Ty,

SCIENCE
PASSION
TECHNOLOGY

Cryptography 2:
& Symmetric Authentication

Maria Eichlseder

> wuw.iaik.tugraz.at/infosec

www.iaik.tugraz.at/infosec

Q@ YouAre Here

Crypto 1 & B 9Crypto2 &

Crypto 3 Q § Crypto 4 &

Introduction to Symmetric
InfoSec & Crypto J Authentication

Symmetric Asymmetric

Encryption Cryptography

= Terminology © Integrity © Confidentiality @ Establishing

. . . communication
= Security notions = Hash functions = AEAD (Auth.

Encryption) = Key exchange
= Keys, = MACs (Message P &
Kerckhoffs’ Authentication) = Symmetric = Signatures

principle primitives

= Asymmetric
primitives
1/46

) Recap of Last Week

= Information security protects assets against adversaries

m Break the chain:
Security Property @@ Threat @® Vulnerability @@ Attack

= Cryptography is the mathematical foundation of secure communication

m Algorithms to transform data so it can be sent over untrusted channels

m Creates a new asset: the key

2/46

A Administrative Update

If you’re a 1-person team for the practicals:

m Tryto find a partner right after today’s lecture

= We may merge teams

New curricula for CS/ICE (KU InfoSec = 11IS+RKN) and SEM (KU InfoSec = 11S):

= This may be a small disadvantage (SEM 16U) or advantage (SEM 19U)
m SEM 16U: contact your Dean of Studies (Denis Helic) for options (Freifach)

/46

+H

« ¥

Outline

Cryptographic Authentication
= Goals and Applications

Hash Functions

* Definition and Security
= Generic Attacks

= Construction

Message Authentication Codes
= Definition and Security
= Construction

Entity Authentication Protocols
= Weak Authentication (Passwords)

= Strong Authentication (Challenge-Response)

4/46

Cryptographic Authentication
Bis

Introduction

Authenticity and Integrity

Message Authentication . 2g

= Authenticity: Verify the source of the message

= |ntegrity: Verify that the message has not been modified while in transit

Entity Authentication ad

= Verify the identity of a communication endpoint (device, user) based on
possession of some cryptographic identifier (password, key, ...)

5/46

Examples (1): File Checksums

Name Size Name Size
Parent Directory - Parent Directory -

MD5SUMS 11K MD5SUMS 1.2K
MD5SUMS.sign 833 MDS5SUMS.sign 833
SHA1SUMS 1.3K SHA1SUMS 1.4K
SHA1SUMS.sign 833 SHA1SUMS.sign 833
SHA256SUMS 1.7K SHA256SUMS 1.8K
SHA256SUMS.sign 833 SHA256SUMS.sign 833
SHA512SUMS 2.8K SHA512SUMS 3.0K
SHA512SUMS.sign 833 SHA512SUMS.sign 833
debian-10.1.0-amd64-DVD-1.iso 3.6G debian-10.1.0-amd64-DVD-1.iso.torrent 73K
debijan-10.1.0-amd64-DVD-2.iso 4.4G debian-10.1.0-amd64-DVD-2.iso.torrent 88K
debian-10.1.0-amd64-DVD-3.iso 4.4G jan- - 5 -3.j 88K
Apache/2.4.39 (Unix) Server at cdimage.debian.org Port Apache/2.4.39 (Unix) Server at cdi debi g Port

debian.org, »

a2cd517c6f fbebeBadda2aad8cla749a34efef4alcc950daet696a5747294c7T27bacf52040655637a519a420c ff6125395edacs12051299e3237cd954ef427f debian-10.1.0-amd64-DVD-1.iso
6a5aebcfffaf259e55d5ee5d25fbaf7f5a6b9a585¢1b6179efeb263cd41fc6782968611863a5588937d1629ad9d320c5022ebcb28188b41The f18Be1d5b43fhd debian-16.1.08-amd64-DVD-2.is0
11889¢1bc97a8a5b6103119d211a04510350584e30F4222d7502749bc341b86020248964222842a3242a7654 fe5F23c f8945260ad9809d285b82bd10d942ea76a debian-108.1.0-amd64-DVD-3.1is0

4 sha512sum debian-10.1
a2cd517c6ffbebe04ddazaal 1a749a3 f4alcc950dae6
x1tblme

6/46

File Edit View Help

Examples (2): Commit IDs and File Versions

C1 - finished

C1 - update content

C1 - collect content

C1 - update administrative info
add presentation templates

Maria Eichlsede 2019-10-*

Maria Eichlsede 2019-10-
Maria Eichlsede 2019-10-
Maria Eichlsede 2019-10-
Maria Eichlsede 2019-10-

|

=

TVl =828a1a44476b39fcf28dc69bafael@e38a5c109Ky ‘—) |Row]7

Find || commit |containing: JJExact ALl fields
Search ‘ ¢ Patch~ Tree
* Diff ~ Old version ~ New version Lines of co (Comments

Author: Maria Eichlseder <maria.eichlsed
Committer: Maria Eichlseder <maria.eichl
Parent: 8d5a0717533fad467bedBc54ad67a2327

= lecture2019/C1_Introd
| luction.tex
lecture2019/figures/Ex

Child: 7f87cal3labe368abe53cb9lcee39617

ternalize/crypto_com

Branches: master, remotes/origin/master
Follows:
Precedes:

Cl - update content

----------------------- lecture2019/C1 I
index a482853..0a23dbd 100644

@@ -1,5 +1,5 @@
%\PassOptionsToClass{handout}{beamer}
-\documentclass{cryptolecture}
+\documentclass[externalize]{cryptolectu

municationl.md5
lecture2019/figures/Ex
ternalize/crypto_com
municationl.pdf
lecture2019/figures/Ex
ternalize/crypto_com
munication2.md5
lecture2019/figures/Ex
ternalize/crypto_com
munication2.pdf
lecture2019/figures/Ex
ternalize/crypto_com

4] H

munication3.md5
lartura?n10ffinnrec/Fy

T

o

Al

7/46

Examples (3): Mobile TANs, 2-Factor-Authentication

2:26 ANMELDEN
Google Authenticator H

Uberpriifen Sie den angezeigten Vergleichswert mit dem auf
Ihrem fiir pushTAN aktivierten Gerat.

< ™ Maria Eichlseder

345 131

Google (maria.eichlseder@gmail.com) SRER

Sie haben noch 4 Minuten, um die Signaturanfrage zu
genehmigen.

Cryptographic Schemes for Message Authentication

Cryptographic schemes for message authentication compute a short,
fixed-length Tag T ¥ from the Message M[S] and (in some cases) a Key K &.

Hash Function H Y B MAC Hg,,

Signature Sk, .22

Asymmetric Key K,

Unkeyed Symmetric Key K5

& Anyonecancompute T 2g A, B can compute T @ Acan compute T

% Anyone can verify T @ A, B canverify T %5 Anyone can verify T

9/46

Application Examples (1)

Hash functions:

& File download with checksum

B Identifier for files and commits

€1 Identification of identical files (for deduplication, detecting changes)

B Linking blockchain blocks + proof-of-work for timestamping

& Storing login passwords securely (requires special password hash function!)

¥ Announcing commitment to something you only reveal later
(no, this has nothing to do with hashtags)

10/46

Application Examples (2)

MACs:
(] Challenge-response in multifactor authentication (mobile TANs)

B Message integrity in secure communication protocols (TLS, SSH, ...)

Signatures (in two weeks):
B Electronic signature of documents, Handysignatur
¥ Signing emails with PGP

B5 Entity authentication and X509 certificates in secure communication
protocols (TLS, SSH, ...)

11/46

Hash Functions

Y

Keyless Authentication

Hash Functions - Definition

A cryptographic hash function 2 maps a message M (a bitstring) of
arbitrary bitlength to a t-bit tag T that serves as fingerprint/checksum for M:

H (F5 — (T, HM) =T

E
l

!
TS

The challenge of protecting the authenticity of M is transformed into protecting T.

12/46

Hash Functions - Application

= i) =D

B--% Eife 7yl A

=k 4

Alice computes T = H (M)
Alice transmits M to Bob (over an insecure channel controlled by Eve)
Alice separately transmits T to Bob (over a secure channel).

Bob re-computes T = H(M) and verifies that T’ = T. e

Not to be Confused with...

(Cryptographic) hash functions are not to be confused with...

Password Hash Functions or Key Derivation Functions, which map a
password to a password hash or key and have stronger requirements.

Non-Cryptographic Hash Functions, which map values to reasonably
uniformly distributed values (e.g., index for hash tables). They have
different, weaker requirements and no attacker.

Error-Detecting/Correcting Codes and Checksums like CRC32 to correct
accidental transmission errors (no attacker). They are usually shorter and
only guarantee detection of specific modifications like single bitflips.

14 /46

Security Notion - Random Oracles

Idealized model of a hash function: The (truncated) Random Oracle
= Returns a random bitstring for every possible query

= Same input query — same output

15/46

3 Security Properties of Hash Functions

1
1
]

Preimage resistance:

Given a tag T, it must be infeasible for an attacker to find any message
M such that T = H(M).

Generic complexity: about 2 trials

Second preimage resistance:

Given a message M, it must be infeasible for an attacker to find any
second message M’ £ M such that H(M') = H(M).

Generic complexity: about 2 trials

Collision resistance:

It must be infeasible for an attacker to find any two different messages
M, M’ such that H(M') = H(M).

Generic complexity: about 2¢/2 trials (1)

16/46

The Birthday Paradox

The Birthday Paradox

In a class of only 23 people, there is a good chance (about 50 %) that 2 of
them have the same birthday.

Application to the collision resistance of H:

= The attacker collects a list of tags for about v/2¢ = 2¢/2 different messages.

2z/z)

@72 _
X —

= Now they have (NS % - 2! candidate message pairs.

= The probability of a collision for one pair is .
® Soitis quite likely that there is at least one collision in the list.

17/46

Rho-Method: Memoryless Collision-Finding

O(V2t) time O(V2t) time
O(V2!) space O(1) space

= Defineasequencer;,; = H(r;) fori > 0 by starting from
some value ry and iteratively applying the function H I = — Iy

= Iy = fthen o = H(n) = H(r) = i (=)

= After aninitial tail, the sequence turns cyclic (“p”)

18/46

Rho-Method: Memoryless Collision-Finding

= How to find the collision r; = r,?
Cycle finding algorithms such as Floyd’s algorithm (“tortoise and hare”):

Find cycle length \: Find prefix length :

i <— g, I < Iy [ji<—"Tloy, ljr<Ti
repeat repeat

ri < H(r;) ri < H(r)

rai < H(H(rz)) liex < H(r42)
until rj = until r; = rjp
A 2i—i=i p—j+A=A=j

= Runtime depends on cycle length A and prefix length .
The expected value of both is about v/2¢ (times a small constant).
— Complexity: O(v/2f) time and O(1) memory

19/46

How much computation time, memory, data is practically “feasible”?

Time [cipher calls] Memory [cipher states] Data [queries]

232 trivial easy practical
2% easy? practical practical
2% practical?

280 3

2128 4

2256

! easy: you can do this.

2 practical: you probably can’t do it, but a powerful attacker possibly can.

3 : probably no-one can currently do this, but better not to rely on it.
4 : no-one can do this.

20/46

Security Levels

n-bit Security means that an attacker would need about 2" computation time
(measured in “number of cipher evaluations”) to have a good success
probability of breaking the scheme.

m 128-bit Security is widely seen as a good choice for most applications.
© Hash output size should be 2 x 128 = 256 bits (birthday paradox).

m 256-bit Security may be preferable for special applications and for higher
post-quantum security

You sometimes see O-notation for security claims. This is usually not a meaningful
security claim - the constants hidden in the O-notation can make a big difference!

21/46

Processing Long Messages by Iterating a Primitive

Translate Data Blocks Accumulate Data
(e.g., encryption) (e.g., authentication, hashing)
Ml M2 M3 eee Ml l\/’2 M3 [I 1]
R S S S S
Lol e e e
_r- _r- _{_ | Y | JE | SR,
= Today: the mode —_—1 —

= Next week: the primitive (and more modes)

22/46

Symmetric Primitives

K& X[3
y
-3
&

Block Cipher
(BC)

7€ X[3
Vo

([

Y

Compression
Function

>~
(]

<
(e

Permutation

23/46

Compression Functions

M (2] .

One fixed mapping

m-bit

= 28" possible inputs
s T = 2! possible outputs
t-bit t-bit

m tbounds the security level

= Small t: Danger of collisions

Compress

m Large t: Higher transmission
cost

24 /46

Merkle-Damgard Hashing (MD)

Hashing by iterating a compression function h:

UL W

Split message M into m-bit blocks My, M,, ... M,

Start iteration with fixed initial value H,
Fori=1,...,¢: Compress old state H;_; and message block M; to new state H;

Return the final state (chaining value) H, as the tag T

25/46

Merkle-Damgard Hashing (MD) - Padding and Security

© What if the length of M is not a multiple of the block size of m bits?

Requires injective padding to produce a multiple of the block length m:

180 | 00 | ... | 00 | bit-length of M as a 64-bit integer

m This padding is specified as part of the mode of operation
= [tisalways applied, not only if the last block is a partial block!

Theorem: If Fis collision resistant, then # is collision resistant (why?)

26 /46

MD Theorem: If Fis collision resistant, then # is collision resistant (1)

= Proof by contraposition: We show that if Eve finds a hash collision for H
(“H-collision”), she also knows a compression collision for F (“F-collision”).

= So assume that Eve knows two messages M # M’ such that H(M) = H(M’).
Let My ||My|| ... ||M, be the blocks of padded Mand M;||M,]| . .. |[M}, those of M'.

Ho=0 &b *h -

M,
! k’ !
H, =0 ol H =T

= First consider the case that M and M’ have different bitlength M| # |[M'|.
The length is encoded in the last 64 bits of the last block, so M, # M.
Thus, Eve has an F-collision: (M, He—1) # (Mj,, H;_,), but both compressto T.

MD Theorem: If Fis collision resistant, then # is collision resistant (2)

M, M, . M,

1 M,

N
S = NS ST

M/l Mlz M/Zfl M2
TN W N
0— L

Next, consider the case that M and M’ have the same bitlength |M| = |M'|.

In case their last blocks M,, M, or the previous chaining blocks H,_1, H}_;
are still different, Eve again knows an F-collision with the same reasoning.

So we consider the case M, = M; and H,_; = H,_,. Either there is a
difference in the previous inputs (My_1, Hy—3) # (M,_,,H,_,) and Eve knows
an F-collision with output H,_; = H,_,, or there is no difference and we can
repeat the argument for the block before.

28/46

MD Theorem: If Fis collision resistant, then # is collision resistant (2)

th% M%

Next, consider the case that M and M’ have the same bitlength |M| = |M'|.

In case their last blocks M,, M, or the previous chaining blocks H,_1, H}_;
are still different, Eve again knows an F-collision with the same reasoning.

So we consider the case M, = M; and H,_; = H,_,. Either there is a
difference in the previous inputs (My_1, Hy—3) # (M,_,,H,_,) and Eve knows
an F-collision with output H,_; = H,_,, or there is no difference and we can
repeat the argument for the block before.

28/46

MD Theorem: If Fis collision resistant, then # is collision resistant (3)

. -
oy e

We can repeat this argument backwards until we have either found an
F-collision (M;, H;_1) # (M}, H,_,) with H; = H, or we reach the first block M;.

If we reach the first blocks M;, M}, then these cannot be identical: That

would mean that the entire messages M = M’ are identical, which

contradicts our initial assumption that Eve has a #-collision.

Thus, Eve has an F-collision (My, 0) # (M}, 0), which both compress to H; = H/.

In summary, Eve always finds an F-collision (M;, Hi_1) # (M, H},_,) with H; = H;,.

Standardized Hash Functions and TLS 1.3

In TLS, hash functions are used for signing and to build MACs. They are

standardized by NIST (SHA = Secure Hash Algorithm) and follow the MD design.

Family Hashsize Security TLS1.2 TLS1.3

MD5 128 bits broken X

SHA-1 160 bits broken

224 bits 112 bits X
384 bits 192 bits
512 bits 256 bits

SHA-3 * * notyet notyet

supported legacy certificates only X notsu pported

30/46

The Compression Function of SHA-2 (2 Sizes)

SHA-256 SHA-512
S M

S M
hase Js12 Y12 hooa
v

(%] (%]
o o
Y Y
(V2] (V2]
<t o
(Co] o0
NG
556
Y
T 512
A 4

T 31/46

The SHA-3 Competition (2007-2012)

P SHA-3 - Secure Hash Algorithm
Goals: A hash function to complement SHA-2

m SHA-2issecure, but also similar to the broken SHA-1, MD5
= New design should look very different

%" Organized by NIST (US Institute of Standards and Technology)
¥ Announced in 2007, 64 submissions from 200 cryptographers

¥ Winner: Keccak/SHA-3 by Bertoni, Daemen, Peeters, Van Assche, Van Keer
Other Finalists: BLAKE, Grgstlm, JH, Skein

32/46

Hashing with Permutations: The Sponge Construction

Absorb

= Large state with two parts:

= r-bitouter part SO (“rate” r) — message/tag block size
m c-bitinner part S* (“capacity” ¢) — security level up to 2¢/2

= State update with unkeyed (r + ¢)-bit permutation P (SHA-3: r + ¢ = 1600)

33/46

Message Authentication Codes
)

Symmetric-Key Authentication

Message Authentication Codes (MAC) - Definition

A Message Authentication Code is a keyed hash function Hy that maps a k-bit
key K and a message M of arbitrary length to a t-bit tag T to protect the integrity
and authenticity of M:

HK : Flz(X F; —]Fg, HK(M) =T

K& M[3
! !

|
TS

The challenge of protecting the authenticity of M is transformed into protecting K.

34/46

Message Authentication Codes (MAC) - Application

i
] 2 v i

B2 B[7o A

Alice and Bob share a secret key K.
Alice computes T = H.(K, M) = Hy(M).
Alice transmits M and T to Bob (over an insecure channel controlled by Eve).

Bob re-computes T’ = Hy(M) and verifies that T = T.

35/46

Security Notion for Authenticity - Unforgeability

Unforgeability

It is infeasible for an attacker to produce (forge) any new, valid message-tag
pair (M, T) even if they can query tags for any other messages of their choice.

Generic attacks on MACs:
= Exhaustive key search - Expected complexity: 2 “offline” trials

= Guess the tag - Expected complexity: 2! “online” verification trials

36/46

How to Construct a MAC?

® From a Hash Function H

m Feed the key K and message M into the hash #, e.g., Hx(M) = H(M||K)
= Example: HMAC-SHA2 (HMAC = Hash-based MAC)

= By using a keyed primive, such as a Block Cipher Ex(M)

m Example: CMAC (C = CBC = Cipher Block Chaining)
Ml M2 MZ

—o- @@ @
K/

37/46

Entity Authentication Protocols
o)

Authentication Protocols

Entity Authentication aka Identification - (not message authentication)
= Access control, login

= As part of communication protocols

Entities:
B8 The Prover claims an identity

Q, The Verifier wants evidence of the prover’s identity

38/46

Authentication Factors

= What someone knows: ¢ & Password, PIN, ...
= What someone has: B << [Smartcard,token, mobile,...

= What someone is: ™ @ & Fingerprint, face, voice,...
Multi-factor authentication: Smardcard + PIN, Password + mobile TAN, ...

= Akey can be what someone knows (password) or has (key stored on device)

= In this course, we won’t go into details on biometrics.
It’s a separate field of research based on computer vision, biology, etc. and
not as “open source” as crypto (proprietary algorithms)

39/46

Passwords

Naive password protocol

Setup: Prover A & chooses password K, @, verifier B = stores (A, K4)

Identification:

Prover A & Verifier B

A&, KR accept if
(A, K,) stored

= Attacher C can eavesdrop K, (replay attack)
m B’s stored table of passwords vulnerable

= Entropy of K4?

40/ 46

Passwords

Passwords with Hash function A

Setup: Prover A & chooses password K, &, verifier B stores (A, H(K4))

Identification:;

Prover A & Verifier B
A, K& > accept if
(A, H(Ky)) stored

= Advantage: Stored tables less vulnerable
m Still assumes secure transmission

= [f table leaks: still allows mass dictionary attack

41/46

Passwords

Passwords with Hash function #() and Salt S,
Setup: Prover A & chooses password K, &, verifier BEE chooses salt S, @,
stores (A, Sp, H(Sa, Ka))
Identification:
Prover A & Verifier B2

A&, K& accept if stored:
(Aa SAa H(SA7 KA))

= Advantage: No parallel attack on hash function H — target individual users

= Table doesn’t leak users with same password

42 /46

Modern password hash functions

Requirements are slightly different from cryptographic hashes:

= Support long passwords and salts
= Not too fast, parameters to adapt speed (“Moore’s law”)

= Should need a lot of memory

Password hashing functions:

PBKDF2

bcrypt

scrypt

Have a look at the Password Hashing Competition (PHC):
https://password-hashing.net/candidates.html

43/ 46

https://password-hashing.net/candidates.html

Strong Authentication (Challenge-Response Protocols)

¢> Problem of Weak Authentication protocols like passwords:

User always has to transmit the complete secret.
This is potentially vulnerable to replay attacks.

¢ Idea of Strong Authentication protocols (Challenge-Response):

Proving, not telling: Don’t tell the Verifier the complete secret x.
Instead “prove” possession by computing a function of x plus some
changing “challenge”, such as a timestamp or a value sent by the verifier.

44/ 46

Example: Time-based One-Time Password (TOTP)

2-step authentication for online services (Google, Github, banking, ...):
1. User logs in with password

2. User provides (part of) TOTP from app, token, ...

TOTP

Prover Al] Verifier B
Hi(ta)

&, K: pre-shared secret key between app 0 A and server B
© t,: timestamp in 30-second steps (synchronized clock!)
W Hy: d first digits of HMAC(-)

45/ 46

Conclusion

Y

Conclusion

[£] Message authentication can be done with

= No key: Hash function
m Symmetric key: Message Authentication Code (MAC)

= Asymmetric key: Signatures (coming soon...)
28 Entity authentication can be done with

m Weak authentication: Password (with salted password hash function)

m Strong authentication: Challenge-response (e.g., with MAC)

46 /46

Questions

12/

	Cryptographic Authentication
	
	Goals and Applications

	Hash Functions
	
	Definition and Security
	Generic Attacks
	Construction

	Message Authentication Codes
	
	Definition and Security
	Construction

	Entity Authentication Protocols
	
	Weak Authentication (Passwords)
	Strong Authentication (Challenge-Response)

	Conclusion
	
	Questions
	

