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� Recap of Last Week

Information security protects assets against adversaries

Break the chain:
Security Property ® Threat ® Vulnerability ® Attack

Cryptography is the mathematical foundation of secure communication

Algorithms to transform data so it can be sent over untrusted channels

Creates a new asset: the key
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o Administrative Update

If you’re a 1-person team for the practicals:

Try to find a partner right a�er today’s lecture

Wemaymerge teams

New curricula for CS/ICE (KU InfoSec = IIS+RKN) and SEM (KU InfoSec = IIS):

This may be a small disadvantage (SEM 16U) or advantage (SEM 19U)

SEM 16U: contact your Dean of Studies (Denis Helic) for options (Freifach)
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Ç Outline

á Cryptographic Authentication
Goals and Applications

s Hash Functions
Definition and Security
Generic Attacks
Construction

& Message Authentication Codes
Definition and Security
Construction

: Entity Authentication Protocols
Weak Authentication (Passwords)
Strong Authentication (Challenge-Response)
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Cryptographic Authentication
á

Introduction



Authenticity and Integrity

Message Authentication �

Authenticity: Verify the source of the message

Integrity: Verify that the message has not beenmodified while in transit

Entity Authentication 0

Verify the identity of a communication endpoint (device, user) based on
possession of some cryptographic identifier (password, key, . . . )
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Examples (1): File Checksums

I
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Examples (2): Commit IDs and File Versions
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Examples (3): Mobile TANs, 2-Factor-Authentication
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Cryptographic Schemes for Message Authentication

Cryptographic schemes for message authentication compute a short,
fixed-length Tag T$ from the MessageMq and (in some cases) a Key K¤.

Hash FunctionH s

Unkeyed

g Anyone can compute T

� Anyone can verify T

MACHKAB &

Symmetric Key KAB

0 A,B can compute T

0 A,B can verify T

Signature SKA �

Asymmetric Key KA

0 A can compute T

� Anyone can verify T
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Application Examples (1)

Hash functions:

- File download with checksum

 Identifier for files and commits

< Identification of identical files (for deduplication, detecting changes)

� Linking blockchain blocks + proof-of-work for timestamping

* Storing login passwords securely (requires special password hash function!)

7 Announcing commitment to something you only reveal later
(no, this has nothing to do with hashtags)
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Application Examples (2)

MACs:

Æ Challenge-response in multifactor authentication (mobile TANs)

& Message integrity in secure communication protocols (TLS, SSH, . . . )

Signatures (in two weeks):

� Electronic signature of documents, Handysignatur

R Signing emails with PGP

& Entity authentication and X509 certificates in secure communication
protocols (TLS, SSH, . . . )
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Hash Functions
s

Keyless Authentication



Hash Functions – Definition

A cryptographic hash functionHmaps amessageM (a bitstring) of
arbitrary bitlength to a t-bit tag T that serves as fingerprint/checksum forM:

H : F∗2 → Ft2, H(M) = T

H

Mq

T#
The challenge of protecting the authenticity ofM is transformed into protecting T.
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Hash Functions – Application

Hq
M

#
T

Hq
M

#
T′

?
=#
T

q
M

#
T

1 Alice computes T = H(M)

2 Alice transmitsM to Bob (over an insecure channel controlled by Eve)

3 Alice separately transmits T to Bob (over a secure channel).

4 Bob re-computes T′ = H(M) and verifies that T′ = T.
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Not to be Confused with. . .

(Cryptographic) hash functions are not to be confused with. . .

Password Hash Functions or Key Derivation Functions, which map a
password to a password hash or key and have stronger requirements.

Non-Cryptographic Hash Functions, which map values to reasonably
uniformly distributed values (e.g., index for hash tables). They have
di�erent, weaker requirements and no attacker.

Error-Detecting/Correcting Codes and Checksums like CRC32 to correct
accidental transmission errors (no attacker). They are usually shorter and
only guarantee detection of specific modifications like single bitflips.
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Security Notion – RandomOracles

Idealized model of a hash function: The (truncated) RandomOracle

Returns a random bitstring for every possible query

Same input query→ same output

q→$
q→$

P

H

q
M

$
T

q
M

$
T
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3 Security Properties of Hash Functions

Preimage resistance:
Given a tag T, it must be infeasible for an attacker to find any message
M such that T = H(M).
Generic complexity: about 2t trials

Second preimage resistance:
Given a messageM, it must be infeasible for an attacker to find any
secondmessageM′ 6= M such thatH(M′) = H(M).
Generic complexity: about 2t trials

Collision resistance:
It must be infeasible for an attacker to find any two di�erent messages
M,M′ such thatH(M′) = H(M).
Generic complexity: about 2t/2 trials (!)
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The Birthday Paradox

The Birthday Paradox

In a class of only 23 people, there is a good chance (about 50%) that 2 of
them have the same birthday.

Application to the collision resistance ofH:

The attacker collects a list of tags for about
√
2t = 2t/2 di�erent messages.

Now they have
(2t/2
2

)
≈ (2t/2)2

2 = 1
2 · 2

t candidate message pairs.

The probability of a collision for one pair is 1
2t .

So it is quite likely that there is at least one collision in the list.
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Rho-Method: Memoryless Collision-Finding

...

O(
√
2t) time

O(
√
2t) space

=

•
•
•
•=
• • • •

•
•
••••

•

O(
√
2t) time

O(1) space

Define a sequence ri+1 = H(ri) for i ≥ 0 by starting from
some value r0 and iteratively applying the functionH

If rj = rk, then rj+1 = H(rj) = H(rk) = rk+1

A�er an initial tail, the sequence turns cyclic (“ρ”)

Hri ri+1
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Rho-Method: Memoryless Collision-Finding

How to find the collision rj = rk?
Cycle finding algorithms such as Floyd’s algorithm (“tortoise and hare”):

Find cycle length λ:
ri ← r0, r2i ← r0
repeat

ri ← H(ri)
r2i ← H(H(r2i))

until ri = r2i
λ← 2i − i = i

Find prefix length µ:
rj ← r0, rj+λ ← ri
repeat

rj ← H(rj)
rj+λ ← H(rj+λ)

until rj = rj+λ
µ← j + λ− λ = j

Runtime depends on cycle length λ and prefix length µ.
The expected value of both is about

√
2t (times a small constant).

→ Complexity:O(
√
2t) time andO(1)memory
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Howmuch computation time, memory, data is practically “feasible”?

Time [cipher calls] Memory [cipher states] Data [queries]
232 trivial easy practical
248 easy1 practical practical
264 practical2 unpractical unpractical
280 unpractical3 infeasible infeasible
2128 infeasible4

2256 infeasible

1 easy: you can do this.
2 practical: you probably can’t do it, but a powerful attacker possibly can.
3 unpractical: probably no-one can currently do this, but better not to rely on it.
4 infeasible: no-one can do this.
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Security Levels

n-bit Security means that an attacker would need about 2n computation time
(measured in “number of cipher evaluations”) to have a good success
probability of breaking the scheme.

128-bit Security is widely seen as a good choice for most applications.

) Hash output size should be 2× 128 = 256 bits (birthday paradox).

256-bit Security may be preferable for special applications and for higher
post-quantum security

You sometimes seeO-notation for security claims. This is usually not a meaningful
security claim – the constants hidden in theO-notation canmake a big di�erence!
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Processing Long Messages by Iterating a Primitive

Translate Data Blocks
(e.g., encryption)

M1 M2 M3 O

O

Accumulate Data
(e.g., authentication, hashing)

M1 M2 M3 O

O

Today: the mode

Next week: the primitive (andmore modes)
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Symmetric Primitives

E

XqK¤

YQ

Block Cipher
(BC)

P

X

Y

Permutation

F

Z Xq

Y

Compression
Function

O
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Compression Functions

F

M q
m-bit

S $
t-bit

T $
t-bit

Compress

One fixed mapping

2t+m possible inputs

2t possible outputs

t bounds the security level

Small t: Danger of collisions

Large t: Higher transmission
cost
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Merkle–Damgård Hashing (MD)

Hashing by iterating a compression function F :

H0=0 F F · · · F H`=T

M1 M2 M`· · ·

1 Split messageM intom-bit blocksM1,M2, . . . ,M`

2 Start iteration with fixed initial value H0

3 For i = 1, . . . , `: Compress old state Hi−1 andmessage blockMi to new state Hi

4 Return the final state (chaining value) H` as the tag T
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Merkle–Damgård Hashing (MD) – Padding and Security

ä What if the length ofM is not a multiple of the block size ofm bits?

) Requires injective padding to produce a multiple of the block lengthm:

. . . 80 00 . . . 00 bit-length ofM as a 64-bit integer

This padding is specified as part of the mode of operation
It is always applied, not only if the last block is a partial block!

) Theorem: If F is collision resistant, thenH is collision resistant (why?)

26 / 46



MD Theorem: If F is collision resistant, thenH is collision resistant (1)

Proof by contraposition: We show that if Eve finds a hash collision forH
(“H-collision”), she also knows a compression collision for F (“F-collision”).

So assume that Eve knows twomessagesM 6= M′ such thatH(M) = H(M′).
LetM1‖M2‖ . . . ‖M` be the blocks of paddedM andM′1‖M′2‖ . . . ‖M′`′ those ofM′.

H0=0 F F · · · F H`=T

M1 M2 M`· · ·

F

H′0=0 F F · · · F H′`′ =T

M′1 M′2 M′`′· · ·

F

First consider the case thatM andM′ have di�erent bitlength |M| 6= |M′|.
The length is encoded in the last 64 bits of the last block, soM` 6= M′`′ .
Thus, Eve has an F-collision: (M`,H`−1) 6= (M′`′ ,H

′
`′−1), but both compress to T.27 / 46



MD Theorem: If F is collision resistant, thenH is collision resistant (2)

H0=0 F F · · · F F H`=T

M1 M2 M`−1 M`· · ·

F

H′0=0 F F · · · F F H′`=T

M′1 M′2 M′`−1 M′`· · ·

F

Next, consider the case thatM andM′ have the same bitlength |M| = |M′|.

In case their last blocksM`,M′` or the previous chaining blocks H`−1,H′`−1
are still di�erent, Eve again knows an F-collision with the same reasoning.

So we consider the caseM` = M′` and H`−1 = H′`−1. Either there is a
di�erence in the previous inputs (M`−1,H`−2) 6= (M′`−1,H′`−2) and Eve knows
an F-collision with output H`−1 = H′`−1, or there is no di�erence and we can
repeat the argument for the block before.
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MD Theorem: If F is collision resistant, thenH is collision resistant (3)

H0=0 F F · · · F F H`=T

M1 M2 M`−1 M`· · ·

F

H′0=0 F F · · · F F H′`=T

M′1 M′2 M′`−1 M′`· · ·

F

M`M`−1M2

We can repeat this argument backwards until we have either found an
F-collision (Mi,Hi−1) 6= (M′i′ ,H

′
i′−1)with Hi = H′i′ or we reach the first blockM1.

If we reach the first blocksM1,M′1, then these cannot be identical: That
would mean that the entire messagesM = M′ are identical, which
contradicts our initial assumption that Eve has aH-collision.
Thus, Eve has an F-collision (M1, 0) 6= (M′1, 0), which both compress to H1 = H′1.

In summary, Eve always finds an F-collision (Mi,Hi−1) 6= (M′i′ ,H
′
i′−1)with Hi = H′i′ .29 / 46



Standardized Hash Functions and TLS 1.3

In TLS, hash functions are used for signing and to build MACs. They are
standardized by NIST (SHA = Secure Hash Algorithm) and follow the MD design.

Family Hash size Security TLS 1.2 TLS 1.3

MD5 128 bits broken 3 7

SHA-1 160 bits broken 3 3

SHA-2

224 bits 112 bits 3 7
256 bits 128 bits 3 3
384 bits 192 bits 3 3
512 bits 256 bits 3 3

SHA-3 * * not yet not yet

3 supported 3 legacy certificates only 7 not supported 30 / 46



The Compression Function of SHA-2 (2 Sizes)

SHA-256

64
st
ep
s

S M

T

256 512

256

SHA-512

80
st
ep
s

S M

T

512 1024

512
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The SHA-3 Competition (2007–2012)

Ù SHA-3 – Secure Hash Algorithm

◎ Goals: A hash function to complement SHA-2

SHA-2 is secure, but also similar to the broken SHA-1, MD5

New design should look very di�erent

� Organized by NIST (US Institute of Standards and Technology)

� Announced in 2007, 64 submissions from 200 cryptographers

3 Winner: Keccak/SHA-3 by Bertoni, Daemen, Peeters, Van Assche, Van Keer

Other Finalists: BLAKE, Grøstl , JH, Skein
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Hashing with Permutations: The Sponge Construction

P P · · · P P · · ·
SO0 =0
SI0 =0

M1 M2 M`· · · T1 T2 · · ·

Absorb Squeeze

Large state with two parts:

r-bit outer part SO (“rate” r)→message/tag block size
c-bit inner part SI (“capacity” c)→ security level up to 2c/2

State update with unkeyed (r + c)-bit permutation P (SHA-3: r + c = 1600)
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Message Authentication Codes
&

Symmetric-Key Authentication



Message Authentication Codes (MAC) – Definition

A Message Authentication Code is a keyed hash functionHK that maps a k-bit
key K and amessageM of arbitrary length to a t-bit tag T to protect the integrity
and authenticity ofM:

HK : Fk2 × F∗2 → Ft2, HK(M) = T

HK

K¤ Mq

T#
The challenge of protecting the authenticity ofM is transformed into protecting K.
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Message Authentication Codes (MAC) – Application

¤
K

¤
K

HKq
M

#
T

HKq
M

#
T′

?
=#
T

q
M

#
T

1 Alice and Bob share a secret key K.

2 Alice computes T = H·(K,M) = HK(M).

3 Alice transmitsM and T to Bob (over an insecure channel controlled by Eve).

4 Bob re-computes T′ = HK(M) and verifies that T′ = T.
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Security Notion for Authenticity – Unforgeability

Unforgeability

It is infeasible for an attacker to produce (forge) any new, valid message-tag
pair (M, T) even if they can query tags for any other messages of their choice.

Generic attacks on MACs:

Exhaustive key search – Expected complexity: 2k “o�line” trials

Guess the tag – Expected complexity: 2t “online” verification trials
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How to Construct a MAC?

From a Hash FunctionH

Feed the key K andmessageM into the hashH, e.g.,HK(M) = H(M‖K)
Example: HMAC-SHA2 (HMAC = Hash-based MAC)

By using a keyed primive, such as a Block Cipher EK(M)

Example: CMAC (C = CBC = Cipher Block Chaining)

M1 M2

· · ·

M`

T0 EK EK EK

K′
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Entity Authentication Protocols
:



Authentication Protocols

Entity Authentication aka Identification – (notmessage authentication)

Access control, login

As part of communication protocols

Entities:

� The Prover claims an identity

ü The Verifier wants evidence of the prover’s identity
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Authentication Factors

What someone knows: Ë ¥ ¤ Password, PIN, . . .

What someone has: = Ñ Æ Smartcard, token, mobile, . . .

What someone is: � Y Á Fingerprint, face, voice, . . .

Multi-factor authentication: Smardcard + PIN, Password + mobile TAN, . . .

A key can be what someone knows (password) or has (key stored on device)

In this course, we won’t go into details on biometrics.
It’s a separate field of research based on computer vision, biology, etc. and
not as “open source” as crypto (proprietary algorithms)
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Passwords

Naive password protocol

Setup: Prover Ag chooses password KA¤, verifier B� stores (A,KA)

Identification:

Prover Ag Verifier B�

Ag, KA¤ accept if
(A,KA) stored

Attacher C can eavesdrop KA (replay attack)

B’s stored table of passwords vulnerable

Entropy of KA?
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Passwords

Passwords with Hash functionH

Setup: Prover Ag chooses password KA¤, verifier B� stores (A,H(KA))
Identification:

Prover Ag Verifier B�

Ag, KA¤ accept if
(A,H(KA)) stored

Advantage: Stored tables less vulnerable

Still assumes secure transmission

If table leaks: still allows mass dictionary attack
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Passwords

Passwords with Hash functionH() and Salt SA
Setup: Prover Ag chooses password KA¤, verifier B� chooses salt SAä,
stores (A, SA,H(SA,KA))
Identification:

Prover Ag Verifier B�

Ag, KA¤ accept if stored:
(A, SA,H(SA,KA))

Advantage: No parallel attack on hash functionH→ target individual users

Table doesn’t leak users with same password
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Modern password hash functions

Requirements are slightly di�erent from cryptographic hashes:

Support long passwords and salts

Not too fast, parameters to adapt speed (“Moore’s law”)

Should need a lot of memory

Password hashing functions:
PBKDF2
bcrypt
scrypt
Have a look at the Password Hashing Competition (PHC):
https://password-hashing.net/candidates.html
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Strong Authentication (Challenge-Response Protocols)

Ë Problem of Weak Authentication protocols like passwords:
User always has to transmit the complete secret.
This is potentially vulnerable to replay attacks.

: Idea of Strong Authentication protocols (Challenge-Response):
Proving, not telling: Don’t tell the Verifier the complete secret x.
Instead “prove” possession by computing a function of x plus some
changing “challenge”, such as a timestamp or a value sent by the verifier.
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Example: Time-based One-Time Password (TOTP)

2-step authentication for online services (Google, Github, banking, . . . ):

1. User logs in with password

2. User provides (part of) TOTP from app, token, . . .

TOTP

Prover A Æ Verifier B�

HK(tA)

¤ K: pre-shared secret key between app Æ A and server B
� tA: timestamp in 30-second steps (synchronized clock!)
# HK: d first digits of HMAC(·)
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Conclusion

q Message authentication can be done with

No key: Hash function

Symmetric key: Message Authentication Code (MAC)

Asymmetric key: Signatures (coming soon...)

0 Entity authentication can be done with

Weak authentication: Password (with salted password hash function)

Strong authentication: Challenge-response (e.g., with MAC)
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