computer? Have I saved any passwords for this website?	Yes, cookies and 11.2 MB of site data No	<u>C</u> lear Cookies and Site Data Vie <u>w</u> Saved Passwords	3 .0
Technical Details Connection Encrypted (TLS_AES_128_GC The page you are viewing was encrypted Encryption makes it difficult for unauthor computers. It is therefore unlikely that a	perore being transmitted or rized people to view inform	ver the Internet. Nation traveling between	Google-Suche Auf gut Glück! t die neuesten Geräte von Google entdecken


Example (2): Disk Encryption with LUKS

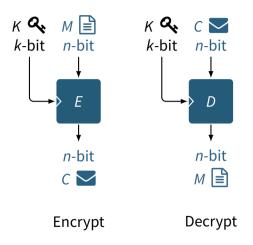
```
meichlseder@x1tblme ~ % sudo cryptsetup luksDump /dev/nvme0n1p3
[sudo] password for meichlseder:
LUKS header information
Version:
Epoch:
Metadata area: 16384 [bvtes]
Kevslots area: 16744448 [bvtes]
                087c56a9-a282-42f2-8361-869ec488e61e
UUTD:
label:
               (no label)
Subsystem:
             (no subsystem)
                (no flags)
Flags:
Data segments:
 0: crypt
        offset: 16777216 [bvtes]
       length: (whole device)
       cipher: aes-xts-plain64
       sector: 512 [bytes]
Kevslots:
 0: luks2
                   512 bits
       Cipher:
       Cipher key: 512 bits
        ILIME CUSL: 5
                    1048576
       Memorv:
        Threads:
                    81 0d d7 18 01 e4 1d d9 6c 14 68 08 95 f5 f4 73
                    fc 8c 32 9a 4e 94 a0 aa 23 91 6b 2a 6d 66 51 13
        AF stripes: 4000
        AF hash:
                    sha256
```

Protocols – TLS, ...

Protocols – TLS, ...



Symmetric Primitives



Secure Building Blocks

Symmetric Primitives

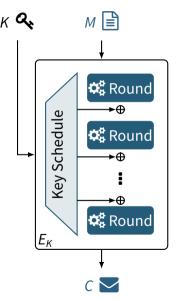
Block Ciphers – Key Space and Plaintext Space

A block cipher is a family of permutations (bijective functions) E_{κ} .

Each *k*-bit key *K* defines a permutation E_K that encrypts *n*-bit message blocks *M* to *n*-bit ciphertext blocks $C = E_K(M)$.

It also defines the inverse permutation $D_{\kappa} = E_{\kappa}^{-1}$ that maps *C* back to *M*.

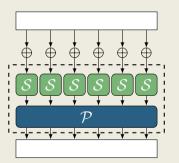
- 2ⁿ possible inputs/outputs M
- 2^k possible keys (mappings) K


Ideal Block Ciphers vs. Real Block Ciphers

A block cipher instance with a fixed key is a permutation that assigns some *n*-bit output *C* to each *n*-bit input *M*. It can be seen as a large, secret lookup table (codebook). In total, there are $(2^n)!$ possible instances – this is an astronomical number ($\gg 2^{256}$) already for n = 6.

- An ideal block cipher is a uniformly random selection of 2^k instances.
- A real block cipher must implement an algorithm to map *M* to *C* using *K*.
 An attacker must still be unable to recover *M* from only *C*, or *K* from *M* and *C*.

Making It Implementable – The Key-Alternating Construction



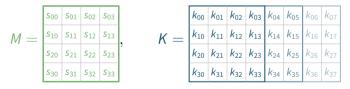
Two fundamental ideas:

- 1. Repeat simple circuit *r* times: the "round function"
 - Avoid huge lookup tables
- 2. Make the round circuit public but mix input with round key
 - Avoid key-dependent circuitry
 - Kerckhoffs' principle

How to Build an Invertible Round Function

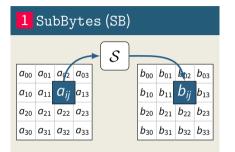
SPN Round (incl. Key-Xor)

Decryption requires inverses of S-box and permutation circuit

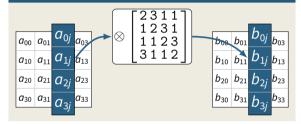

- A popular approach is the Substitution-Permutation-Network (SPN).
 Its round function has 2 parts:
- S-box layer (S): Decomposes state in small chunks, each chunk is substituted using a small lookup table (= "S-box")
- Linear layer (P): Applies an invertible linear function, using bit permutation and/or XORs

The AES Competition (1997–2000)

- AES Advanced Encryption Standard
- Goals: A block cipher to replace DES
 - The previous Data Encryption Standard (DES) was co-designed by NSA
 - Its security level was no longer adequate (small key, cryptanalysis)
- Solution: The second se
- 🛗 Announced 1997, 15 submissions from 50 cryptographers
- Y Winner: Rijndael/AES, designed by Joan Daemen and Vincent Rijmen
 - Now used *everywhere* for secure encryption


AES – State and Operations

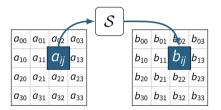
- Block size n = 128 bits, Key size $k \in \{128, 192, 256\}$ bits
- 3 Block ciphers named after their key size: AES-128, AES-192, AES-256
- The 16-byte input block $M = s_{00} ||s_{10}||s_{20} ||s_{01}|| \dots ||s_{33}$ is written as a 4×4 matrix of bytes, the {16, 24, 32}-byte key K as a $4 \times \{4, 6, 8\}$ matrix:


 The state is initialized to *M* and updated in 10 rounds (for AES-128) or 12 rounds (AES-192) or 14 rounds (AES-256). The last round is different.

AES Round Function – Overview

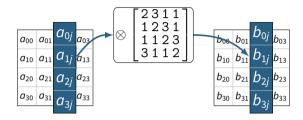
2 ShiftRows (SR) b_{01} b_{02} b_{03} a.... 500 *a* b_{23} *a*₁ a b32 b33

3 MixColumns (MC)

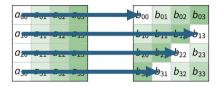


4 AddRoundKey (AK)

<i>a</i> ₀₀	<i>a</i> ₀₁	a ₀₂	a ₀₃	+	k ₀₀	<i>k</i> ₀₁	k ₀₂
<i>a</i> ₁₀	<i>a</i> ₁₁	a ₁₂	a ₁₃		k ₁₀	k ₁₁	k ₁₂
a ₂₀	a ₂₁	a ₂₂	a ₂₃		k ₂₀	k ₂₁	k ₂₂
a ₃₀	a ₃₁	a ₃₂	a ₃₃		k ₃₀	k ₃₁	k ₃₂

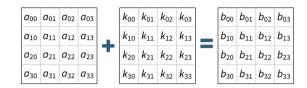

k ₀₃		b_{00}	b_{01}	b ₀₂	b ₀₃
k ₁₃	_	b ₁₀	b_{11}	b ₁₂	b ₁₃
k ₂₃		b ₂₀	b ₂₁	b ₂₂	b ₂₃
k ₃₃		b ₃₀	b ₃₁	b32	b33

AES Round Function - SubBytes (SB)


- S-box layer: $b_{ij} = S[a_{ij}]$
- Each of the 16 state bytes a_{ij} is substituted using an 8-bit lookup table S[0x00] = 0x63, S[0x01] = 0x7C, S[0x02] = 0x77, ..., S[0xFF] = 0x16
- The S-box S has strong cryptanalytic properties to defend against attacks

AES Round Function - MixColumns (MC)

- Part of the linear layer: $(b_{0j}, b_{1j}, b_{2j}, b_{3j}) = M \cdot (a_{0j}, a_{1j}, a_{2j}, a_{3j})$
- Each column of the state is updated using a multiplication with a matrix *M* (this multiplication is over a "finite field", not normal integer multiplication!)
- If one byte at the input changes, all output bytes in the column will change
- This step is omitted in the last round


AES Round Function - ShiftRows (SR)

- Part of the linear layer: $b_{i,j} = a_{i,j+i\%4}$
- Each row *i* of the state is rotated to the left by *i* bytes
- The values of one column are shifted to four different columns

Play with it here

AES Round Function - AddRoundKey (AK)

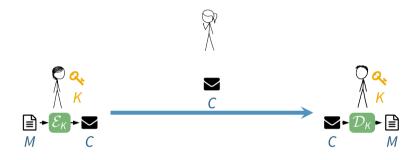
- Key-alternating construction: $b_{ij} = a_{ij} \oplus k_{ij}^{(r)}$
- XOR the round key k^(r) of round r to the state
- The round keys k^(r)_{ij} are derived from the key K using the key schedule (details omitted – the key schedule uses similar operations to the round function)
- An additional AddRoundKey step happens before the first round

Symmetric Primitives – Conclusion

Primitives are the foundation of security in symmetric cryptography

- S Their security cannot be "proven", but only "analyzed"
- **1** Symmetric primitives in TLS 1.3:
 - AES-{128, 256} block cipher
 - Ӯ ChaCha20 stream cipher
 - SHA-{256, 512} compression function
- All of these are expected to provide long-term security (also in a post-quantum world)

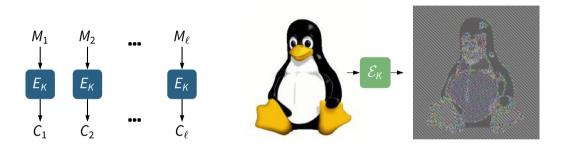
Protecting Confidentiality


Encryption Schemes – Definition, First Attempt

An encryption scheme is a keyed function \mathcal{E}_{κ} that maps a *k*-bit key *K* and a message *M* of arbitrary length to a ciphertext *C*, together with its inverse decryption function \mathcal{D}_{κ} , to protect the confidentiality of *M*:

$$\mathcal{E}_{\mathcal{K}} : \mathbb{F}_{2}^{k} \times \mathbb{F}_{2}^{*} \to \mathbb{F}_{2}^{*}, \qquad \mathcal{E}_{\mathcal{K}}(M) = C$$

 $\mathcal{D}_{\mathcal{K}} : \mathbb{F}_{2}^{k} \times \mathbb{F}_{2}^{*} \to \mathbb{F}_{2}^{*}, \qquad \mathcal{D}_{\mathcal{K}}(C) = M$


The challenge of protecting the confidentiality of *M* is transformed into protecting the confidentiality of *K*.

Encryption Schemes – Application, First Attempt

- **1** Alice computes $C = \mathcal{E}_{\kappa}(M)$
- 2 Alice transmits C to Bob (over an insecure channel controlled by Eve)
- **3** Bob computes $M = \mathcal{D}_{\kappa}(C)$

How NOT To Do It – The Electronic CodeBook mode (ECB) 🕰

Split *M* into blocks M_1, M_2, \ldots, M_ℓ and encrypt each block with block cipher E_K .

This simple mode has 2 major problems:

A Patterns: Two identical blocks M_i, M_j get encrypted to the same C_i, C_j

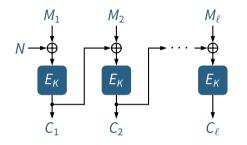
A Context: Two identical messages *M*, *M*′ get encrypted to the same *C*, *C*′

Encryption Schemes - Definition, Revisited

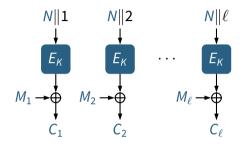
An encryption scheme is a keyed function $\mathcal{E}_{\mathcal{K}}$ that maps a *k*-bit key *K*, *n*-bit nonce *N*, and a message *M* of arbitrary length to a ciphertext *C*, together with its inverse decryption function $\mathcal{D}_{\mathcal{K}}$, to protect the confidentiality of *M*:

$$\mathcal{E}_{\mathcal{K}} : \mathbb{F}_{2}^{k} \times \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{*} \to \mathbb{F}_{2}^{*}, \qquad \mathcal{E}_{\mathcal{K}}(N, M) = C \\ \mathcal{D}_{\mathcal{K}} : \mathbb{F}_{2}^{k} \times \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{*} \to \mathbb{F}_{2}^{*}, \qquad \mathcal{D}_{\mathcal{K}}(N, C) = M$$

The nonce (number used only once) makes sure that an adversary can't tell if two encrypted messages are the same!


In practice, *N* can be randomly generated or (in some cases only!) a counter.

Encryption Schemes - Application, Revisited


- **1** Alice computes $C = \mathcal{E}_{\kappa}(N, M)$
- 2 Alice transmits *N* and *C* to Bob (over an insecure channel controlled by Eve)
- 3 Bob computes $M = \mathcal{D}_{\kappa}(N, C)$

Cipher Block Chaining mode (CBC)

- Goal: C_i should depend on the "context", i.e., on blocks M₁, ..., M_i and the nonce N.
- Idea similar to CBC-MAC:
 XOR ⊕ previous ciphertext block C_{i-1} (= chaining value) to msg block M_i, then encrypt with E_K
- Idea: Start with random (!) nonce N to hide repeated messages
- Must be combined with a suitable padding scheme for the message M.

CounTeR mode (CTR)

- Goal: C_i should depend on the "context", i.e., on block M_i, position i, and the nonce N.
- Idea: Create a streaming mode that produces a keystream depending on K, N and XOR it to M
- Nonce N can be random (unpredictable) or a counter (predictable), as long as it never repeats for the same K
 - No padding needed, len(C) = len(M)

Encryption in Practice

- CBC and CTR provide only confidentiality, no authenticity
- There are VERY FEW applications that need pure (unauthenticated) encryption or where authenticated encryption doesn't fit.

Example: some file system encryption schemes (no space for tags)

Usually you instead want Authenticated Encryption!

Authenticated Encryption

Protecting Confidentiality and Authenticity

Authenticated Encryption – Goals

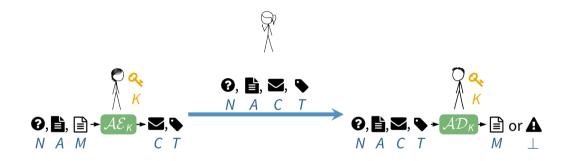
If your data is worth encrypting, you almost certainly don't want it modified!

Confidentiality

as provided by block cipher modes $\mathcal{E}_{\mathcal{K}}$

• Authenticity, integrity

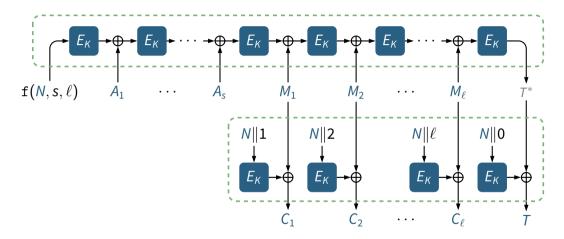
as provided by message authentication codes $\mathcal{H}_{\mathcal{K}}$


56 *it is very easy to accidentally combine secure encryption schemes with secure MACs and still get insecure authenticated encryption schemes* **59**

Authenticated Encryption

An Authenticated Encryption scheme is a keyed function \mathcal{AE}_{κ} that maps a *k*-bit key *K*, *n*-bit nonce *N*, and a message *M* of arbitrary length to a ciphertext *C* with attached tag *T* to protect both confidentiality and authenticity of *M*. Its inverse verified decryption function \mathcal{AD}_{κ} returns either the message *M* or, on invalid ciphertexts, an error \bot .

Modern AE schemes are usually AEAD (Authenticated Encryption with Associated Data) schemes and accept an additional input *A* of arbitrary length and protects its authenticity, but not confidentiality (e.g., metadata, addressing) – so it can also be used as a MAC.


Authenticated Encryption

Important:

- \mathcal{AE}_{κ} : Nonce *N* must never repeat for the same *K*; a counter is usually ok
- AD_K: (Parts of) Message M must never be released before verifying T

Example: CCM Mode - CTR encryption with CBC-MAC authentication

 A_1, \ldots, A_s and M_1, \ldots, M_ℓ are the blocks of the padded $A \triangleq$ and $M \triangleq$. f (N, s, ℓ) encodes various parameters in one block (details here).

Popular Authenticated Ciphers

In TLS 1.3:

- AES-GCM (the TLS default), with AES-{128, 256}
- AES-CCM
- ChaCha20-Poly1305 (not based on AES, uses ChaCha20 stream cipher)

Where Do Keys Come From? (1)

In most cases, they are generated randomly

- Short-term keys distributed with key exchange, or
- Long-term keys (e.g., in 2-factor-authentication devices)

High-quality random numbers are essential

- DO use Cryptographically Secure Random Number Generators (CSPRNGs) like /dev/urandom, OpenSSL library, ...
- DON'T use "cheap" random numbers, low-quality seeds, PRNGs without guarantees like std::random_device(), non-secure updates like Mersenne Twister,...

Technical Details

Connection Encrypted (TLS_AES_128_GCM_SHA256, The page you are viewing was encrypted before beir Encryption makes it difficult for unauthorized peop computers. It is therefore unlikely that anyone read

Österreich	
Werbenrogramme	

Random Number Generators – 2 Types

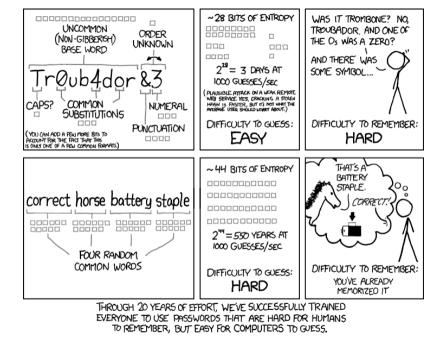
Nondeterministic hardware source

A hardware random number generator (HRNG) or true random number generator (TRNG) is a device that generates random numbers from a physical process (such as quantum effects or other microscopic effects), rather than by means of an algorithm.

Deterministic pseudorandomness

A pseudorandom number generator (PRNG) or deterministic random bit generator (DRBG) is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers. This sequence is not truly random, but completely determined by an initial value, the seed. A PRNG can be built from cryptographic schemes like stream ciphers or hash functions.

Where Do Keys Come From? (2)


- Sometimes, they are derived from other secrets like passwords
- Password-Based Key Derivation Functions (PBKDFs), similar to (password) hash functions
- The quality of the key depends on the quality of the password

<pre>pubci: pubci: hetadata area: 16384 [bytes] keyslots area: 1674546 [bytes] keyslots area: 1674546 [bytes] keyslots area: 1674546 [bytes] ubbe: (no tlabbl] (no tlabbl] babe: (no tlabbl] data segnents: 0: crypt offset: 16777216 [bytes] length: (whole device) clipher: aes.vts.plain64 sector: 512 [bytes] Keyslots: 0: luks2 iluks2 key: 512 bits Priority: normal Cipher: aes.vts.plain64 cfpker: aes.vts.plain64 cfpker: aes.vts.plain64 cfker: Ptker: Ptker: Ptker: Ptker: Ptker: Ptker: ptker: data: 4 Salt: 81 0d d7 18 01 e4 1d of cf ck 23 29 a 4e 94 a0 4 AF stripes: 4000 AF hash: sha256 Area offset:12768 [bytes] Area length:258048 [bytes] Area length:258048 [bytes] cipher: aes.vts.plain64 cf stripes: 4 Salt: 70 df 21 39 44 07 d3 1 d 28 2b 2c 48 56 f Area length:258048 [bytes] Area length:258048 [byte</pre>	Metchis [sudo] LUKS he Version Epoch:	eder@x1t password ader inf :	for for ormat 2 4	~ % s meich ion	udo lsec	cry ler:	pts		ıp	u
<pre>0: crypt 0: crypt clipher: aes.xts.plain64 sector: 512 [bytes] Keyslots: 0: luks2y: 512 bits Priority: normal Clipher: aes.xts.plain64 AF stripes: 4000 AF stripes: 4000 AF stripes: 512 bits PRKOF: argon21 Tiukes2y: 512 bits P</pre>	Metadat Keyslot UUID: Label: Subsyst		1638 1674 0870 (no (no	14448 56a9- label subsy	[byt a282) ster	es] -42				86
0: luks2 Key: 512 btts Priortty: normal Cipher: as-xts-plain64 Cipher: agox1t Time cost: 5 Memory: 1048576 Threads: 4 Salt: 0160 d7 18 01 e4 1d c AF stripes: 600 AF stripe: 500 Area offset:3768 [bytes] Digest ID: 0 1: luks2 Key: 512 btts PRMOF: argon2t Time cost: 5 Memory: 1048576 Threads: 4 Salt: 912 btts PKOF: argon2t Time cost: 5 Memory: 1048576 Threads: 4 Salt: 93 04 21 39 44 07 d3 1 AF hash: 400 AF args: 400 AF args: 400 AF argon2t Time cost: 5 Memory: 1048576 Threads: 400 AF args: 400 AF ar		ypt offset: length: cipher:	(who aes	ole de xts-p	vice lair	:es] :) 164				
Salt: f9 df 21 39 44 07 d3 1 d1 28 2b 2c 48 5f 8f 6 AF stripes: 4000 AF hash: sha256 Area offset:290815 [bytes] Area length:258048 [bytes] Dicest ID: 0	0: lu	ks2 Key: Priorit Cipher: Cipher PBKDF: Time co Memory: Threads Salt: AF hash Area of Area of Area le Digest ks2 Key: Priorit Cipher: Cipher: PIKDF: Time co Memory:	key: st: : pes: fset: fset: ID: y: key: st:	norma aes-x 512 b argon 5 10485 4 81 0d fc 8c 4000 sha25 32768 25804 0 512 b norma aes-x 512 b argon 5	l ts-r its 2i 76 d7 32 6 [by 8 [t 1 ts-r its 2i	18 9a tes yte	01 4e] s]	e4 94		
Tokens: 38/41		Salt: AF stri AF hash Area of Area le	pes: : fset: ngth:	f9 df d1 28 4000 sha25 29081 25804	2b 6 6 [t	2c oyte	48 s] s]			1
	Tokens:									

Entropy

Entropy is a measure for the "amount of randomness" of a random variable. It depends on the distribution of the random variable.

- A 128-bit string where each bit is independently and uniformly randomly selected has an entropy of 128 bits.
- A 128-bit string that is selected to be either 00...0 or 11...1 has an entropy of 1 bit.
- A password chosen uniformly at random from a list of 10 000 words has an entropy of $\log_2(10\,000) \approx 13.29$ bits.
- It is not possible to "measure" the entropy of a particular value, such as a specific password or key.

Conclusion

Conclusion

- Symmetric schemes protect data confidentiality and/or integrity
- ▲ Their security builds on secure primitives by using a secure mode
- Confidentiality can be protected with
 - Encryption (A no authenticity)
 - Authenticated Encryption
 - Asymmetric encryption, key encapsulation (next lecture)

