

Welcome to "Information Security"

Maria Eichlseder Johannes Feichtner Daniel Kales Peter Pessl Michael Schwarz

Winter Term 2019/20

Information Security

Information Security – Topics

Cryptography

System Security

- How to exchange information securely while everyone's watching?
- The mathematical perspective
- How to perform computations securely while sharing a processor?

 \Box

 The system perspective

Network Security 🛛 🖁 🖁 문급

- How to establish secure internet connections?
- The application perspective

Today: Introducing...

- Information Security
- Cryptography

Introduction to "Information Security"

Maria Eichlseder

Information Security - WT 2019/20

SCIENCE PASSION TECHNOLOGY

> www.iaik.tugraz.at/infosec

Who are we?

Team for the Lecture

Maria Eichlseo	ler	Michael Schwa	arz	Johannes Feicht	ner		
Cryptography Administration	ď	System Security	\bigcirc	Network Security	뫎		
Administration	\sim						

- Assistant Professor PhD Candidate
- Cryptology & Privacy System Security

- PhD Candidate
- Secure Applications

Team for the Exercises

Daniel Kales	Peter Pessl	Johannes Feichtner
Administration		

- PhD Student
- Cryptology & Privacy
- Postdoc
- System Security

- PhD Candidate
- System Security

Teaching Assistants for the Exercises

ABOUT RESEARCH TEACHING PEOPLE JOIN EVENTS CONTACT

BACHELOR'S THESIS

You want to do your bachelor's thesis with us? Great!

You'll agree on a topic with your advisor. Below, we list some open topics that we are currently interested in. If you have your own idea for a potential topic, get in touch with any advisor to see whether they want to supervise your thesis.

OPEN TOPICS

System Security

Analyzing Address Leakage	Samuel Weiser
Address Leakage Visualization	Samuel Weiser
infosec needs you!	LosFuzzys
Spying on Hobbits - or how secure constant-time really is	Peter Pessl
Memory Encryption and Authentication	Mario Werner
Fault Attacks against MORUS/AEGIS	Robert Primas

Cryptology & Privacy

Attacks on AES with a Single Secret S-Box	Lorenzo Grassi	+
A Zoo of Lightweight Ciphers	Maria Eichlseder	+
Peer-to-Peer Contact Discovery on Smartphones	Daniel Kales	+
Case Study: Nonces in Practice	Maria Eichlseder	+
Evaluation of Cryptographic Functions against Fault	Robert Primas, Maria	+
Attacks	Eichlseder	
Experimental Evaluation of Fault Attacks	Maria Eichlseder. Robert	+

This Course

Administrative Information

Is this "Introduction to Information Security"?

- Old curricula 15U, 16U: "Introduction to Information Security" aka IIS, EIS no longer offered – you can still do the VO exam on 17 Oct, 19 Nov, 14 Jan
- New curricula 19U: "Information Security" aka InfoSec this course is new and replaces IIS
- IAIK equivalence list: https://teaching.iaik.tugraz.at/equivalences

New (CS, ICE, SEM)			Old (SEM)				Old (CS, ICE)				
InfoSec	VO	2.5 SSt	4 ECTS	IIS	VO	2 SSt	3 ECTS	IIS	VO	2 SSt	3 ECTS
InfoSoc	кп	2 5 55+	3 ECTS	шs	кп	1 55+	1 5 FCTS	IIS	KU	1 SSt	1.5 ECTS
mosec	NU	2.5 551	3 LC13	113	ΝŪ	1 330	1.5 LC15	RKN	KU	1 SSt	1.5 ECTS

Questions? Contact your student representation Bits or your Dean of Studies

Schedule

• 9:30–12:00 Lecture

- actually around 9:40–11:50
- 60 min lecture + 10 min break + 60 min lecture

****** 12:00–13:30

U 13:30–15:00 Practicals

- not every week
- presentation of assignments, tutorials, question time

Date	Lecture	Fri 9:30-12:00	Practicals Fri	13:30-15:00	
04.10.2019	🕰 Cryptograph	y 1 – Introduction	P1 Kick-off Tutorial		
11. 10. 2019 18. 10. 2019 25. 10. 2019	 Cryptograph Cryptograph Cryptograph 	y 2 – Symmetric Authentication y 3 – Symmetric Encryption y 4 – Asymmetric Cryptography	P1 Tutorial		
04.11.2019		, , , , , , , , , , , , , , , , , , , ,	P1 Deadline	(Monday!)	
08.11.2019	🛄 System Sec	urity 1	P2 Kick-off T	utorial	
15.11.2019 22.11.2019 29.11.2019	System Sect System Sect System Sect	urity 2 urity 3 urity 4	P2 Tutorial		
06. 12. 2019	Nikolaus Specia	al	P2 Deadline		
13.12.2019 * * *	器 Network Se	curity 1	P3 Kick-off T	utorial	
10.01.2020	뮵 Network Se	curity 2	P3 Tutorial		
17.01.2020	뮵 Network Se	curity 3			
24.01.2020	ਨੇਂਜ਼ Network Se	curity 4	P3 Deadline		
31.01.2020	Exam				

Course Goals

Understand the foundations of secure applications:

- **4** Understand which security properties crypto algorithms offer
- A Be able to choose & properly apply suitable crypto algorithms
- 😐 Know potential risks when processing data
- Detect certain vulnerabilities in implementations
- Know isolation techniques and protection mechanisms
- Handlerstand attacks and defenses for network protocols & web technologies

品 Understand security aspects on all abstraction layers of secure internet communication

Prerequisites

This course will be a lot easier if you remember stuff from

- Discrete Mathematics
- Computer Organisation / Computernetworks and -Organisation
- System-Level Programming
- Various programming practicals
 Useful for the KU: C/C++, gdb, Assembler, Java, Python,...

How do I get a grade?

Lecture (VO):

📝 Final written exam

- 90 minutes, closed-book, pen-and-paper
- Questions in English
- Answers in English or German
- 💆 First exam date: 31 Jan 2020

Practicals (KU):

- Team programming exercises
- 3 Assignments more details at 13:30!

Links

Course website:

- https://www.iaik.tugraz.at/infosec
- Slides, administrative info, links
- 👤 Newsgroup
 - Newsserver news.tugraz.at
 - graz.lv.infosec for questions, news
 - graz.lv.infosec.groupsearch to find partners for the practicals
- STicS:
 - https://stics.iaik.tugraz.at
 - Team registration

Contact & Finding Help

📩 https://www.iaik.tugraz.at/infosec

infosec@iaik.tugraz.at or the responsible lecturer

b If you need help for the exercises, try (in this order):

- Newsgroup graz.lv.infosec
- Contact the responsible teaching assistant
- Contact infosec@iaik.tugraz.at or the responsible lecturer
- This lecture is not based on a particular book, but there are many great books on information security – ask us if you need recommendations

Cryptography 1: Introduction

Maria Eichlseder

Information Security - WT 2019/20

SCIENCE PASSION TECHNOLOGY

> www.iaik.tugraz.at/infosec

Information Security

A Brief Introduction

"Sicherheit"? (1.) Safety

Adversary / Attacker

(2.) Security

Security

_

se(d) (without) + cura (care, anxiety)

freedom from anxiety

What are we anxious about?

Asset

An **asset** is anything (e.g., an information, a service, a device...) that has value to an entity (e.g., an organization or a person).

🖪 🖃 🗳 🔦 🖪 🔛 🖓 ...

- Identifying assets (precisely) is the first step of any security analysis.
- Security mechanisms often shift the problem of protecting one asset to protecting another (e.g., password)

When do we consider it "protected" or "secure"?

Security Property

A **security property** defines something that makes the asset valuable.

Main security properties:

- Confidentiality
- Integrity and Authenticity
- Availability

Some other security properties:

- Anonymity and Privacy
- Non-repudiation of origin & delivery
- Commitment
- Time-stamping
- • •

What could possibly go wrong?

Threat

×

A threat describes a potential violation of security.

The sum of all threats describes everything that can lead to a violation of a security property of the asset.

Typically threats can be grouped to hierarchical classes of a threats that form an "attack tree".

- Add protection mechanisms to minimize the threats and attack surface
- Repeat that until the risks of the remaining threats are acceptable

Something did go wrong...

Vulnerability

A **vulnerability** is a concrete flaw or weakness in a system that can be exploited by one or more threats

Preventing vulnerabilities that can be exploited by a threat:

- is not trivial :)
- Use established standardized security mechanisms and use them correctly
- Test and verify security features

Enter: The Adversary

Attack

 \bigcirc *

An **attack** is a concrete attempt to violate one of the security properties of an asset.

- Prepare for the fact that things can go wrong
- Update mechanisms, logging, tracing mechanisms

Information Security: Break the Chain

Asset + Security Properties 🗢 Threat 🗢 Vulnerability 🕶 Attack

A Brief Introduction

Cryptography – The mathematical backbone of information security

Cryptography – What's inside the padlock?

Secure Communication

Kerckhoffs' principleAlgorithms \mathcal{E}, \mathcal{D} public–Security based on keys K_E, K_D

Basic terminology

- Entities / parties: Alice and Bob
- Adversary: Eve
- Plaintext / message: M
- Ciphertext: C
- 𝒫 Keys: K_E, K_D
- \clubsuit Cryptographic primitive & scheme (cipher): \mathcal{E}, \mathcal{D}
- Cryptographic protocol: How to use the primitives

Historical examples

This basic scenario reflects the typical historical (usually military) context:

Scytale cipher (Sparta)

Caesar cipher (Rome)

Vigenère cipher (16th century Italy)

Enigma machine (1920s–1940s, Nazi Germany)

The Vernam Scheme (One-Time Pad)

- M, C, K are strings of length N over the alphabet $\{0, 1, \dots, L-1\}$
- each key character is randomly generated and used only once
- Encryption:

$$C_i = M_i + K_i \mod L$$
 $i = 1, \ldots, N$

Symmetric encryption with perfect secrecy!

Perfect secrecy

- Given an intercepted ciphertext QUIZZ:
 - The key 16-5-19-14-21 decrypts it to the message APPLE
 - The key 5-16-22-11-12 decrypts it to the message LEMON
 - ...

- For all 5-character words, there is a key that decrypts QUIZZ to that word.
- The ciphertext gives no information about the message

Why other encryption primitives ?

Long keys are impractical

How to generate, exchange, store, access, authenticate, ...?

- Protecting the new asset (= long key) isn't much easier than the original one (= message)
- → Purpose of encryption primitives:
 - ▲ Provide real-world (non-perfect) secrecy
 - **♀** Using a key as small as possible
 - 📽 With an algorithm as fast as possible

In the 1970s: The dawn of modern cryptography

- Before 1970s, cryptography is the domain of military & intelligence agencies
- In the 1970s, commercial applications for everyone emerge
- Triggers many innovations in open cryptographic research
 - "Open-source" symmetric crypto to protect everyone's communication
 - Asymmetric crypto to establish new communication channels
- Cryptography research is moving on, but 1970s crypto is still everywhere!
 - DES/3DES block cipher, MD hashing, DH key exchange, RSA signatures, ...

Modern crypto algorithm: two families

Symmetric (secret-key) cryptography

- the secret key is shared and known by Bob and Alice alone
- sender and receiver can be interchanged (insider/outsider view)

Asymmetric (public-key) cryptography

- Bob and Alice use different keys
- public keys and private keys (known only by owner user-centric view)
- enables advanced protocols, but primitives more difficult to design (?)

Cryptographic primitives

- Somehow, we need to turn a bunch of simple CPU instructions into a magic box with "unpredictable" behaviour that provides a defined security level
- The cryptographic primitive is where this magic happens
- Processes fixed-size inputs, specification is public
- Not meaningful to use by itself, needs a scheme
- Examples: AES block cipher, RSA trapdoor one-way function

Cryptographic security

66 77

"When I use a word," Humpty Dumpty said, in rather a scornful tone, *"it means just what I choose it to mean – neither more nor less."*

Security proof: A proof of some property, not a guarantee of security

3 Shades of "security" in cryptography

- 1. Information-theoretic: unconditional, perfect security
- 2. Complexity-theoretic: reduce security to "hard" problems
- 3. Cryptanalytical: secure against state-of-the-art cryptanalysis

Attacks - What does the Adversary want?

Confidentiality break:

Read secret messages?

Authenticity break:

Forge a ciphertext or signature?

• Full break: Recover the key?

Attacks - What are the Adversary's abilities?

Ciphertext-only attack?

Known-plaintext attack?

Chosen-plaintext attack?

Chosen-ciphertext attack?

Attacks - What can the Adversary exploit?

Black-box attack:

Exploit only the interface?

- Dedicated black-box attack:
 Exploit the specification of the algorithm?
- Gray-box attack:

Cheat with side-channels, faults, ...?

Conclusion

- Information security protects assets against adversaries
 - Break the chain: Security Property • Threat • Vulnerability • Attack
- Cryptography is the mathematical foundation of secure communication
 - Algorithms to transform data so it can be sent over untrusted channels
 - Creates a new asset: the key

Lecture Outlook - October

C2 – Symmetric Authentication

- Goal: Integrity
- Hash functions
- Message Authentication Codes (MACs)
- Useful primitives

C3 – Symmetric Encryption

Goal: Confidentiality

Q.,

- (Authenticated) Encryption (AEAD)
- Construction of a primitive

C4 – Asymmetric Cryptography

- Goal: Establishing authentic communication
- Key exchange
- Signatures
 - Asymmetric primitives

Questions for You

- Assets?
- Threats?
- (Potential) vulnerabilities?
- (Potential) attacks?

Questions for You

- What are the advantages of "open-source" crypto specifications (Kerckhoffs' principle)? Disadvantages?
- What is a cryptographic key?What's the key size and how is it relevant?
- What are some notions of cryptographic security?

