
Side-Channel Security

Chapter 8: Side-Channel Attacks on The OS Page Cache

Sudheendra Neela

April 3, 2025

Graz University of Technology

1 / 22



Motivation

• So you know side-channel attacks on the CPU Cache:

• Flush+Reload

• Flush+Flush

• Prime+Probe

• Why do these attacks work?

• Attacker and victim: share the CPU cache

2 / 22



The Operating System’s Page Cache

• Managed by operating system

• Buffers pages in RAM for faster accesses

• Behaves as a fully-associative cache

• State of pages is tracked:

• No write access → clean → no write back

• Write access → dirty → write back

• Implemented by all major operating systems

3 / 22



Page Cache Attacks [4]

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

4 / 22



Page Cache Attacks [4]

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

foo.so#2

faults

fetches foo.so#2

buffers foo.so#2

accesses

slow

5 / 22



Page Cache Attacks [4]

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

foo.so#2

6 / 22



Page Cache Attacks [4]

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

foo.so#2

accesses

fast

7 / 22



Page Cache Attacks [4]

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

foo.so#2

eviction#5

accessesfetches eviction#5

buffers eviction#5

faults

slow

8 / 22



Page Cache Attacks [4]

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

eviction#4
foo.so#2

eviction#5

accessesfetches eviction#4

buffers eviction#4

faults

slow

9 / 22



Page Cache Attacks [4]

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

eviction#4
foo.so#2

eviction#3

eviction#5

accessesfetches eviction#3

buffers eviction#3

faults

slow

10 / 22



Page Cache Attacks [4]

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

eviction#4
foo.so#2

eviction#3
eviction#2

eviction#5

accessesfetches eviction#2

buffers eviction#2

faults

slow

11 / 22



Page Cache Attacks [4]

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

eviction#4
eviction#1
eviction#3
eviction#2

eviction#5

accessesfetches eviction#1

buffers eviction#1

faults

slow

12 / 22



Page Cache Attacks [4]

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

eviction#4
eviction#1
eviction#3
eviction#2

eviction#5

13 / 22



Page Cache Attacks [4]

OS

Disk

Victim Attacker

Address space

foo.so#2
foo.so#1

foo.so#3
foo.so#4

eviction#2
eviction#3
eviction#4
eviction#5

eviction#1

foo.so#1
foo.so#2
foo.so#3
foo.so#4

Address space

RAM

page cache

eviction#4
eviction#1
eviction#3
eviction#2

foo.so#2

accessesfetches foo.so#2

buffers foo.so#2

faults

slow

14 / 22



You don’t even need to time it! [4]

mincore (2.04µs) — Linux syscall

• Takes virtual memory range, returns vector (man 2

mincore), introduced in 2000 [5]

• Indicates presence of queried pages in page cache

15 / 22



You don’t even need to time it! [4]

QueryWorkingSetEx (465.91 ns) — Windows API

• Takes process handle + virtual memory address, returns

struct

• Exposes attributes of queried page ...

• ... presence in working set

• ... number of working sets containing page

(ShareCount)

16 / 22



Attacks on Firefox [4]

• Threat model: cross-user

• Executable and shared libraries: shared across users

• Firefox executable: 1.1 MB; ∼280 pages:

• Pages 54, 55: New browser window

• libmozavcodec.so: 3.8 MB; ∼975 pages:

• Pages 0 to 416: YouTube (streaming webm)

• Pages 64 to 80, 240 to 256: ? (streaming mp4)

• libmozavutil.so: 604 KB; ∼150 pages:

• Pages 0 to 23: Media sites — Facebook, YouTube

• libxul.so: 146 MB! ∼37 350 pages!

17 / 22



Limitations

• Eviction is not easy

• Fully-associative cache: memory should be completely filled

before eviction starts

• Try to reduce free memory in system with malloc and

mlock

• Linux eviction: 149ms

• Kernel may read 32 pages ahead for optimization —

read-ahead mechanism: more noisy for timing-based tests

• mincore syscall mitigated in 2019 [2, 3]

18 / 22



Attacks Across Docker Containers [1]

• Threat model: cross-container

• Containers use OverlayFS (Union Mount FS): shared files

• Use mincore [4] to determine page cache residency

• Detect successful login attempts into MySql

19 / 22



Another vector to Leak Page Cache Residence [6] (2023)

• preadv2 syscall: “read data into multiple buffers”

• RWF NOWAIT flag: “Do not wait for data which is not immediately

available”

• Overcoming read-ahead: madvise with MADV RANDOM flag to “expect

page references in random order”

• Chrome browser (2017-2022): information of key events (“KeyA”, “KeyB”)

in different pages due to linker optimizations

• Evict target file, use preadv2 to determine keypress

20 / 22



Side-Channel Security

Chapter 8: Side-Channel Attacks on The OS Page Cache

Sudheendra Neela

April 3, 2025

Graz University of Technology

21 / 22



References

[1] Boskov, N., Radami, N., Tiwari, T., and Trachtenberg, A. (2022). Union

Buster: A Cross-Container Covert-Channel Exploiting Union Mounting. In

International Symposium on Cyber Security, Cryptology, and Machine

Learning.

[2] Corbet, J. (2019a). Defending against page-cache attacks.

[3] Corbet, J. (2019b). Fixing page-cache side channels, second attempt.

[4] Gruss, D., Kraft, E., Tiwari, T., Schwarz, M., Trachtenberg, A., Hennessey,

J., Ionescu, A., and Fogh, A. (2019). Page cache attacks. In CCS.

[5] Lever, C. (2000). [patch] madvise() against 2.3.52-3.

[6] Schwarzl, M., Kraft, E., and Gruss, D. (2023). Layered Binary Templating. In

ACNS.
22 / 22


