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Motivation

• So you know side-channel attacks on the CPU Cache:

• Flush+Reload

• Flush+Flush

• Prime+Probe

• Why do these attacks work?

• Attacker and victim: share the CPU cache

2 / 22



The Operating System’s Page Cache

• Managed by operating system

• Buffers pages in RAM for faster accesses

• Behaves as a fully-associative cache

• State of pages is tracked:

• No write access → clean → no write back

• Write access → dirty → write back

• Implemented by all major operating systems
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You don’t even need to time it! [4]

mincore (2.04µs) — Linux syscall

• Takes virtual memory range, returns vector (man 2

mincore), introduced in 2000 [5]

• Indicates presence of queried pages in page cache
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You don’t even need to time it! [4]

QueryWorkingSetEx (465.91 ns) — Windows API

• Takes process handle + virtual memory address, returns

struct

• Exposes attributes of queried page ...

• ... presence in working set

• ... number of working sets containing page

(ShareCount)
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Attacks on Firefox [4]

• Threat model: cross-user

• Executable and shared libraries: shared across users

• Firefox executable: 1.1 MB; ∼280 pages:

• Pages 54, 55: New browser window

• libmozavcodec.so: 3.8 MB; ∼975 pages:

• Pages 0 to 416: YouTube (streaming webm)

• Pages 64 to 80, 240 to 256: ? (streaming mp4)

• libmozavutil.so: 604 KB; ∼150 pages:

• Pages 0 to 23: Media sites — Facebook, YouTube

• libxul.so: 146 MB! ∼37 350 pages!
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Limitations

• Eviction is not easy

• Fully-associative cache: memory should be completely filled

before eviction starts

• Try to reduce free memory in system with malloc and

mlock

• Linux eviction: 149ms

• Kernel may read 32 pages ahead for optimization —

read-ahead mechanism: more noisy for timing-based tests

• mincore syscall mitigated in 2019 [2, 3]
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Attacks Across Docker Containers [1]

• Threat model: cross-container

• Containers use OverlayFS (Union Mount FS): shared files

• Use mincore [4] to determine page cache residency

• Detect successful login attempts into MySql
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Another vector to Leak Page Cache Residence [6] (2023)

• preadv2 syscall: “read data into multiple buffers”

• RWF NOWAIT flag: “Do not wait for data which is not immediately

available”

• Overcoming read-ahead: madvise with MADV RANDOM flag to “expect

page references in random order”

• Chrome browser (2017-2022): information of key events (“KeyA”, “KeyB”)

in different pages due to linker optimizations

• Evict target file, use preadv2 to determine keypress
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