Side-Channel Security

Chapter 8: Side-Channel Attacks on The OS Page Cache

Sudheendra Neela
April 3, 2025

Graz University of Technology

1/22

e So you know side-channel attacks on the CPU Cache:
e Flush+Reload

o e Flush+Flush
@ e Prime+Probe
L o) :ﬂ;
. e Why do these attacks work?

e Attacker and victim: share the CPU cache

2 /22

The Operating System’s Page Cache

Managed by operating system

Buffers pages in RAM for faster accesses

Behaves as a fully-associative cache

ol

State of pages is tracked:

.

e No write access — clean — no write back
e Write access — dirty — write back

Implemented by all major operating systems /~ 1]
p y J p g sy \& ..

3 /22

Page Cache Attacks [4]

page cache
s

M—]
eviction#1
N RAM eviction#2
eviction#3
. gg.zgﬁ% eviction#4 -
i eviction#5 L
00.50#3 00.50#1 999
\Sfﬁ’ﬁ— 00.50#2 Attack
Victim 00.50#3 acker
Address space 00.50#4
~——

Address space

Disk
4 /22

Page Cache Attacks [4]

page cache
L

buffers foo.so#2

00)
—
[| eviction#1
RAM eviction#2
slow [F—] eviction#3
.
viction#4 a
P ' eviction#5 L)
accesses faults victiont
:
foo.so#2 A??
Victim acker
Address space
P ﬁfetches f00.50#2

Address space

Disk
5 /22

Page Cache Attacks [4]

°
3

Victim

page cache
s

M————

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

eviction#2
eviction#3
eviction#4
eviction#5
foo.so0#1

foo.so#2

| foo.50#3 |
| foo.so#4 |

foo.so#4
— —

Address space

[)
aa
o9

Attacker

6 /22

Page Cache Attacks [4]

page cache
L

00 o)
~ —
[| eviction#1
RAM eviction#2

eviction#3
‘ foo.so#3 eviction#5 / L)
foo.so#4 o9

foo.so0#1
Victim

foo.so#2
foo.so#3

| foo.so#3 |
| foo.so#4 |
 — ——

accesses Attacker
Address space

Address space

7/22

Page Cache Attacks [4]

page cache

buffers eviction#5

e
eviction#5
[|
f00.50#2
M—]
| eviction#1 slow

[
RAM Sviction# 3
. . eviction#4 -
2 < eviction#5 Il o 4
00.50 faults f0o.50#1
foo.so#4 foo.so#2 g
- Attacker
Victim Address space o :oo.so#i
fetches eviction#5 00.50# accesses
Address space
.
L)
N’
Disk

8 /22

Page Cache Attacks [4]

__ D

eviction#1 slow

page cache
buffers eviction#4 eviction#5
eviction#4
f00.50#2
[
RAM
. foo0.s0#1
foo.so#2 <
‘ foo.so#3 faults
foo.so#4

Victim Address space o
fetches eviction#4

Disk

eviction#2
ction#3

ev|
eviction#4 ~_ -
o
-4 4

eviction#5
foo.so0#1
foo.so#2
foo.so#3 Attacker

foo.so#4
accesses

Address space

9 /22

Page Cache Attacks [4]

°
3

Victim

page cache

eviction#5
eviction#4
buffers eviction#3 foo.so#2
eviction#3

__ @

eviction#1 slow

RAM

foo.so#1

foo.so#2 -

foo.so#3 - faults
foo.so#4

Address space
P ﬁfetches eviction#3

Disk

eviction#2

eviction#3
eviction#4 \ -
eviction#5 L]
foo.so0#1

\- A4

foo.so#2
foo.so#3 Attacker

foo.so#4

accesses
Address space

10 / 22

Page Cache Attacks [4]

page cache

eviction#5
eviction#4
foo.so#2
buffers eviction#2 eviction#3 ~————
D

eviction#2 slow

eviction#2
eviction#3
. foo.so#1 —
f00.50#2 @ < eviction#4 \ -
\- A4

eviction#5
‘ foo.so#3 faults foo.so0#1
foo.so#4 foo.so#2
victim f00.50#3 Attacker
Address space - f 4
fetches eviction#2 00.50# accesses
Address space
.
L)
N’
Disk

11/ 22

Page Cache Attacks [4]

page cache

eviction#5
buffers eviction#1 eviction#4
eviction#1
eviction#3 ~———"]

eviction#2 eviction#1 Q
<
o9g

eviction#2
Attacker

M—] e
eviction#3
eviction#4

eviction#5

. 00.50#1
00.50#2 <
‘@ 00.50#3 faults 00.50#1

\:’f’ﬁ’ﬁ_ 00.50#2
00.50#3

Victim
Address space .
ﬁfetches eviction#1 \SSL#“_ accesses

Address space

Disk
12 /22

Page Cache Attacks [4]

page cache

eviction#5
eviction#4
eviction#1
eviction#3
eviction#2

]
eviction#1

————] eviction#2
eviction#3
@ cosd] o
00.50#3 eviction#5 T
00.50#4 00.50#1
— —— 00.50#2 Autt uk
Victim 00.50#3 acker
Address space i

— __—
Address space

Disk
13 /22

Page Cache Attacks [4]

°
'

Victim

page cache
buffers foo.so#2

foo.so#2
eviction#4
eviction#1
eviction#3
eviction#2

foo.so#1

foo.so#2 -

f00.50#3 - faults
foo.so#4

Address space

ﬁfetches foo.so#2

Disk

@

eviction#1 slow

eviction#2

eviction#3

eviction#4 -

eviction#5 L
f00.50#1 /
foo.so#2 g
f00.50#3 Attacker

foo.so#4
accesses

Address space

14 / 22

You don’t

even need to time it! [4]

mincore (2.04 us) — Linux syscall

e Takes virtual memory range, returns vector (man 2
mincore), introduced in 2000 [5]

e Indicates presence of queried pages in page cache

MINCORE(2) Linux Programmer's Manual MINCORE(2)

NAME
mincore - determine whether pages are resident in memory
SYNOPSIS

#include <unistd.h>
#include <sys/mman.h>

int mincore(void *addr, size_t length, unsigned char *vec);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mincore():
Since glibc 2.19:
_DEFAULT_SOURCE
Glibc 2.19 and earlier:
_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
mincore() returns a vector that indicates whether pages of the calling
process's virtual memory are resident in core (RAM), and so will not
cause a disk access (page fault) if referenced. The kernel returns
residency information about the pages starting at the address addr, and
continuing for length bytes.

15 / 22

You don’t even need to time it! [4]

QueryWorkingSetEx (465.91 ns) — Windows API

r e Takes process handle + virtual memory address, returns
|-. struct
-

e Exposes attributes of queried page ...

e ... presence in working set

e ... number of working sets containing page
(ShareCount)

16 / 22

Attacks on Firefox [4]

e Threat model: cross-user

e Executable and shared libraries: shared across users
o Firefox executable: 1.1 MB; ~280 pages:

e Pages 54, 55: New browser window
e libmozavcodec.so: 3.8 MB; ~975 pages:

e Pages 0 to 416: YouTube (streaming webm)

e Pages 64 to 80, 240 to 256: ? (streaming mp4)
e libmozavutil.so: 604 KB; ~150 pages:

e Pages 0 to 23: Media sites — Facebook, YouTube
e libxul.so: 146 MB! ~37 350 pages!

17 / 22

e Eviction is not easy

e Fully-associative cache: memory should be completely filled
before eviction starts

e Try to reduce free memory in system with malloc and

mlock

e Linux eviction: 149 ms

e Kernel may read 32 pages ahead for optimization —
read-ahead mechanism: more noisy for timing-based tests

e mincore syscall mitigated in 2019 [2, 3]

18 / 22

Attacks Across Docker Containers [1]

Threat model: cross-container

Containers use OverlayFS (Union Mount FS): shared files
Use mincore [4] to determine page cache residency
Detect successful login attempts into MySq|

MySQL login traces through /usr/sbin/mysqld

I successful
HEl unsuccessful

4000 6000 8000 10000 12000 14000
Relative Page Number

—_
o

Pr(z present]
(e
ot

o
o

19 / 22

Another vector to Leak Page Cache Residence [6] (2023)

e preadv?2 syscall: “read data into multiple buffers”

e RWE NOWATT flag: “Do not wait for data which is not immediately
available”

e Overcoming read-ahead: madvise with MADV_RANDOM flag to “expect
page references in random order”

e Chrome browser (2017-2022): information of key events (“KeyA", "KeyB")
in different pages due to linker optimizations

e Evict target file, use preadv2 to determine keypress

DOM_CODE (_ 0 "KeyA", US_A),

DOM_CODE _ .) "KeyB", US_B), /,
DOM_CODE(, 0 0 0 ., 0 3, "KeyC", US_C),

20/ 22

Side-Channel Security

Chapter 8: Side-Channel Attacks on The OS Page Cache

Sudheendra Neela
April 3, 2025

Graz University of Technology

21/ 22

References

[1] Boskov, N., Radami, N., Tiwari, T., and Trachtenberg, A. (2022). Union
Buster: A Cross-Container Covert-Channel Exploiting Union Mounting. In
International Symposium on Cyber Security, Cryptology, and Machine
Learning.

[2] Corbet, J. (2019a). Defending against page-cache attacks.

[3] Corbet, J. (2019b). Fixing page-cache side channels, second attempt.

[4] Gruss, D., Kraft, E., Tiwari, T., Schwarz, M., Trachtenberg, A., Hennessey,
J., lonescu, A., and Fogh, A. (2019). Page cache attacks. In CCS.
[5] Lever, C. (2000). [patch] madvise() against 2.3.52-3.

[6] Schwarzl, M., Kraft, E., and Gruss, D. (2023). Layered Binary Templating. In
ACNS.

22 /22

