
Side-Channel Security

Chapter 4: Transient-Execution Attacks - Meltdown, Spectre & More

Daniel Gruss

March 20, 2025

Graz University of Technology

Vulnerability Assessment www.tugraz.at

• Meltdown[4] and Spectre [2] are two CPU vulnerabilities

• Discovered in 2017 by 4 independent teams

• Due to an embargo, released at the beginning of 2018

• News coverage followed by a lot of panic

1 Daniel Gruss — Graz University of Technology

Vulnerability Assessment www.tugraz.at

• Meltdown[4] and Spectre [2] are two CPU vulnerabilities

• Discovered in 2017 by 4 independent teams

• Due to an embargo, released at the beginning of 2018

• News coverage followed by a lot of panic

1 Daniel Gruss — Graz University of Technology

Vulnerability Assessment www.tugraz.at

• Meltdown[4] and Spectre [2] are two CPU vulnerabilities

• Discovered in 2017 by 4 independent teams

• Due to an embargo, released at the beginning of 2018

• News coverage followed by a lot of panic

1 Daniel Gruss — Graz University of Technology

Vulnerability Assessment www.tugraz.at

• Meltdown[4] and Spectre [2] are two CPU vulnerabilities

• Discovered in 2017 by 4 independent teams

• Due to an embargo, released at the beginning of 2018

• News coverage followed by a lot of panic

1 Daniel Gruss — Graz University of Technology

Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic

• Which CPUs/vendors are affected?

• Are smartphones/IoT devices affected?

• Can the vulnerabilities be exploited remotely?

• What data is at risk?

• How hard is it to exploit the vulnerabilities?

• Is it already exploited?

2 Daniel Gruss — Graz University of Technology

Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic

• Which CPUs/vendors are affected?

• Are smartphones/IoT devices affected?

• Can the vulnerabilities be exploited remotely?

• What data is at risk?

• How hard is it to exploit the vulnerabilities?

• Is it already exploited?

2 Daniel Gruss — Graz University of Technology

Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic

• Which CPUs/vendors are affected?

• Are smartphones/IoT devices affected?

• Can the vulnerabilities be exploited remotely?

• What data is at risk?

• How hard is it to exploit the vulnerabilities?

• Is it already exploited?

2 Daniel Gruss — Graz University of Technology

Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic

• Which CPUs/vendors are affected?

• Are smartphones/IoT devices affected?

• Can the vulnerabilities be exploited remotely?

• What data is at risk?

• How hard is it to exploit the vulnerabilities?

• Is it already exploited?

2 Daniel Gruss — Graz University of Technology

Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic

• Which CPUs/vendors are affected?

• Are smartphones/IoT devices affected?

• Can the vulnerabilities be exploited remotely?

• What data is at risk?

• How hard is it to exploit the vulnerabilities?

• Is it already exploited?

2 Daniel Gruss — Graz University of Technology

Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic

• Which CPUs/vendors are affected?

• Are smartphones/IoT devices affected?

• Can the vulnerabilities be exploited remotely?

• What data is at risk?

• How hard is it to exploit the vulnerabilities?

• Is it already exploited?

2 Daniel Gruss — Graz University of Technology

Let’s try to clarify these questions

Hardware Isolation www.tugraz.at

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

• There is only a well-defined

interface → syscalls

Userspace Kernelspace

Applications
Operating
System Memory

3 Daniel Gruss — Graz University of Technology

Hardware Isolation www.tugraz.at

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

• There is only a well-defined

interface → syscalls

Userspace Kernelspace

Applications
Operating
System Memory

3 Daniel Gruss — Graz University of Technology

Hardware Isolation www.tugraz.at

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

• There is only a well-defined

interface → syscalls

Userspace Kernelspace

Applications
Operating
System Memory

3 Daniel Gruss — Graz University of Technology

Hardware Isolation www.tugraz.at

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

• There is only a well-defined

interface → syscalls

Userspace Kernelspace

Applications
Operating
System Memory

3 Daniel Gruss — Graz University of Technology

Meltdown Briefing www.tugraz.at

• Breaks isolation between

applications and kernel

• User applications can access kernel

addresses

• Entire physical memory is mapped

in the kernel

→ Meltdown can read whole DRAM

4 Daniel Gruss — Graz University of Technology

Meltdown Briefing www.tugraz.at

• Breaks isolation between

applications and kernel

• User applications can access kernel

addresses

• Entire physical memory is mapped

in the kernel

→ Meltdown can read whole DRAM

4 Daniel Gruss — Graz University of Technology

Meltdown Briefing www.tugraz.at

• Breaks isolation between

applications and kernel

• User applications can access kernel

addresses

• Entire physical memory is mapped

in the kernel

→ Meltdown can read whole DRAM

4 Daniel Gruss — Graz University of Technology

Meltdown Briefing www.tugraz.at

• Breaks isolation between

applications and kernel

• User applications can access kernel

addresses

• Entire physical memory is mapped

in the kernel

→ Meltdown can read whole DRAM

4 Daniel Gruss — Graz University of Technology

Meltdown Requirements www.tugraz.at

• Only on Intel CPUs and some ARMs (e.g. Cortex

A15,A57,A72,A75)

• AMD and other ARMs seem to be unaffected

• Common cause: permission check done in parallel to load

instruction

• Race condition between permission check and dependent

operation(s)

5 Daniel Gruss — Graz University of Technology

Meltdown Requirements www.tugraz.at

• Only on Intel CPUs and some ARMs (e.g. Cortex

A15,A57,A72,A75)

• AMD and other ARMs seem to be unaffected

• Common cause: permission check done in parallel to load

instruction

• Race condition between permission check and dependent

operation(s)

5 Daniel Gruss — Graz University of Technology

Meltdown Requirements www.tugraz.at

• Only on Intel CPUs and some ARMs (e.g. Cortex

A15,A57,A72,A75)

• AMD and other ARMs seem to be unaffected

• Common cause: permission check done in parallel to load

instruction

• Race condition between permission check and dependent

operation(s)

5 Daniel Gruss — Graz University of Technology

Meltdown Requirements www.tugraz.at

• Only on Intel CPUs and some ARMs (e.g. Cortex

A15,A57,A72,A75)

• AMD and other ARMs seem to be unaffected

• Common cause: permission check done in parallel to load

instruction

• Race condition between permission check and dependent

operation(s)

5 Daniel Gruss — Graz University of Technology

Meltdown Variant Requirements www.tugraz.at

• Meltdown variant: read privileged registers

• Limited to some registers, no memory content

• Reported by ARM

• Affects some ARMs (Cortex A15, A57, and A72)

6 Daniel Gruss — Graz University of Technology

Meltdown Variant Requirements www.tugraz.at

• Meltdown variant: read privileged registers

• Limited to some registers, no memory content

• Reported by ARM

• Affects some ARMs (Cortex A15, A57, and A72)

6 Daniel Gruss — Graz University of Technology

Meltdown Variant Requirements www.tugraz.at

• Meltdown variant: read privileged registers

• Limited to some registers, no memory content

• Reported by ARM

• Affects some ARMs (Cortex A15, A57, and A72)

6 Daniel Gruss — Graz University of Technology

Meltdown Variant Requirements www.tugraz.at

• Meltdown variant: read privileged registers

• Limited to some registers, no memory content

• Reported by ARM

• Affects some ARMs (Cortex A15, A57, and A72)

6 Daniel Gruss — Graz University of Technology

Meltdown Exploitability www.tugraz.at

• Meltdown requires code execution on the device (e.g. Apps)

• Untrusted code can read entire memory of device

• Cannot be triggered remotely

• Proof-of-concept code available online

• No info about environment required → easy to reproduce

7 Daniel Gruss — Graz University of Technology

Meltdown Exploitability www.tugraz.at

• Meltdown requires code execution on the device (e.g. Apps)

• Untrusted code can read entire memory of device

• Cannot be triggered remotely

• Proof-of-concept code available online

• No info about environment required → easy to reproduce

7 Daniel Gruss — Graz University of Technology

Meltdown Exploitability www.tugraz.at

• Meltdown requires code execution on the device (e.g. Apps)

• Untrusted code can read entire memory of device

• Cannot be triggered remotely

• Proof-of-concept code available online

• No info about environment required → easy to reproduce

7 Daniel Gruss — Graz University of Technology

Meltdown Exploitability www.tugraz.at

• Meltdown requires code execution on the device (e.g. Apps)

• Untrusted code can read entire memory of device

• Cannot be triggered remotely

• Proof-of-concept code available online

• No info about environment required → easy to reproduce

7 Daniel Gruss — Graz University of Technology

Meltdown Exploitability www.tugraz.at

• Meltdown requires code execution on the device (e.g. Apps)

• Untrusted code can read entire memory of device

• Cannot be triggered remotely

• Proof-of-concept code available online

• No info about environment required → easy to reproduce

7 Daniel Gruss — Graz University of Technology

Spectre Briefing www.tugraz.at

• Mistrains branch prediction

• CPU speculatively executes code which should not be executed

• Can also mistrain indirect calls

→ Spectre “convinces” program to execute code

8 Daniel Gruss — Graz University of Technology

Spectre Briefing www.tugraz.at

• Mistrains branch prediction

• CPU speculatively executes code which should not be executed

• Can also mistrain indirect calls

→ Spectre “convinces” program to execute code

8 Daniel Gruss — Graz University of Technology

Spectre Briefing www.tugraz.at

• Mistrains branch prediction

• CPU speculatively executes code which should not be executed

• Can also mistrain indirect calls

→ Spectre “convinces” program to execute code

8 Daniel Gruss — Graz University of Technology

Spectre Briefing www.tugraz.at

• Mistrains branch prediction

• CPU speculatively executes code which should not be executed

• Can also mistrain indirect calls

→ Spectre “convinces” program to execute code

8 Daniel Gruss — Graz University of Technology

Spectre Requirements www.tugraz.at

• On Intel and AMD CPUs

• Some ARMs (Cortex R and Cortex A) are also affected

• Common cause: speculative execution of branches

• Speculative execution leaves microarchitectural traces which leak

secret

9 Daniel Gruss — Graz University of Technology

Spectre Requirements www.tugraz.at

• On Intel and AMD CPUs

• Some ARMs (Cortex R and Cortex A) are also affected

• Common cause: speculative execution of branches

• Speculative execution leaves microarchitectural traces which leak

secret

9 Daniel Gruss — Graz University of Technology

Spectre Requirements www.tugraz.at

• On Intel and AMD CPUs

• Some ARMs (Cortex R and Cortex A) are also affected

• Common cause: speculative execution of branches

• Speculative execution leaves microarchitectural traces which leak

secret

9 Daniel Gruss — Graz University of Technology

Spectre Requirements www.tugraz.at

• On Intel and AMD CPUs

• Some ARMs (Cortex R and Cortex A) are also affected

• Common cause: speculative execution of branches

• Speculative execution leaves microarchitectural traces which leak

secret

9 Daniel Gruss — Graz University of Technology

Spectre Exploitability www.tugraz.at

• Spectre (typically) requires code execution on the device (e.g.

Apps)

• Untrusted code can convince trusted code to reveal secrets

• Can be triggered remotely (e.g. in the browser, NetSpectre)

• Proof-of-concept code available online

• Info about environment required → hard to reproduce

10 Daniel Gruss — Graz University of Technology

Spectre Exploitability www.tugraz.at

• Spectre (typically) requires code execution on the device (e.g.

Apps)

• Untrusted code can convince trusted code to reveal secrets

• Can be triggered remotely (e.g. in the browser, NetSpectre)

• Proof-of-concept code available online

• Info about environment required → hard to reproduce

10 Daniel Gruss — Graz University of Technology

Spectre Exploitability www.tugraz.at

• Spectre (typically) requires code execution on the device (e.g.

Apps)

• Untrusted code can convince trusted code to reveal secrets

• Can be triggered remotely (e.g. in the browser, NetSpectre)

• Proof-of-concept code available online

• Info about environment required → hard to reproduce

10 Daniel Gruss — Graz University of Technology

Spectre Exploitability www.tugraz.at

• Spectre (typically) requires code execution on the device (e.g.

Apps)

• Untrusted code can convince trusted code to reveal secrets

• Can be triggered remotely (e.g. in the browser, NetSpectre)

• Proof-of-concept code available online

• Info about environment required → hard to reproduce

10 Daniel Gruss — Graz University of Technology

Spectre Exploitability www.tugraz.at

• Spectre (typically) requires code execution on the device (e.g.

Apps)

• Untrusted code can convince trusted code to reveal secrets

• Can be triggered remotely (e.g. in the browser, NetSpectre)

• Proof-of-concept code available online

• Info about environment required → hard to reproduce

10 Daniel Gruss — Graz University of Technology

Background

Out-of-order Execution

Wait for an hour

Wait for an hour

LATENCY

Parallelize
D

ep
en

de
nc

y

Out-of-order Execution www.tugraz.at

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);

11 Daniel Gruss — Graz University of Technology

Out-of-order Execution www.tugraz.at

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);

11 Daniel Gruss — Graz University of Technology

Out-of-order execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

• Instructions are fetched and decoded in the front-end

• Instructions are dispatched to the backend

• Instructions are processed by individual execution units

12 Daniel Gruss — Graz University of Technology

Out-of-order execution www.tugraz.at

E
xe

cu
tio

n
E

ng
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,A

E
S,

..
.

A
L

U
,F

M
A

,.
..

A
L

U
,V

ec
t,

..
.

A
L

U
,B

ra
nc

h

L
oa

d
da

ta

L
oa

d
da

ta

St
or

e
da

ta

A
G

U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

or
y

Su
bs

ys
te

m Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

Fr
on

te
nd

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

• Instructions are executed out-of-order

• Instructions wait until their dependencies are ready

• Later instructions might execute prior earlier instructions

• Instructions retire in-order

• State becomes architecturally visible

13 Daniel Gruss — Graz University of Technology

We are ready for the gory details of Meltdown

Building the Code www.tugraz.at

• Find something human readable, e.g., the Linux version

sudo grep linux_banner /proc/kallsyms

ffffffff81a000e0 R linux_banner

14 Daniel Gruss — Graz University of Technology

Building the Code www.tugraz.at

char data = *(char*) 0xffffffff81a000e0;

printf("%c\n", data);

15 Daniel Gruss — Graz University of Technology

Building the Code www.tugraz.at

• Compile and run

segfault at ffffffff81a000e0 ip

0000000000400535

sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are of course not accessible

• Any invalid access throws an exception → segmentation fault

16 Daniel Gruss — Graz University of Technology

Building the Code www.tugraz.at

• Compile and run

segfault at ffffffff81a000e0 ip

0000000000400535

sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are of course not accessible

• Any invalid access throws an exception → segmentation fault

16 Daniel Gruss — Graz University of Technology

Building the Code www.tugraz.at

• Compile and run

segfault at ffffffff81a000e0 ip

0000000000400535

sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are of course not accessible

• Any invalid access throws an exception → segmentation fault

16 Daniel Gruss — Graz University of Technology

Building the Code www.tugraz.at

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

17 Daniel Gruss — Graz University of Technology

Building the Code www.tugraz.at

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

17 Daniel Gruss — Graz University of Technology

Building the Code www.tugraz.at

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

17 Daniel Gruss — Graz University of Technology

Building the Code www.tugraz.at

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

17 Daniel Gruss — Graz University of Technology

Building the Code www.tugraz.at

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

17 Daniel Gruss — Graz University of Technology

Building the Code www.tugraz.at

• Still no kernel memory

• Maybe it is not that straight forward

• Privilege checks seem to work

• Are privilege checks also done when executing instructions out of order?

• Problem: out-of-order instructions are not visible

18 Daniel Gruss — Graz University of Technology

Building the Code www.tugraz.at

• Still no kernel memory

• Maybe it is not that straight forward

• Privilege checks seem to work

• Are privilege checks also done when executing instructions out of order?

• Problem: out-of-order instructions are not visible

18 Daniel Gruss — Graz University of Technology

Building the Code www.tugraz.at

• Still no kernel memory

• Maybe it is not that straight forward

• Privilege checks seem to work

• Are privilege checks also done when executing instructions out of order?

• Problem: out-of-order instructions are not visible

18 Daniel Gruss — Graz University of Technology

Building the Code www.tugraz.at

• Still no kernel memory

• Maybe it is not that straight forward

• Privilege checks seem to work

• Are privilege checks also done when executing instructions out of order?

• Problem: out-of-order instructions are not visible

18 Daniel Gruss — Graz University of Technology

Building the Code www.tugraz.at

• Still no kernel memory

• Maybe it is not that straight forward

• Privilege checks seem to work

• Are privilege checks also done when executing instructions out of order?

• Problem: out-of-order instructions are not visible

18 Daniel Gruss — Graz University of Technology

Building the Code www.tugraz.at

• Adapted code

(volatile char) 0;

array [0] = 0;

• volatile because compiler was not happy

warning: statement with no effect [-Wunused -value]

(char) 0;

• Static code analyzer is still not happy

warning: Dereference of null pointer

(volatile char)0;

19 Daniel Gruss — Graz University of Technology

Building the Code www.tugraz.at

• Adapted code

(volatile char) 0;

array [0] = 0;

• volatile because compiler was not happy

warning: statement with no effect [-Wunused -value]

(char) 0;

• Static code analyzer is still not happy

warning: Dereference of null pointer

(volatile char)0;

19 Daniel Gruss — Graz University of Technology

Building the Code www.tugraz.at

• Adapted code

(volatile char) 0;

array [0] = 0;

• volatile because compiler was not happy

warning: statement with no effect [-Wunused -value]

(char) 0;

• Static code analyzer is still not happy

warning: Dereference of null pointer

(volatile char)0;

19 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

20 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• “Unreachable” code line was actually executed

• Exception was only thrown afterwards

20 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

21 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

21 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

21 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions

21 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Combine the two things

char data = *(char*)0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached

22 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Combine the two things

char data = *(char*)0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached

22 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

23 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array

0 50 100 150 200 250

300

400

500

Page

A
cc
es
s
ti
m
e

[c
yc
le
s]

• Index of cache hit reveals data

• Permission check is in some cases not fast enough

23 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Using out-of-order execution, we can read data at (almost) any address*

• Privilege checks are sometimes too slow

• Allows to leak kernel memory

• Entire physical memory is typically also accessible in kernel address space

24 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Using out-of-order execution, we can read data at (almost) any address*

• Privilege checks are sometimes too slow

• Allows to leak kernel memory

• Entire physical memory is typically also accessible in kernel address space

24 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Using out-of-order execution, we can read data at (almost) any address*

• Privilege checks are sometimes too slow

• Allows to leak kernel memory

• Entire physical memory is typically also accessible in kernel address space

24 Daniel Gruss — Graz University of Technology

Building Meltdown www.tugraz.at

• Using out-of-order execution, we can read data at (almost) any address*

• Privilege checks are sometimes too slow

• Allows to leak kernel memory

• Entire physical memory is typically also accessible in kernel address space

24 Daniel Gruss — Graz University of Technology

Details: Exception Handling www.tugraz.at

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention

25 Daniel Gruss — Graz University of Technology

Details: Exception Handling www.tugraz.at

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention

25 Daniel Gruss — Graz University of Technology

Details: Exception Handling www.tugraz.at

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention

25 Daniel Gruss — Graz University of Technology

Meltdown with Fault Suppression www.tugraz.at

• Intel TSX to suppress exceptions instead of signal handler

if(xbegin () == XBEGIN_STARTED) {

char secret = *(char*) 0xffffffff81a000e0;

array[secret * 4096] = 0;

xend();

}

for (size_t i = 0; i < 256; i++) {

if (flush_and_reload(array + i * 4096) == CACHE_HIT) {

printf("%c\n", i);

}

}

26 Daniel Gruss — Graz University of Technology

Meltdown with Fault Prevention www.tugraz.at

• Speculative execution to prevent exceptions

int speculate = rand() % 2;

size_t address = (0 xffffffff81a000e0 * speculate) +

((size_t)&zero * (1 - speculate));

if(! speculate) {

char secret = *(char*) address;

array[secret * 4096] = 0;

}

for (size_t i = 0; i < 256; i++) {

if (flush_and_reload(array + i * 4096) == CACHE_HIT) {

printf("%c\n", i);

}

}

27 Daniel Gruss — Graz University of Technology

Uncached memory www.tugraz.at

• Initial assumption: we can only read data stored in the L1 with

Meltdown

. Sort of:

• Experiment where a thread flushes the value constantly and a thread

on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We still leak the data slowly, why?

• → Original Meltdown only leaks from the L1, but we can get data

there with load gadgets [7]

28 Daniel Gruss — Graz University of Technology

Uncached memory www.tugraz.at

• Initial assumption: we can only read data stored in the L1 with

Meltdown. Sort of:

• Experiment where a thread flushes the value constantly and a thread

on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We still leak the data slowly, why?

• → Original Meltdown only leaks from the L1, but we can get data

there with load gadgets [7]

28 Daniel Gruss — Graz University of Technology

Uncached memory www.tugraz.at

• Initial assumption: we can only read data stored in the L1 with

Meltdown. Sort of:

• Experiment where a thread flushes the value constantly and a thread

on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We still leak the data slowly, why?

• → Original Meltdown only leaks from the L1, but we can get data

there with load gadgets [7]

28 Daniel Gruss — Graz University of Technology

Uncached memory www.tugraz.at

• Initial assumption: we can only read data stored in the L1 with

Meltdown. Sort of:

• Experiment where a thread flushes the value constantly and a thread

on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We still leak the data slowly, why?

• → Original Meltdown only leaks from the L1, but we can get data

there with load gadgets [7]

28 Daniel Gruss — Graz University of Technology

Uncached memory www.tugraz.at

• Initial assumption: we can only read data stored in the L1 with

Meltdown. Sort of:

• Experiment where a thread flushes the value constantly and a thread

on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We still leak the data slowly, why?

• → Original Meltdown only leaks from the L1, but we can get data

there with load gadgets [7]

28 Daniel Gruss — Graz University of Technology

Uncached memory www.tugraz.at

• Initial assumption: we can only read data stored in the L1 with

Meltdown. Sort of:

• Experiment where a thread flushes the value constantly and a thread

on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We still leak the data slowly, why?

• → Original Meltdown only leaks from the L1

, but we can get data

there with load gadgets [7]

28 Daniel Gruss — Graz University of Technology

Uncached memory www.tugraz.at

• Initial assumption: we can only read data stored in the L1 with

Meltdown. Sort of:

• Experiment where a thread flushes the value constantly and a thread

on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We still leak the data slowly, why?

• → Original Meltdown only leaks from the L1, but we can get data

there with load gadgets [7]

28 Daniel Gruss — Graz University of Technology

Practical attacks www.tugraz.at

• Dumping the entire physical memory takes some time

• Not very practical in most scenarios

• Can we mount more targeted attacks?

29 Daniel Gruss — Graz University of Technology

Practical attacks www.tugraz.at

• Dumping the entire physical memory takes some time

• Not very practical in most scenarios

• Can we mount more targeted attacks?

29 Daniel Gruss — Graz University of Technology

Practical attacks www.tugraz.at

• Dumping the entire physical memory takes some time

• Not very practical in most scenarios

• Can we mount more targeted attacks?

29 Daniel Gruss — Graz University of Technology

VeraCrypt www.tugraz.at

• Open-source utility for disk encryption

• Fork of TrueCrypt

• Cryptographic keys are stored in RAM

• With Meltdown, we can extract the keys from DRAM

30 Daniel Gruss — Graz University of Technology

VeraCrypt www.tugraz.at

• Open-source utility for disk encryption

• Fork of TrueCrypt

• Cryptographic keys are stored in RAM

• With Meltdown, we can extract the keys from DRAM

30 Daniel Gruss — Graz University of Technology

VeraCrypt www.tugraz.at

• Open-source utility for disk encryption

• Fork of TrueCrypt

• Cryptographic keys are stored in RAM

• With Meltdown, we can extract the keys from DRAM

30 Daniel Gruss — Graz University of Technology

VeraCrypt www.tugraz.at

• Open-source utility for disk encryption

• Fork of TrueCrypt

• Cryptographic keys are stored in RAM

• With Meltdown, we can extract the keys from DRAM

30 Daniel Gruss — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

time

31 Daniel Gruss — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

data

time

31 Daniel Gruss — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

operation #n+2

data dependency

data

time

31 Daniel Gruss — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

re
ti
re

operation #n+2

data dependency

data

possibly

architectural transient execution

exception

time

31 Daniel Gruss — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

re
ti
re

operation #n+2

data dependency

data

possibly

architectural transient execution

exception

time

31 Daniel Gruss — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

re
ti
re

operation #n+2

data dependency

data Meltdown

possibly

architectural transient execution

exception

time

31 Daniel Gruss — Graz University of Technology

Meltdown Root Cause www.tugraz.at

operation #n

re
ti
re

re
ti
re

operation #n+2

data dependency

data Meltdown

possibly

architectural transient execution

exception raise

time

31 Daniel Gruss — Graz University of Technology

Generalization www.tugraz.at

• Meltdown is a whole category of vulnerabilities

• Not only the user-accessible check

• Looking closer at the check...

32 Daniel Gruss — Graz University of Technology

Generalization www.tugraz.at

• Meltdown is a whole category of vulnerabilities

• Not only the user-accessible check

• Looking closer at the check...

32 Daniel Gruss — Graz University of Technology

Generalization www.tugraz.at

• Meltdown is a whole category of vulnerabilities

• Not only the user-accessible check

• Looking closer at the check...

32 Daniel Gruss — Graz University of Technology

Paging www.tugraz.at

• CPU uses virtual address spaces to isolate processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames using page

tables

33 Daniel Gruss — Graz University of Technology

Paging www.tugraz.at

• CPU uses virtual address spaces to isolate processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames using page

tables

33 Daniel Gruss — Graz University of Technology

Paging www.tugraz.at

• CPU uses virtual address spaces to isolate processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames using page

tables

33 Daniel Gruss — Graz University of Technology

Address Translation on x86-64 www.tugraz.at

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
···

#PML4I
···

PML4E 511

PDPT

PDPTE 0

PDPTE 1
···

#PDPTI
···

PDPTE 511

Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095

34 Daniel Gruss — Graz University of Technology

Page Table Entry www.tugraz.at

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

• User/Supervisor bit defines in which privilege level the page can be accessed

35 Daniel Gruss — Graz University of Technology

Page Table Entry www.tugraz.at

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

• Present bit is the next obvious bit

36 Daniel Gruss — Graz University of Technology

Page Table Entry www.tugraz.at

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

• Present bit is the next obvious bit

36 Daniel Gruss — Graz University of Technology

Foreshadow-NG [8] www.tugraz.at

• An even worse bug → Foreshadow-NG/L1TF

• Exploitable from VMs

• Allows leaking data from the L1 cache

• Same mechanism as Meltdown

• Just a different bit in the PTE

37 Daniel Gruss — Graz University of Technology

Foreshadow-NG [8] www.tugraz.at

• An even worse bug → Foreshadow-NG/L1TF

• Exploitable from VMs

• Allows leaking data from the L1 cache

• Same mechanism as Meltdown

• Just a different bit in the PTE

37 Daniel Gruss — Graz University of Technology

Foreshadow-NG [8] www.tugraz.at

• An even worse bug → Foreshadow-NG/L1TF

• Exploitable from VMs

• Allows leaking data from the L1 cache

• Same mechanism as Meltdown

• Just a different bit in the PTE

37 Daniel Gruss — Graz University of Technology

Foreshadow-NG [8] www.tugraz.at

• An even worse bug → Foreshadow-NG/L1TF

• Exploitable from VMs

• Allows leaking data from the L1 cache

• Same mechanism as Meltdown

• Just a different bit in the PTE

37 Daniel Gruss — Graz University of Technology

Foreshadow-NG [8] www.tugraz.at

• An even worse bug → Foreshadow-NG/L1TF

• Exploitable from VMs

• Allows leaking data from the L1 cache

• Same mechanism as Meltdown

• Just a different bit in the PTE

37 Daniel Gruss — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

L1

Cache

38 Daniel Gruss — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

present

L1

Cache

38 Daniel Gruss — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

present Guest Physical

to Host Physical

L1

Cache

38 Daniel Gruss — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

present Guest Physical

to Host Physical
Physical

Page

L1 lookup

with

physical address

L1

Cache

38 Daniel Gruss — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

not present

L1

Cache

38 Daniel Gruss — Graz University of Technology

Foreshadow-NG www.tugraz.at

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

not present

L1 lookup

with

virtual address

L1

Cache

38 Daniel Gruss — Graz University of Technology

Meltdown Subtree: Exploiting Page-Table Bits www.tugraz.at

Pagefault

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK-L1

Meltdown-SM-SB

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

39 Daniel Gruss — Graz University of Technology

May 2019: Meltdown Redux www.tugraz.at

40 Daniel Gruss — Graz University of Technology

Microarchitectural Data Sampling: RIDL, ZombieLoad, Fallout www.tugraz.at

• May 2019: 3 new Meltdown-type attacks

• Leakage from: line-fill buffer, store buffer, load ports

• Key take-aways:

1. Leakage from various intermediate buffers (⊃ L1D)

2. Transient execution through microcode assists (⊃ exceptions)

There is no noise. Noise is just someone else’s data

41 Daniel Gruss — Graz University of Technology

Microarchitectural Data Sampling: RIDL, ZombieLoad, Fallout www.tugraz.at

• May 2019: 3 new Meltdown-type attacks

• Leakage from: line-fill buffer, store buffer, load ports

• Key take-aways:

1. Leakage from various intermediate buffers (⊃ L1D)

2. Transient execution through microcode assists (⊃ exceptions)

There is no noise. Noise is just someone else’s data

41 Daniel Gruss — Graz University of Technology

Microarchitectural Data Sampling: RIDL, ZombieLoad, Fallout www.tugraz.at

• May 2019: 3 new Meltdown-type attacks

• Leakage from: line-fill buffer, store buffer, load ports

• Key take-aways:

1. Leakage from various intermediate buffers (⊃ L1D)

2. Transient execution through microcode assists (⊃ exceptions)

There is no noise. Noise is just someone else’s data

41 Daniel Gruss — Graz University of Technology

Analyse the Noise www.tugraz.at

Lemma 1: Noise is someone else’s data

lim =

42 Daniel Gruss — Graz University of Technology

Analyse the Noise www.tugraz.at

Lemma 1: Noise is someone else’s data

lim
→ ∅

=

42 Daniel Gruss — Graz University of Technology

Analyse the Noise www.tugraz.at

Lemma 1: Noise is someone else’s data

lim
→ ∅

=

42 Daniel Gruss — Graz University of Technology

ZombieLoad [6] www.tugraz.at

Deep Dive: Intel Analysis of Microarchitectural Data Sampling

Fill buffers may retain stale data from prior memory requests until a new memory request

overwrites the fill buffer.

Under certain conditions, the fill buffer may speculatively forward

data, including stale data, to a load operation that will cause a fault/assist.

43 Daniel Gruss — Graz University of Technology

ZombieLoad [6] www.tugraz.at

Deep Dive: Intel Analysis of Microarchitectural Data Sampling

Fill buffers may retain stale data from prior memory requests until a new memory request

overwrites the fill buffer. Under certain conditions, the fill buffer may speculatively forward

data, including stale data,

to a load operation that will cause a fault/assist.

43 Daniel Gruss — Graz University of Technology

ZombieLoad [6] www.tugraz.at

Deep Dive: Intel Analysis of Microarchitectural Data Sampling

Fill buffers may retain stale data from prior memory requests until a new memory request

overwrites the fill buffer. Under certain conditions, the fill buffer may speculatively forward

data, including stale data, to a load operation that will cause a fault/assist.

43 Daniel Gruss — Graz University of Technology

ZombieLoad Cache-line Conflicts www.tugraz.at

Page

cache line

44 Daniel Gruss — Graz University of Technology

ZombieLoad Cache-line Conflicts www.tugraz.at

Page

Mapping v2
cache line

44 Daniel Gruss — Graz University of Technology

ZombieLoad Cache-line Conflicts www.tugraz.at

Page

Mapping v2
cache line

faulting load

44 Daniel Gruss — Graz University of Technology

ZombieLoad Cache-line Conflicts www.tugraz.at

Page

Mapping v1Mapping v2
cache line

faulting load

44 Daniel Gruss — Graz University of Technology

ZombieLoad Cache-line Conflicts www.tugraz.at

Page

Mapping v1Mapping v2
cache line

flushfaulting load

“certain condition”

44 Daniel Gruss — Graz University of Technology

ZombieLoad Cache-line Conflicts www.tugraz.at

Page

Mapping v1Mapping v2
cache line

flushfaulting load

“certain condition”

44 Daniel Gruss — Graz University of Technology

Complex Load Situations www.tugraz.at

E
xe
cu
ti
on

E
ng
in
e

Reorder buffer

...

...

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L
U
,
A
E
S
,
..
.

A
L
U
,
F
M
A
,
..
.

A
L
U
,
V
ec
t,
..
.

A
L
U
,
B
ra
n
ch

L
o
ad

d
at
a

L
o
ad

d
at
a

S
to
re

d
at
a

A
G
U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

C
or
e
M
em

or
y

Load Buffer

#n+1 ...

#n ppn vpn offset reg.no.

#n-1 ...

not used for L1/SB/LFB

data can go

to register

Store Buffer

L1 Data Cache
DTLB

LFB

45 Daniel Gruss — Graz University of Technology

Complex Load Situations www.tugraz.at

E
xe
cu
ti
on

E
ng
in
e

Reorder buffer
...

mov al, byte [rcx]

...
µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L
U
,
A
E
S
,
..
.

A
L
U
,
F
M
A
,
..
.

A
L
U
,
V
ec
t,
..
.

A
L
U
,
B
ra
n
ch

L
o
ad

d
at
a

L
o
ad

d
at
a

S
to
re

d
at
a

A
G
U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

C
or
e
M
em

or
y

Load Buffer

#n+1 ...

#n ppn vpn offset reg.no.

#n-1 ...

not used for L1/SB/LFB

data can go

to register

Store Buffer

L1 Data Cache
DTLB

LFB

45 Daniel Gruss — Graz University of Technology

Complex Load Situations www.tugraz.at

E
xe
cu
ti
on

E
ng
in
e

Reorder buffer
...

mov al, byte [rcx]

...
µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L
U
,
A
E
S
,
..
.

A
L
U
,
F
M
A
,
..
.

A
L
U
,
V
ec
t,
..
.

A
L
U
,
B
ra
n
ch

L
o
ad

d
at
a

L
o
ad

d
at
a

S
to
re

d
at
a

A
G
U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

C
or
e
M
em

or
y

Load Buffer

#n+1 ...

#n ppn vpn offset reg.no.

#n-1 ...

not used for L1/SB/LFB

data can go

to register

Store Buffer

L1 Data Cache
DTLB

LFB

45 Daniel Gruss — Graz University of Technology

Complex Load Situations www.tugraz.at

E
xe
cu
ti
on

E
ng
in
e

Reorder buffer
...

mov al, byte [rcx]

...
µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L
U
,
A
E
S
,
..
.

A
L
U
,
F
M
A
,
..
.

A
L
U
,
V
ec
t,
..
.

A
L
U
,
B
ra
n
ch

L
o
ad

d
at
a

L
o
ad

d
at
a

S
to
re

d
at
a

A
G
U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

C
or
e
M
em

or
y

Load Buffer

#n+1 ...

#n ppn vpn offset reg.no.

#n-1 ...

not used for L1/SB/LFB

data can go

to register

Store Buffer

L1 Data Cache
DTLB

LFB

45 Daniel Gruss — Graz University of Technology

Complex Load Situations www.tugraz.at

E
xe
cu
ti
on

E
ng
in
e

Reorder buffer
...

mov al, byte [rcx]

...
µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L
U
,
A
E
S
,
..
.

A
L
U
,
F
M
A
,
..
.

A
L
U
,
V
ec
t,
..
.

A
L
U
,
B
ra
n
ch

L
o
ad

d
at
a

L
o
ad

d
at
a

S
to
re

d
at
a

A
G
U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

C
or
e
M
em

or
y

Load Buffer

#n+1 ...

#n ppn vpn offset reg.no.

#n-1 ...

not used for L1/SB/LFB

data can go

to register

Store Buffer

L1 Data Cache
DTLB

LFB

45 Daniel Gruss — Graz University of Technology

Complex Load Situations www.tugraz.at

E
xe
cu
ti
on

E
ng
in
e

Reorder buffer
...

mov al, byte [rcx]

...
µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L
U
,
A
E
S
,
..
.

A
L
U
,
F
M
A
,
..
.

A
L
U
,
V
ec
t,
..
.

A
L
U
,
B
ra
n
ch

L
o
ad

d
at
a

L
o
ad

d
at
a

S
to
re

d
at
a

A
G
U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

C
or
e
M
em

or
y

#n+1 ...

#n ppn vpn offset reg.no.

#n-1 ...

not used for L1/SB/LFB

data can go

to register

Load Buffer Store Buffer

L1 Data Cache
DTLB

LFB

45 Daniel Gruss — Graz University of Technology

Complex Load Situations www.tugraz.at

E
xe
cu
ti
on

E
ng
in
e

Reorder buffer
...

mov al, byte [rcx]

...
µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L
U
,
A
E
S
,
..
.

A
L
U
,
F
M
A
,
..
.

A
L
U
,
V
ec
t,
..
.

A
L
U
,
B
ra
n
ch

L
o
ad

d
at
a

L
o
ad

d
at
a

S
to
re

d
at
a

A
G
U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

C
or
e
M
em

or
y

#n+1 ...

#n ppn vpn offset reg.no.

#n-1 ...

not used for L1/SB/LFB

data can go

to register

Load Buffer Store Buffer

L1 Data Cache
DTLB

LFB

45 Daniel Gruss — Graz University of Technology

Complex Load Situations www.tugraz.at

E
xe
cu
ti
on

E
ng
in
e

Reorder buffer
...

mov al, byte [rcx]

...
µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L
U
,
A
E
S
,
..
.

A
L
U
,
F
M
A
,
..
.

A
L
U
,
V
ec
t,
..
.

A
L
U
,
B
ra
n
ch

L
o
ad

d
at
a

L
o
ad

d
at
a

S
to
re

d
at
a

A
G
U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

C
or
e
M
em

or
y

#n+1 ...

#n ppn vpnvpn offset reg.no.

#n-1 ...

not used for L1/SB/LFB

data can go

to register

Load Buffer Store Buffer

L1 Data Cache
DTLB

LFB

45 Daniel Gruss — Graz University of Technology

Complex Load Situations www.tugraz.at

E
xe
cu
ti
on

E
ng
in
e

Reorder buffer
...

mov al, byte [rcx]

...
µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L
U
,
A
E
S
,
..
.

A
L
U
,
F
M
A
,
..
.

A
L
U
,
V
ec
t,
..
.

A
L
U
,
B
ra
n
ch

L
o
ad

d
at
a

L
o
ad

d
at
a

S
to
re

d
at
a

A
G
U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

C
or
e
M
em

or
y

#n+1 ...

#n ppn vpnvpn offset reg.no.

#n-1 ...

not used for L1/SB/LFB

data can go

to register

Load Buffer Store Buffer

L1 Data CacheL1 Data Cache
DTLBDTLB

LFB

45 Daniel Gruss — Graz University of Technology

Complex Load Situations www.tugraz.at

E
xe
cu
ti
on

E
ng
in
e

Reorder buffer
...

mov al, byte [rcx]

...
µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L
U
,
A
E
S
,
..
.

A
L
U
,
F
M
A
,
..
.

A
L
U
,
V
ec
t,
..
.

A
L
U
,
B
ra
n
ch

L
o
ad

d
at
a

L
o
ad

d
at
a

S
to
re

d
at
a

A
G
U

µOP µOP µOP µOP µOP µOP µOP µOP

CDB

C
or
e
M
em

or
y

#n+1 ...

#n ppn vpnvpn offset reg.no.

#n-1 ...

not used for L1/SB/LFB

data can go

to register

Load Buffer Store Buffer

L1 Data CacheL1 Data Cache
DTLBDTLB

LFB

45 Daniel Gruss — Graz University of Technology

Data Encoding www.tugraz.at

User Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

char value = faulting[0]

46 Daniel Gruss — Graz University of Technology

Data Encoding www.tugraz.at

User Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

char value = faulting[0]
Fault

46 Daniel Gruss — Graz University of Technology

Data Encoding www.tugraz.at

Out of order

User Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K

char value = faulting[0]

mem[value]

Fault

46 Daniel Gruss — Graz University of Technology

Data Encoding www.tugraz.at

Out of order

User Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K
K

char value = faulting[0]

mem[value]

K

Fault

46 Daniel Gruss — Graz University of Technology

ZombieLoad Variant 1 www.tugraz.at

Physical memory

0 max

User

0 247

Kernel

−247 −1

47 Daniel Gruss — Graz University of Technology

ZombieLoad Variant 1 www.tugraz.at

Physical memory

0 max

User

0 247

Kernel

−247 −1

fl
u
sh

47 Daniel Gruss — Graz University of Technology

ZombieLoad Variant 1 www.tugraz.at

Physical memory

0 max

User

0 247

Kernel

−247 −1

fl
u
sh

lo
a
d

47 Daniel Gruss — Graz University of Technology

ZombieLoad Variant 3 www.tugraz.at

Physical memory

0 max

User

0 247

Kernel

−247 −1

48 Daniel Gruss — Graz University of Technology

ZombieLoad Variant 3 www.tugraz.at

Physical memory

0 max

User

0 247

Kernel

−247 −1

fl
u
sh

48 Daniel Gruss — Graz University of Technology

ZombieLoad Variant 3 www.tugraz.at

Physical memory

0 max

User

0 247

Kernel

−247 −1

fl
u
sh

lo
a
d

48 Daniel Gruss — Graz University of Technology

Microcode Assist (Variant 3) www.tugraz.at

Instructions

49 Daniel Gruss — Graz University of Technology

Microcode Assist (Variant 3) www.tugraz.at

Instructions

Decoder

49 Daniel Gruss — Graz University of Technology

Microcode Assist (Variant 3) www.tugraz.at

Instructions

Decoder

MUX

Backend

49 Daniel Gruss — Graz University of Technology

Microcode Assist (Variant 3) www.tugraz.at

Instructions

Decoder
Microcode

ROM

Assist

MUX

Backend

49 Daniel Gruss — Graz University of Technology

Microcode Assist (Variant 3) www.tugraz.at

Instructions

Decoder
Microcode

ROM

Assist

MUX

Backend

49 Daniel Gruss — Graz University of Technology

Microcode Assist (Variant 3) www.tugraz.at

• Microcode assist handles rare cases

→ Microarchitectural fault

• Setting accessed/dirty bit in page table

→ Regularly reset on Windows

50 Daniel Gruss — Graz University of Technology

Microcode Assist (Variant 3) www.tugraz.at

• Microcode assist handles rare cases

→ Microarchitectural fault

• Setting accessed/dirty bit in page table

→ Regularly reset on Windows

50 Daniel Gruss — Graz University of Technology

Microcode Assist (Variant 3) www.tugraz.at

• Microcode assist handles rare cases

→ Microarchitectural fault

• Setting accessed/dirty bit in page table

→ Regularly reset on Windows

50 Daniel Gruss — Graz University of Technology

Microcode Assist (Variant 3) www.tugraz.at

• Microcode assist handles rare cases

→ Microarchitectural fault

• Setting accessed/dirty bit in page table

→ Regularly reset on Windows

50 Daniel Gruss — Graz University of Technology

ZombieLoad Variant 2 www.tugraz.at

Page

Mapping v1Mapping v2

faulting load

cache line

flush

“certain condition”

51 Daniel Gruss — Graz University of Technology

ZombieLoad Variant 2 www.tugraz.at

TSX Transaction

Page

Mapping v1Mapping v2

faulting load

cache line

flush

“certain condition”

51 Daniel Gruss — Graz University of Technology

ZombieLoad Variant 2 www.tugraz.at

TSX Transaction

Page

Mapping v1Mapping v1

load

cache line

flush

“certain condition”

51 Daniel Gruss — Graz University of Technology

Abort Transactions www.tugraz.at

• Data Conflicts

• Limited Transactional Resources

• Certain Instructions

• IO instructions, syscall, . . .

• Synchronous Exception Events

• #BR, #PF, #DB, #BP/INT3, . . .

52 Daniel Gruss — Graz University of Technology

Abort Transactions www.tugraz.at

• Data Conflicts

• Limited Transactional Resources

• Certain Instructions

• IO instructions, syscall, . . .

• Synchronous Exception Events

• #BR, #PF, #DB, #BP/INT3, . . .

52 Daniel Gruss — Graz University of Technology

Abort Transactions www.tugraz.at

• Data Conflicts

• Limited Transactional Resources

• Certain Instructions

• IO instructions, syscall, . . .

• Synchronous Exception Events

• #BR, #PF, #DB, #BP/INT3, . . .

52 Daniel Gruss — Graz University of Technology

Abort Transactions www.tugraz.at

• Data Conflicts

• Limited Transactional Resources

• Certain Instructions

• IO instructions, syscall, . . .

• Synchronous Exception Events

• #BR, #PF, #DB, #BP/INT3, . . .

52 Daniel Gruss — Graz University of Technology

TSX Intel Manual www.tugraz.at

12.2.4.5 Miscellaneous Transactional Aborts

Asynchronous events (NMI, SMI, INTR, IPI, PMI, etc.) occurring during

transactional execution may cause the transactional execution to abort

and transition to a non-transactional execution.

[...] For example,

operating systems with timer ticks generate interrupts that can cause

transactional aborts.

53 Daniel Gruss — Graz University of Technology

TSX Intel Manual www.tugraz.at

12.2.4.5 Miscellaneous Transactional Aborts

Asynchronous events (NMI, SMI, INTR, IPI, PMI, etc.) occurring during

transactional execution may cause the transactional execution to abort

and transition to a non-transactional execution. [...] For example,

operating systems with timer ticks generate interrupts that can cause

transactional aborts.

53 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
D

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
D

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
DLOAD

Address

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
DLOAD

Address

LOAD

Oracle

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
DLOAD

Address

LOAD

Address

LOAD

Oracle

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
DLOAD

Address

LOAD

Address

LOAD

Address

LOAD

Oracle

Value

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
DLOAD

Address

LOAD

Address

LOAD

Address

LOAD

Oracle

LOAD

Oracle

Value

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
D

X
E
N
DLOAD

Address

LOAD

Address

LOAD

Address

LOAD

Oracle

LOAD

Oracle

Value

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
D

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
DLOAD

Address

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
DLOAD

Address

LOAD

Oracle

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
DLOAD

Address

LOAD

Address

LOAD

Oracle

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
DLOAD

Address

LOAD

Address

LOAD

Oracle

NMI, SMI, INTR, . . .

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
DLOAD

Address

LOAD

Address

LOAD

Oracle

NMI, SMI, INTR, . . .

X
B
E
G
IN

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
DLOAD

Address

LOAD

Address

LOAD

Oracle

NMI, SMI, INTR, . . .

X
B
E
G
IN LOAD

Address

Leak

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
DLOAD

Address

LOAD

Oracle

NMI, SMI, INTR, . . .

X
B
E
G
IN LOAD

Address

Leak

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
DLOAD

Address

LOAD

Oracle

F
L
U
S
H

A
d
d
re
ss

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
DLOAD

Address

LOAD

Oracle

F
L
U
S
H

A
d
d
re
ss

F
L
U
S
H

A
d
d
re
ss

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
DLOAD

Address

LOAD

Address

LOAD

Oracle

F
L
U
S
H

A
d
d
re
ss

F
L
U
S
H

A
d
d
re
ss

Cache-Line Conflict

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
DLOAD

Address

LOAD

Address

LOAD

Oracle

X
B
E
G
IN

F
L
U
S
H

A
d
d
re
ss

F
L
U
S
H

A
d
d
re
ss

Cache-Line Conflict

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
DLOAD

Address

LOAD

Oracle

X
B
E
G
IN LOAD

Address

Leak

F
L
U
S
H

A
d
d
re
ss

F
L
U
S
H

A
d
d
re
ss

Cache-Line Conflict

54 Daniel Gruss — Graz University of Technology

TAA www.tugraz.at

X
B
E
G
IN

X
E
N
DLOAD

Address

LOAD

Oracle

LOAD

Oracle

X
B
E
G
IN LOAD

Address

Leak

F
L
U
S
H

A
d
d
re
ss

F
L
U
S
H

A
d
d
re
ss

Cache-Line Conflict

54 Daniel Gruss — Graz University of Technology

Attack Targets www.tugraz.at

• Leak data on same and sibling hyperthread

Applications Operating System SGX Enclave

Virtual Machine Hypervisor

55 Daniel Gruss — Graz University of Technology

Attack Targets www.tugraz.at

• Leak data on same and sibling hyperthread

Applications

Operating System SGX Enclave

Virtual Machine Hypervisor

55 Daniel Gruss — Graz University of Technology

Attack Targets www.tugraz.at

• Leak data on same and sibling hyperthread

Applications Operating System

SGX Enclave

Virtual Machine Hypervisor

55 Daniel Gruss — Graz University of Technology

Attack Targets www.tugraz.at

• Leak data on same and sibling hyperthread

Applications Operating System SGX Enclave

Virtual Machine Hypervisor

55 Daniel Gruss — Graz University of Technology

Attack Targets www.tugraz.at

• Leak data on same and sibling hyperthread

Applications Operating System SGX Enclave

Virtual Machine

Hypervisor

55 Daniel Gruss — Graz University of Technology

Attack Targets www.tugraz.at

• Leak data on same and sibling hyperthread

Applications Operating System SGX Enclave

Virtual Machine Hypervisor

55 Daniel Gruss — Graz University of Technology

Control www.tugraz.at

12Physical

12Virtual
Meltdown

51

47
11 0

Page Number Page Offset

56 Daniel Gruss — Graz University of Technology

Control www.tugraz.at

12Physical

12Virtual
Foreshadow

51

47
11 0

12Physical

12Virtual
Meltdown

51

47
11 0

Page Number Page Offset

56 Daniel Gruss — Graz University of Technology

Control www.tugraz.at

12Physical

12Virtual
Fallout

51

47
11 0

12Physical

12Virtual
Foreshadow

51

47
11 0

12Physical

12Virtual
Meltdown

51

47
11 0

Page Number Page Offset

56 Daniel Gruss — Graz University of Technology

Control www.tugraz.at

12Physical

12Virtual

ZombieLoad/

RIDL

51

47
11 6 5 0

12Physical

12Virtual
Fallout

51

47
11 0

12Physical

12Virtual
Foreshadow

51

47
11 0

12Physical

12Virtual
Meltdown

51

47
11 0

Page Number Page Offset

56 Daniel Gruss — Graz University of Technology

ZombieLoad Insights www.tugraz.at

Instruction Pointer

Address

Data

57 Daniel Gruss — Graz University of Technology

ZombieLoad Insights www.tugraz.at

Instruction Pointer

Address

Data

Memory-based

Side-Channel

Attacks

57 Daniel Gruss — Graz University of Technology

ZombieLoad Insights www.tugraz.at

Instruction Pointer

AddressData
Meltdown

Memory-based

Side-Channel

Attacks

57 Daniel Gruss — Graz University of Technology

ZombieLoad Insights www.tugraz.at

Instruction Pointer

AddressData
Meltdown

Memory-based

Side-Channel

Attacks

Data Sampling

(ZombieLoad)

57 Daniel Gruss — Graz University of Technology

MDS take-away: Microcode assists www.tugraz.at

• Optimization: only implement fast-path in silicon

• More complex edge cases (slow-path) in microcode

• Need help? Re-issue the load with a microcode assist

• assist == “microarchitectural fault”

• Example: setting A/D bits in the page table walk

• Likely many more!

58 Daniel Gruss — Graz University of Technology

MDS take-away: Microcode assists www.tugraz.at

• Optimization: only implement fast-path in silicon

• More complex edge cases (slow-path) in microcode

• Need help? Re-issue the load with a microcode assist

• assist == “microarchitectural fault”

• Example: setting A/D bits in the page table walk

• Likely many more!

58 Daniel Gruss — Graz University of Technology

MDS take-away: Microcode assists www.tugraz.at

• Optimization: only implement fast-path in silicon

• More complex edge cases (slow-path) in microcode

• Need help? Re-issue the load with a microcode assist

• assist == “microarchitectural fault”

• Example: setting A/D bits in the page table walk

• Likely many more!

58 Daniel Gruss — Graz University of Technology

Extended Meltdown tree with microcode assists https://transient.failwww.tugraz.at

Transient cause Meltdown-type

Meltdown-NM-REG

Meltdown-AC

Meltdown-DE

Meltdown-PF

Meltdown-UD

Meltdown-SS

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Meltdown-AC-LFB

Meltdown-AC-LP

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

Meltdown-CPL-REG

Meltdown-NC-SB

Meltdown-AVX

Meltdown-AD

Meltdown-TAA

Meltdown-PRM-LFB

Meltdown-UC-LFB

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-PK-L1

Meltdown-PK-SB

Meltdown-AVX-SB

Meltdown-AVX-LP

Meltdown-AD-LFB

Meltdown-AD-SB

Meltdown-TAA-LFB

Meltdown-TAA-LP

Meltdown-TAA-SB

59 Daniel Gruss — Graz University of Technology

https://transient.fail

»A table for 6 please«

Speculative Cooking

»A table for 6 please«

Speculation Causes www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes

67 Daniel Gruss — Graz University of Technology

Speculation Causes www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes

67 Daniel Gruss — Graz University of Technology

Speculation Causes www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes

67 Daniel Gruss — Graz University of Technology

Speculation Causes www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes

67 Daniel Gruss — Graz University of Technology

Speculation Causes www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes

67 Daniel Gruss — Graz University of Technology

Speculation Causes www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes

67 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

Shared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 0index = 0 if (index < 4)

glyph[data[index]] {}

the
n else

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

Speculate

Shared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 0 if (index < 4)

glyph[data[index]] {}

the
n else

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

ExecuteShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

D

index = 0 if (index < 4)

glyph[data[index]] {}

the
n else

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

ExecuteShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

D

D

index = 0 if (index < 4)

glyph[data[index]] {}

the
n else

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

ExecuteShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

D

D

index = 0 if (index < 4)

glyph[data[index]] {}

the
n else

D

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

Shared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 1index = 1 if (index < 4)

glyph[data[index]] {}

the
n else

D

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 1 if (index < 4)

glyph[data[index]] {}

the
n else

D

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

index = 1 if (index < 4)

glyph[data[index]] {}

the
n else

D

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

A

index = 1 if (index < 4)

glyph[data[index]] {}

the
n else

D

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

A

index = 1 if (index < 4)

glyph[data[index]] {}

the
n else

A

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

ExecuteShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 1 if (index < 4)

glyph[data[index]] {}

the
n else

A

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 2index = 2 if (index < 4)

glyph[data[index]] {}

the
n else

A

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

T

index = 2 if (index < 4)

glyph[data[index]] {}

the
n else

A

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

T

T

index = 2 if (index < 4)

glyph[data[index]] {}

the
n else

A

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

T

T

index = 2 if (index < 4)

glyph[data[index]] {}

the
n else

T

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

ExecuteShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 2 if (index < 4)

glyph[data[index]] {}

the
n else

T

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 3index = 3 if (index < 4)

glyph[data[index]] {}

the
n else

T

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

index = 3 if (index < 4)

glyph[data[index]] {}

the
n else

T

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

A

index = 3 if (index < 4)

glyph[data[index]] {}

the
n else

T

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

A

A

index = 3 if (index < 4)

glyph[data[index]] {}

the
n else

A

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateExecuteShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 3 if (index < 4)

glyph[data[index]] {}

the
n else

A

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 4index = 4 if (index < 4)

glyph[data[index]] {}

the
n else

A

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K

index = 4 if (index < 4)

glyph[data[index]] {}

the
n else

A

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K
K

index = 4 if (index < 4)

glyph[data[index]] {}

the
n else

A

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

SpeculateShared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

K
K

index = 4 if (index < 4)

glyph[data[index]] {}

the
n else

K

68 Daniel Gruss — Graz University of Technology

Spectre-PHT (Variant 1) www.tugraz.at

Memory

D

A

T

A

K

E

Y
· · ·

data[0]

data[1]

data[2]

data[3]

Execute

Shared Memory

A B
C D E
F G H
I J K
L M N
O P Q
R S T
U V W
X Y Z

index = 4 if (index < 4)

glyph[data[index]] {}

the
n else

K

68 Daniel Gruss — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

swim()
swim

()

69 Daniel Gruss — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Speculate

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

swim()
swim

()

69 Daniel Gruss — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

swim()
swim

()

69 Daniel Gruss — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Execute

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

swim()
swim

()

69 Daniel Gruss — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

fly()
swim

()

69 Daniel Gruss — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Speculate

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

fly()
swim

()

69 Daniel Gruss — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

fly()
swim

()

69 Daniel Gruss — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

fly()
swim

()

69 Daniel Gruss — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Speculate

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

fly()
swim

()

69 Daniel Gruss — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

fly()
swim

()

69 Daniel Gruss — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

Execute

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

fly()
swim

()

69 Daniel Gruss — Graz University of Technology

Spectre-BTB (Variant 2) www.tugraz.at

a->move()

Animal* a = fish;

LUT[data[a->m] * 4096] 0

fly
()

Prediction

swim()
swim

()

69 Daniel Gruss — Graz University of Technology

Spectre-STL (Variant 4) [1] www.tugraz.at

• Loads can be executed out-of-order

→ need to check for previous

stores

• Check is time consuming

• Optimization: Speculate whether a store happened or not

• no store: bypass check

• stall

70 Daniel Gruss — Graz University of Technology

Spectre-STL (Variant 4) [1] www.tugraz.at

• Loads can be executed out-of-order → need to check for previous

stores

• Check is time consuming

• Optimization: Speculate whether a store happened or not

• no store: bypass check

• stall

70 Daniel Gruss — Graz University of Technology

Spectre-STL (Variant 4) [1] www.tugraz.at

• Loads can be executed out-of-order → need to check for previous

stores

• Check is time consuming

• Optimization: Speculate whether a store happened or not

• no store: bypass check

• stall

70 Daniel Gruss — Graz University of Technology

Spectre-STL (Variant 4) [1] www.tugraz.at

• Loads can be executed out-of-order → need to check for previous

stores

• Check is time consuming

• Optimization: Speculate whether a store happened or not

• no store: bypass check

• stall

70 Daniel Gruss — Graz University of Technology

Spectre-STL (Variant 4) [1] www.tugraz.at

• Loads can be executed out-of-order → need to check for previous

stores

• Check is time consuming

• Optimization: Speculate whether a store happened or not

• no store: bypass check

• stall

70 Daniel Gruss — Graz University of Technology

Spectre-STL (Variant 4) [1] www.tugraz.at

• Loads can be executed out-of-order → need to check for previous

stores

• Check is time consuming

• Optimization: Speculate whether a store happened or not

• no store: bypass check

• stall

70 Daniel Gruss — Graz University of Technology

Spectre-RSB (Variant 5) [3, 5] www.tugraz.at

Victim Attacker

function()

...

RSB

71 Daniel Gruss — Graz University of Technology

Spectre-RSB (Variant 5) [3, 5] www.tugraz.at

Victim

reg = secret

Attacker

reg = dummy

function()

...

RSB

71 Daniel Gruss — Graz University of Technology

Spectre-RSB (Variant 5) [3, 5] www.tugraz.at

Victim

reg = secret

call function(SHORT)

Attacker

reg = dummy

function()

...

RSB

&victim

71 Daniel Gruss — Graz University of Technology

Spectre-RSB (Variant 5) [3, 5] www.tugraz.at

Victim

reg = secret

call function(SHORT)

Attacker

reg = dummy

call function(LONG)

data[reg * 4096]

function()

...

RSB

&victim

&attacker

71 Daniel Gruss — Graz University of Technology

Spectre-RSB (Variant 5) [3, 5] www.tugraz.at

Victim

reg = secret

call function(SHORT)

Attacker

reg = dummy

call function(LONG)

data[reg * 4096]

function()

...

RSB

&victim

&attacker

71 Daniel Gruss — Graz University of Technology

Spectre-RSB (Variant 5) [3, 5] www.tugraz.at

Victim

reg = secret

call function(SHORT)

Attacker

reg = dummy

call function(LONG)

data[reg * 4096]

function()

...

RSB

&victim

71 Daniel Gruss — Graz University of Technology

Spectre-RSB (Variant 5) [3, 5] www.tugraz.at

Victim

reg = secret

call function(SHORT)

Attacker

reg = dummy

call function(LONG)

data[reg * 4096]

function()

...

RSB

&victim

71 Daniel Gruss — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

time

72 Daniel Gruss — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

prediction

time

72 Daniel Gruss — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

prediction

operation #n+2p
re
d
ic
t

C
F
/
D
F

time

72 Daniel Gruss — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

prediction

operation #n+2p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

time

72 Daniel Gruss — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

re
ti
re

prediction

operation #n+2p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

time

72 Daniel Gruss — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

re
ti
re

prediction

re
ti
re

operation #n+2p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

flush pipeline on
wrong prediction

time

72 Daniel Gruss — Graz University of Technology

Spectre Root Cause www.tugraz.at

operation #n

re
ti
re

prediction

re
ti
re

operation #n+2

re
ti
re

p
re
d
ic
t

C
F
/
D
F

possibly

architectural transient execution

flush pipeline on
wrong prediction

time

72 Daniel Gruss — Graz University of Technology

Mistraining Location www.tugraz.at

same address space/

in place

Victim

Victim

branch

73 Daniel Gruss — Graz University of Technology

Mistraining Location www.tugraz.at

same address space/

in place

same address space/

out of place

Victim

Victim

branch

Congruent

branch

A
d
d
re
ss

co
ll
is
io
n

73 Daniel Gruss — Graz University of Technology

Mistraining Location www.tugraz.at

same address space/

in place

same address space/

out of place

Victim

Victim

branch

Congruent

branch

A
d
d
re
ss

co
ll
is
io
n

Shared Branch Prediction State

73 Daniel Gruss — Graz University of Technology

Mistraining Location www.tugraz.at

same address space/

in place

same address space/

out of place

Victim

Victim

branch

Congruent

branch

A
d
d
re
ss

co
ll
is
io
n

Attacker

Shared Branch Prediction State

73 Daniel Gruss — Graz University of Technology

Mistraining Location www.tugraz.at

same address space/

in place

same address space/

out of place

Victim

Victim

branch

Congruent

branch

A
d
d
re
ss

co
ll
is
io
n

cross address space/

in place

Attacker

Shadow

branch

Shared Branch Prediction State

73 Daniel Gruss — Graz University of Technology

Mistraining Location www.tugraz.at

same address space/

in place

same address space/

out of place

Victim

Victim

branch

Congruent

branch

A
d
d
re
ss

co
ll
is
io
n

cross address space/

in place

cross address space/

out of place

Attacker

Shadow

branch

Congruent

branch

A
d
d
re
ss

co
ll
is
io
n

Shared Branch Prediction State

73 Daniel Gruss — Graz University of Technology

Reviving Race Conditions with Spectre: GhostRace www.tugraz.at

• Well known: Race conditions & use-after-free

• Fix: Proper cleanup & locking

• What happens to locks in transient execution?

74 Daniel Gruss — Graz University of Technology

Reviving Race Conditions with Spectre: GhostRace www.tugraz.at

• Well known: Race conditions & use-after-free

• Fix: Proper cleanup & locking

• What happens to locks in transient execution?

74 Daniel Gruss — Graz University of Technology

Reviving Race Conditions with Spectre: GhostRace www.tugraz.at

• Well known: Race conditions & use-after-free

• Fix: Proper cleanup & locking

• What happens to locks in transient execution?

74 Daniel Gruss — Graz University of Technology

GhostRace: Scenario www.tugraz.at

Thread 1: Thread 2:

func(A_ptr){

mutex lock(&Aptr ->m);

if(Aptr ->Bptr ->fptr){

Aptr ->Bptr ->fptr(arg);

}

kfree(Aptr->Bptr);

Aptr->Bptr = NULL;

mutex unlock(&Aptr ->m);

}

func(A_ptr){

mutex lock(&Aptr ->m);

if(Aptr ->Bptr ->fptr){

Aptr->Bptr->fptr(arg);

}

kfree(Aptr ->Bptr);

Aptr ->Bptr = NULL;

mutex unlock(&Aptr ->m);

}

75 Daniel Gruss — Graz University of Technology

GhostRace: Scenario www.tugraz.at

Thread 1: Thread 2:

func(A_ptr){

mutex lock(&Aptr ->m);

if(Aptr ->Bptr ->fptr){

Aptr ->Bptr ->fptr(arg);

}

kfree(Aptr->Bptr);

Aptr->Bptr = NULL;

mutex unlock(&Aptr ->m);

}

func(A_ptr){

mutex lock(&Aptr ->m);

if(Aptr ->Bptr ->fptr){

Aptr->Bptr->fptr(arg);

}

kfree(Aptr ->Bptr);

Aptr ->Bptr = NULL;

mutex unlock(&Aptr ->m);

}

75 Daniel Gruss — Graz University of Technology

GhostRace: Scenario www.tugraz.at

Thread 1: Thread 2:

func(A_ptr){

mutex lock(&Aptr ->m);

if(Aptr ->Bptr ->fptr){

Aptr ->Bptr ->fptr(arg);

}

kfree(Aptr->Bptr);

Aptr->Bptr = NULL;

mutex unlock(&Aptr ->m);

}

func(A_ptr){

mutex lock(&Aptr ->m);

if(Aptr ->Bptr ->fptr){

Aptr->Bptr->fptr(arg);

}

kfree(Aptr ->Bptr);

Aptr ->Bptr = NULL;

mutex unlock(&Aptr ->m);

}

75 Daniel Gruss — Graz University of Technology

GhostRace: Challenges www.tugraz.at

• Challenge 1: How to bypass the mutex in thread 2?

• Challenge 2: How to change memory at Aptr→Bptr after kfree but

before NULL?

→ IPI Storm: blast membarrier IPI to make

victim core stop forever after kfree & before NULL

76 Daniel Gruss — Graz University of Technology

GhostRace: Challenges www.tugraz.at

• Challenge 1: How to bypass the mutex in thread 2?

• Challenge 2: How to change memory at Aptr→Bptr after kfree but

before NULL?

→ IPI Storm: blast membarrier IPI to make

victim core stop forever after kfree & before NULL

76 Daniel Gruss — Graz University of Technology

GhostRace: Challenges www.tugraz.at

• Challenge 1: How to bypass the mutex in thread 2?

• Challenge 2: How to change memory at Aptr→Bptr after kfree but

before NULL?

→ IPI Storm: blast membarrier IPI to make

victim core stop forever after kfree & before NULL

76 Daniel Gruss — Graz University of Technology

GhostRace: Challenge 1 www.tugraz.at

if (! __mutex_trylock_fast(lock))

if(atomic_long_try_cmpxchg_acquire (&lock , ...))

↪→arch_atomic_long_try_cmpxchg_acquire (&lock , ,...)

↪→arch_atomic_try_cmpxchg_acquire (&lock ,,...)

↪→arch_atomic_try_cmpxchg (&lock ,,...)

↪→arch_try_cmpxchg ((&lock ,, ...)

↪→ __raw_try_cmpxchg(ptr , ...)({

asm volatile("lock cmpxchgq %2, %1"

: "=a" (ret), "+m" (*ptr)

: "r" (new), "0" (old)

: "memory"

);

})

return true;

• lock cmpxchgq is

atomic not serializing

• We can speculate past

it!

77 Daniel Gruss — Graz University of Technology

GhostRace: Challenge 1 www.tugraz.at

if (! __mutex_trylock_fast(lock))

if(atomic_long_try_cmpxchg_acquire (&lock , ...))

↪→arch_atomic_long_try_cmpxchg_acquire (&lock , ,...)

↪→arch_atomic_try_cmpxchg_acquire (&lock ,,...)

↪→arch_atomic_try_cmpxchg (&lock ,,...)

↪→arch_try_cmpxchg ((&lock ,, ...)

↪→ __raw_try_cmpxchg(ptr , ...)({

asm volatile("lock cmpxchgq %2, %1"

: "=a" (ret), "+m" (*ptr)

: "r" (new), "0" (old)

: "memory"

);

})

return true;

• lock cmpxchgq is

atomic not serializing

• We can speculate past

it!

77 Daniel Gruss — Graz University of Technology

GhostRace: Attack www.tugraz.at

• Freeze thread between kfree and

• Fill memory with suitable code

• Make victim thread speculate past lock & execute chosen

code

• Leak Data!

78 Daniel Gruss — Graz University of Technology

GhostRace: Attack www.tugraz.at

• Freeze thread between kfree and

• Fill memory with suitable code

• Make victim thread speculate past lock & execute chosen

code

• Leak Data!

78 Daniel Gruss — Graz University of Technology

GhostRace: Attack www.tugraz.at

• Freeze thread between kfree and

• Fill memory with suitable code

• Make victim thread speculate past lock & execute chosen

code

• Leak Data!

78 Daniel Gruss — Graz University of Technology

GhostRace: Attack www.tugraz.at

• Freeze thread between kfree and

• Fill memory with suitable code

• Make victim thread speculate past lock & execute chosen

code

• Leak Data!

78 Daniel Gruss — Graz University of Technology

Recapping: Transient Execution Attacks www.tugraz.at

Transient

cause?

Spectre-type

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

microarchitec-

tural buffer
Cross-address-space

Same-address-space

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

mistraining

strategy

Cross-address-space

Same-address-space

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

Cross-address-space

Same-address-space

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

in-place (IP) vs., out-of-place (OP)

Meltdown-NM

Meltdown-AC

Meltdown-DE

Meltdown-PF

Meltdown-UD

Meltdown-SS

Meltdown-BR

Meltdown-GP

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK

Meltdown-XD

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

prediction

fault

Meltdown-US-L1

Meltdown-US-L3

Meltdown-US-LFB

(The tree is even larger now, too large to show!)

79 Daniel Gruss — Graz University of Technology

Recapping: Transient Execution Attacks www.tugraz.at

Transient

cause?

Spectre-type

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

microarchitec-

tural buffer
Cross-address-space

Same-address-space

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

mistraining

strategy

Cross-address-space

Same-address-space

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

Cross-address-space

Same-address-space

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

in-place (IP) vs., out-of-place (OP)

Meltdown-NM

Meltdown-AC

Meltdown-DE

Meltdown-PF

Meltdown-UD

Meltdown-SS

Meltdown-BR

Meltdown-GP

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK

Meltdown-XD

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

prediction

fault

Meltdown-US-L1

Meltdown-US-L3

Meltdown-US-LFB

(The tree is even larger now, too large to show!)

79 Daniel Gruss — Graz University of Technology

Transient Execution Attacks www.tugraz.at

Leakage Injection

D
at

a

 M

et
ad

at
a

80 Daniel Gruss — Graz University of Technology

Transient Execution Attacks www.tugraz.at

Leakage Injection

D
at

a

 M

et
ad

at
a

80 Daniel Gruss — Graz University of Technology

Transient Execution Attacks www.tugraz.at

Leakage Injection

D
at

a

 M

et
ad

at
a

80 Daniel Gruss — Graz University of Technology

Transient Execution Attacks www.tugraz.at

Leakage Injection

D
at

a

 M

et
ad

at
a

80 Daniel Gruss — Graz University of Technology

Learn from it www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

81 Daniel Gruss — Graz University of Technology

Learn from it www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto

→ “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

81 Daniel Gruss — Graz University of Technology

Learn from it www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

81 Daniel Gruss — Graz University of Technology

Learn from it www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR

→ “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

81 Daniel Gruss — Graz University of Technology

Learn from it www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

81 Daniel Gruss — Graz University of Technology

Learn from it www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone

→ “not part of the threat model”

→ for years we solely optimized for performance

81 Daniel Gruss — Graz University of Technology

Learn from it www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

81 Daniel Gruss — Graz University of Technology

Learn from it www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance

81 Daniel Gruss — Graz University of Technology

When you read the manuals... www.tugraz.at

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications

82 Daniel Gruss — Graz University of Technology

When you read the manuals... www.tugraz.at

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications

82 Daniel Gruss — Graz University of Technology

When you read the manuals... www.tugraz.at

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications

82 Daniel Gruss — Graz University of Technology

Conclusion www.tugraz.at

• Underestimated microarchitectural attacks for a long time

• Meltdown, Spectre and Foreshadow exploit performance optimizations

• Allow to leak arbitrary memory

• CPUs are deterministic - there is no noise

83 Daniel Gruss — Graz University of Technology

Conclusion www.tugraz.at

• Underestimated microarchitectural attacks for a long time

• Meltdown, Spectre and Foreshadow exploit performance optimizations

• Allow to leak arbitrary memory

• CPUs are deterministic - there is no noise

83 Daniel Gruss — Graz University of Technology

Conclusion www.tugraz.at

• Underestimated microarchitectural attacks for a long time

• Meltdown, Spectre and Foreshadow exploit performance optimizations

• Allow to leak arbitrary memory

• CPUs are deterministic - there is no noise

83 Daniel Gruss — Graz University of Technology

Side-Channel Security

Chapter 4: Transient-Execution Attacks - Meltdown, Spectre & More

Daniel Gruss

March 20, 2025

Graz University of Technology

References i www.tugraz.at

[1] Jann Horn. speculative execution, variant 4: speculative store bypass. 2018.

[2] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,

Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and

Yuval Yarom. “Spectre Attacks: Exploiting Speculative Execution”. In: S&P. 2019.

[3] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu Song, and

Nael Abu-Ghazaleh. “Spectre Returns! Speculation Attacks using the Return Stack

Buffer”. In: WOOT. 2018.

[4] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and

Mike Hamburg. “Meltdown: Reading Kernel Memory from User Space”. In: USENIX

Security. 2018.

84 Daniel Gruss — Graz University of Technology

References ii www.tugraz.at

[5] G. Maisuradze and C. Rossow. “ret2spec: Speculative Execution Using Return Stack

Buffers”. In: CCS. 2018.

[6] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,

Thomas Prescher, and Daniel Gruss. “ZombieLoad: Cross-Privilege-Boundary Data

Sampling”. In: CCS. 2019.

[7] Martin Schwarzl, Thomas Schuster, Michael Schwarz, and Daniel Gruss. “Speculative

Dereferencing of Registers: Reviving Foreshadow”. In: arXiv:2008.02307 (2020).

[8] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank Piessens,

Mark Silberstein, Raoul Strackx, Thomas F Wenisch, and Yuval Yarom. Foreshadow-NG:

Breaking the Virtual Memory Abstraction with Transient Out-of-Order Execution. 2018.

url: https://foreshadowattack.eu/foreshadow-NG.pdf.

85 Daniel Gruss — Graz University of Technology

https://foreshadowattack.eu/foreshadow-NG.pdf

