Side-Channel Security

Chapter 8: Side-Channel Attacks on The OS Page Cache

Sudheendra Neela
April 3, 2025

Graz University of Technology

1/22



e So you know side-channel attacks on the CPU Cache:
e Flush+Reload

o e Flush+Flush
@ e Prime+Probe
L o) :ﬂ;
. e Why do these attacks work?

e Attacker and victim: share the CPU cache
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The Operating System’s Page Cache

Managed by operating system

Buffers pages in RAM for faster accesses

Behaves as a fully-associative cache

ol

State of pages is tracked:

.

e No write access — clean — no write back
e Write access — dirty — write back

Implemented by all major operating systems /~ 1]
p y J p g sy \& ..
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Page Cache Attacks [4]
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Page Cache Attacks [4]
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Page Cache Attacks [4]
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Page Cache Attacks [4]
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Page Cache Attacks [4]
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Page Cache Attacks [4]
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Page Cache Attacks [4]
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Page Cache Attacks [4]
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Page Cache Attacks [4]
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Page Cache Attacks [4]
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Page Cache Attacks [4]
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You don’t

even need to time it! [4]

mincore (2.04 us) — Linux syscall

e Takes virtual memory range, returns vector (man 2
mincore), introduced in 2000 [5]

e Indicates presence of queried pages in page cache

MINCORE(2) Linux Programmer's Manual MINCORE(2)

NAME
mincore - determine whether pages are resident in memory
SYNOPSIS

#include <unistd.h>
#include <sys/mman.h>

int mincore(void *addr, size_t length, unsigned char *vec);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mincore():
Since glibc 2.19:
_DEFAULT_SOURCE
Glibc 2.19 and earlier:
_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
mincore() returns a vector that indicates whether pages of the calling
process's virtual memory are resident in core (RAM), and so will not
cause a disk access (page fault) if referenced. The kernel returns
residency information about the pages starting at the address addr, and
continuing for length bytes.
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You don’t even need to time it! [4]

QueryWorkingSetEx (465.91 ns) — Windows API

r e Takes process handle + virtual memory address, returns
|-. struct
-

e Exposes attributes of queried page ...

e ... presence in working set

e ... number of working sets containing page
(ShareCount)
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Attacks on Firefox [4]

e Threat model: cross-user

e Executable and shared libraries: shared across users
o Firefox executable: 1.1 MB; ~280 pages:

e Pages 54, 55: New browser window
e libmozavcodec.so: 3.8 MB; ~975 pages:

e Pages 0 to 416: YouTube (streaming webm)

e Pages 64 to 80, 240 to 256: ? (streaming mp4)
e libmozavutil.so: 604 KB; ~150 pages:

e Pages 0 to 23: Media sites — Facebook, YouTube
e libxul.so: 146 MB! ~37 350 pages!
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e Eviction is not easy

e Fully-associative cache: memory should be completely filled
before eviction starts

e Try to reduce free memory in system with malloc and

mlock

e Linux eviction: 149 ms

e Kernel may read 32 pages ahead for optimization —
read-ahead mechanism: more noisy for timing-based tests

e mincore syscall mitigated in 2019 [2, 3]
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Attacks Across Docker Containers [1]

Threat model: cross-container

Containers use OverlayFS (Union Mount FS): shared files
Use mincore [4] to determine page cache residency
Detect successful login attempts into MySq|

MySQL login traces through /usr/sbin/mysqld

I successful
HEl unsuccessful
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Another vector to Leak Page Cache Residence [6] (2023)

e preadv?2 syscall: “read data into multiple buffers”

e RWE NOWATT flag: “Do not wait for data which is not immediately
available”

e Overcoming read-ahead: madvise with MADV_RANDOM flag to “expect
page references in random order”

e Chrome browser (2017-2022): information of key events (“KeyA", "KeyB")
in different pages due to linker optimizations

e Evict target file, use preadv2 to determine keypress

DOM_CODE ( _ 0 "KeyA", US_A),

DOM_CODE _ . ) "KeyB", US_B), /,
DOM_CODE( , 0 0 0 ., 0 3, "KeyC", US_C),
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