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Many attacks work on shared resources, often on the same computer – but what else can we attack?
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Let's go for the internet connection! It is shared in the sense that the attacker's traffic travels over it, just like benign traffic.



Demo: Network Traffic Depends on Activity



speedometer -r enp0s31f6 -i 0.05 and open some websites



isec.tugraz.atWebsite Fingerprinting

Every website causes a characteristic traffic pattern – a fingerprint:

Hintz, 2003 [Hin03]: asset transfer sizes

Panchenko et al. , 2011 [Pan+11]: packet sizes, directions, order

Rimmer et al. , 2017 [Rim+17]: traffic shape (packet sizes, directions, timings), CNN
classifier

. . .

→ attacker-in-the-middle, mostly used against privacy-enhancing tunnels
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isec.tugraz.atVideo Fingerprinting

Which video segment uses more bandwidth?

https://www.youtube.com/watch?v=LNI8rnxxVvQ

4 Stefan Gast

https://www.youtube.com/watch?v=LNI8rnxxVvQ
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Dynamic Adaptive Streaming over HTTP (DASH) [ISO22]

usually encrypted

split video into segments with a few seconds duration

send segments on demand

segment durations and sizes depend on content

→ fingerprint!
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isec.tugraz.atVideo Fingerprinting

Reed and Kranch, 2017 [RK17]: Netflix

Schuster et al. , 2017 [SST17]: YouTube, Netflix, Amazon, Vimeo

Gu et al. , 2018 [Gu+18]: self-hosted DASH server

. . .

→ attacker-in-the-middle or with JavaScript
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isec.tugraz.atOther Traffic Analysis Attacks

SSH keystroke timings [SWT01]

deanonymization of Tor users [RSG98; AYR15; Wan+11]

language [Wri+07] and phonemes [Whi+11] of VoIP calls

other privacy-critical information [Che+10; LM18]
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SnailLoad: Remote Traffic Analysis via
TCP [Gas+24]



Some of you probably know the
effect. . .



Who plays online games? What happens when you download something in parallel?



isec.tugraz.atInternet Access Technologies

DSL, Fiber, LTE, 5G: different throughput

backbone connection has orders of magnitude higher throughput

→ buffering before last mile is necessary!
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isec.tugraz.atPacket Buffering

Figure 1: Connection idle Figure 2: Connection busy

...

Figure 3: Bufferbloat
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isec.tugraz.atNetwork Activity Causes Latency Spikes
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Figure 4: Same machine pinging 8.8.8.8
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Figure 5: Different machine sharing the same internet connection pinging 8.8.8.8
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50 ms ping interval



Google start page is simpler than Amazon's, so the spike is more subtle  Shape of the spike(s) possibly enable classification
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Measuring ping times from a different computer on the same connection yields same results  Effect is caused by the internet connection
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If we have a download from a fast server – how much does the latency increase?
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Depends on the internet connection – on some it increases quite a lot…
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…on some the effect is more subtle, but still easily observable
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…on some the effect is more subtle, but still easily observable



Visiting a website or buffering a video basically triggers short downloads (of HTML, JavaScript, CSS, Images, in case of websites, video segments in case of videos) – also: modern websites are quite large



isec.tugraz.atAttack Setup

YouTube
fast

ISP
Endpoint

Victim’s
Gateway

Victim’s
Computer

Various scenarios: Compromised websites, malicious ads, emails, and more

Different ways attackers can exploit network traffic to perform attacks
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Remember: The victim's internet connection forms a bottleneck – activity on the connection is observable as increased round-trip times
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Benign-looking server offers a download, infers round-trip times from TCP Acknowledgments
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isec.tugraz.atPolling the Server’s Send Buffer To Measure RTTs

begin
acked← false;
start← get_current_time();
send(sock, b, 1, 0);
repeat

if ioctl(sock, SIOCOUTQ)= 0 then
acked← true;

end
until acked;
end← get_current_time();
return end− start;

end

13 Stefan Gast



Attackers can measure round-trip times on their server from TCP-ACKs. This does not even require extra privileges (think of a cheap webhoster where you might not have root access).
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We have not yet sent the packet, so set acked to false. We're interested in the time the code takes, so get the start time.
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Now send a small fraction of the data requested by the victim. Here, we send each byte in a separate TCP packet, but we could also do more. send returns immediately after storing the data in the send buffer of the socket.
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Now wait until the enqueued data is removed from the send buffer and the buffer is empty again. This happens, as soon as the server receives a TCP ACK for the data.
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After that, just obtain the end time and return the difference. Repeat this in fixed time slices for every part of the transferred file to obtain a nice trace over time.









isec.tugraz.atFingerprinting with Machine Learning

use machine learning to analyze
network traffic and infer user actions

pre-process traces with an STFT

KERAS (Tensorflow)

Table 1: CNN Parameters

Type Parameters Activation

Conv2D filters=32, kernel
size=[5,5], strides=[1,1]

ReLU

MaxPooling2D pool size=[2,2],
strides=[2,2]

-

Conv2D filters=64, kernel
size=[3,3], strides=[1,1]

ReLU

MaxPooling2D pool size=[2,2],
strides=[2,2]

-

Conv2D filters=128, kernel
size=[3,3], strides=[1,1]

ReLU

MaxPooling2D pool size=[2,2],
strides=[2,2]

-

Flatten - -
Dense output size=1024 ReLU
Dense output size=512 ReLU
Dense output size=10 Softmax
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isec.tugraz.atHow large does the website have to be?
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isec.tugraz.atVideo Fingerprinting on 10 different connections
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Evaluated on 10 internet connections, F1 scores ranging from 37 % on a 150 Mbit/s FTTB connection (2nd line, 2nd column) to 98 % on a 80 Mbit/s FTTH connection (1st line, 3rd column).
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50 Mbit/s ADSL connection, F1 = 62.8 %
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Trained on 50 Mbit/s ADSL, applied to 80 Mbit/s FTTH, F1 = 40 %
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isec.tugraz.atImpact of Noise on Website Fingerprinting
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left, no noise: F1 = 77 % middle, training and test data noisy: F1 = 15 % right, only test data noisy: random guessing – Seems like some form of noise can help…



isec.tugraz.atContext, Impact, Disclosure

SnailLoad is a generic problem of heterogenous networks (with different throughputs)

Many “remote” attacks can now be transformed to truly remote attacks

We disclosed to Google / YouTube

they investigated the issue for several weeks
concluded that it is a generic problem
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isec.tugraz.atTake Aways

Any connection to a remote server can obtain high-resolution traces of your activity

Traces can leak websites and videos watched

Throughput difference is the root cause→ not trivial to fix

Paper + Demo: https://snailload.com

24 Stefan Gast
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