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Vulnerability Assesment www.tugraz.at

A lot of confusion fueled the panic

• Which CPUs/vendors are affected?

• Are smartphones/IoT devices affected?

• Can the vulnerabilities be exploited remotely?

• What data is at risk?

• How hard is it to exploit the vulnerabilities?

• Is it already exploited?
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Let’s try to clarify these questions





Hardware Isolation www.tugraz.at

• Kernel is isolated from user space

• This isolation is a combination of

hardware and software

• User applications cannot access

anything from the kernel

• There is only a well-defined

interface → syscalls

Userspace Kernelspace

Applications
Operating
System Memory
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Meltdown Briefing www.tugraz.at

• Breaks isolation between
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• User applications can access kernel

addresses

• Entire physical memory is mapped

in the kernel

→ Meltdown can read whole DRAM
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Meltdown Requirements www.tugraz.at

• Only on Intel CPUs and some ARMs (e.g. Cortex

A15,A57,A72,A75)

• AMD and other ARMs seem to be unaffected

• Common cause: permission check done in parallel to load

instruction

• Race condition between permission check and dependent

operation(s)
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Meltdown Variant Requirements www.tugraz.at

• Meltdown variant: read privileged registers

• Limited to some registers, no memory content

• Reported by ARM

• Affects some ARMs (Cortex A15, A57, and A72)
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Meltdown Exploitability www.tugraz.at

• Meltdown requires code execution on the device (e.g. Apps)

• Untrusted code can read entire memory of device

• Cannot be triggered remotely

• Proof-of-concept code available online

• No info about environment required → easy to reproduce
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• Speculative execution leaves microarchitectural traces which leak

secret

9 Daniel Gruss — Graz University of Technology



Spectre Requirements www.tugraz.at

• On Intel and AMD CPUs

• Some ARMs (Cortex R and Cortex A) are also affected

• Common cause: speculative execution of branches

• Speculative execution leaves microarchitectural traces which leak

secret

9 Daniel Gruss — Graz University of Technology



Spectre Requirements www.tugraz.at

• On Intel and AMD CPUs

• Some ARMs (Cortex R and Cortex A) are also affected

• Common cause: speculative execution of branches

• Speculative execution leaves microarchitectural traces which leak

secret

9 Daniel Gruss — Graz University of Technology



Spectre Requirements www.tugraz.at

• On Intel and AMD CPUs

• Some ARMs (Cortex R and Cortex A) are also affected

• Common cause: speculative execution of branches

• Speculative execution leaves microarchitectural traces which leak

secret

9 Daniel Gruss — Graz University of Technology



Spectre Exploitability www.tugraz.at

• Spectre (typically) requires code execution on the device (e.g.

Apps)

• Untrusted code can convince trusted code to reveal secrets

• Can be triggered remotely (e.g. in the browser, NetSpectre)

• Proof-of-concept code available online

• Info about environment required → hard to reproduce
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Background



Out-of-order Execution







Wait for an hour
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Out-of-order Execution www.tugraz.at

int width = 10, height = 5;

float diagonal = sqrt(width * width

+ height * height);

int area = width * height;

printf("Area %d x %d = %d\n", width , height , area);
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Out-of-order execution www.tugraz.at
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• Instructions are fetched and decoded in the front-end

• Instructions are dispatched to the backend

• Instructions are processed by individual execution units
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• Instructions are executed out-of-order

• Instructions wait until their dependencies are ready

• Later instructions might execute prior earlier instructions

• Instructions retire in-order

• State becomes architecturally visible
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We are ready for the gory details of Meltdown



Building the Code www.tugraz.at

• Find something human readable, e.g., the Linux version

# sudo grep linux_banner /proc/kallsyms

ffffffff81a000e0 R linux_banner
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Building the Code www.tugraz.at

char data = *(char*) 0xffffffff81a000e0;

printf("%c\n", data);

15 Daniel Gruss — Graz University of Technology



Building the Code www.tugraz.at

• Compile and run

segfault at ffffffff81a000e0 ip

0000000000400535

sp 00007 ffce4a80610 error 5 in reader

• Kernel addresses are of course not accessible

• Any invalid access throws an exception → segmentation fault
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Building the Code www.tugraz.at

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

17 Daniel Gruss — Graz University of Technology



Building the Code www.tugraz.at

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

17 Daniel Gruss — Graz University of Technology



Building the Code www.tugraz.at

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

17 Daniel Gruss — Graz University of Technology



Building the Code www.tugraz.at

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

17 Daniel Gruss — Graz University of Technology



Building the Code www.tugraz.at

• Just catch the segmentation fault!

• We can simply install a signal handler

• And if an exception occurs, just jump back and continue

• Then we can read the value

• Sounds like a good idea

17 Daniel Gruss — Graz University of Technology



Building the Code www.tugraz.at

• Still no kernel memory

• Maybe it is not that straight forward

• Privilege checks seem to work

• Are privilege checks also done when executing instructions out of order?

• Problem: out-of-order instructions are not visible
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Building the Code www.tugraz.at

• Adapted code

*( volatile char*) 0;

array [0] = 0;

• volatile because compiler was not happy

warning: statement with no effect [-Wunused -value]

*(char*) 0;

• Static code analyzer is still not happy

warning: Dereference of null pointer

*( volatile char*)0;
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Building Meltdown www.tugraz.at

• Flush+Reload over all pages of the array
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• “Unreachable” code line was actually executed

• Exception was only thrown afterwards
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Building Meltdown www.tugraz.at

• Out-of-order instructions leave microarchitectural traces

• We can see them for example in the cache

• Give such instructions a name: transient instructions

• We can indirectly observe the execution of transient instructions
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Building Meltdown www.tugraz.at

• Combine the two things

char data = *(char*)0xffffffff81a000e0;

array[data * 4096] = 0;

• Then check whether any part of array is cached
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Building Meltdown www.tugraz.at

• Using out-of-order execution, we can read data at (almost) any address*

• Privilege checks are sometimes too slow

• Allows to leak kernel memory

• Entire physical memory is typically also accessible in kernel address space
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Details: Exception Handling www.tugraz.at

• Basic Meltdown code leads to a crash (segfault)

• How to prevent the crash?

Fault

Handling

Fault

Suppression

Fault

Prevention
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Meltdown with Fault Suppression www.tugraz.at

• Intel TSX to suppress exceptions instead of signal handler

if(xbegin () == XBEGIN_STARTED) {

char secret = *(char*) 0xffffffff81a000e0;

array[secret * 4096] = 0;

xend();

}

for (size_t i = 0; i < 256; i++) {

if (flush_and_reload(array + i * 4096) == CACHE_HIT) {

printf("%c\n", i);

}

}

26 Daniel Gruss — Graz University of Technology



Meltdown with Fault Prevention www.tugraz.at

• Speculative execution to prevent exceptions

int speculate = rand() % 2;

size_t address = (0 xffffffff81a000e0 * speculate) +

(( size_t)&zero * (1 - speculate));

if(! speculate) {

char secret = *(char*) address;

array[secret * 4096] = 0;

}

for (size_t i = 0; i < 256; i++) {

if (flush_and_reload(array + i * 4096) == CACHE_HIT) {

printf("%c\n", i);

}

}
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Uncached memory www.tugraz.at

• Initial assumption: we can only read data stored in the L1 with

Meltdown

. Sort of:

• Experiment where a thread flushes the value constantly and a thread

on a different core reloads the value

• Target data is not in the L1 cache of the attacking core

• We still leak the data slowly, why?

• → Original Meltdown only leaks from the L1, but we can get data

there with load gadgets [7]
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Practical attacks www.tugraz.at

• Dumping the entire physical memory takes some time

• Not very practical in most scenarios

• Can we mount more targeted attacks?
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VeraCrypt www.tugraz.at

• Open-source utility for disk encryption

• Fork of TrueCrypt

• Cryptographic keys are stored in RAM

• With Meltdown, we can extract the keys from DRAM
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Meltdown Root Cause www.tugraz.at

operation #n
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Generalization www.tugraz.at

• Meltdown is a whole category of vulnerabilities

• Not only the user-accessible check

• Looking closer at the check...
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Paging www.tugraz.at

• CPU uses virtual address spaces to isolate processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames using page

tables

33 Daniel Gruss — Graz University of Technology



Paging www.tugraz.at

• CPU uses virtual address spaces to isolate processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames using page

tables

33 Daniel Gruss — Graz University of Technology



Paging www.tugraz.at

• CPU uses virtual address spaces to isolate processes

• Physical memory is organized in page frames

• Virtual memory pages are mapped to page frames using page

tables

33 Daniel Gruss — Graz University of Technology



Address Translation on x86-64 www.tugraz.at

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
···

#PML4I
···

PML4E 511

PDPT

PDPTE 0

PDPTE 1
···

#PDPTI
···

PDPTE 511

Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095
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Page Table Entry www.tugraz.at

P RW US WT UC R D S G Ignored

Physical Page Number
Ignored X

• User/Supervisor bit defines in which privilege level the page can be accessed
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Physical Page Number
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• Present bit is the next obvious bit
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Foreshadow-NG [8] www.tugraz.at

• An even worse bug → Foreshadow-NG/L1TF

• Exploitable from VMs

• Allows leaking data from the L1 cache

• Same mechanism as Meltdown

• Just a different bit in the PTE
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Meltdown Subtree: Exploiting Page-Table Bits www.tugraz.at

Pagefault

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK-L1

Meltdown-SM-SB

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP
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May 2019: Meltdown Redux www.tugraz.at
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Microarchitectural Data Sampling: RIDL, ZombieLoad, Fallout www.tugraz.at

• May 2019: 3 new Meltdown-type attacks

• Leakage from: line-fill buffer, store buffer, load ports

• Key take-aways:

1. Leakage from various intermediate buffers (⊃ L1D)

2. Transient execution through microcode assists (⊃ exceptions)

There is no noise. Noise is just someone else’s data
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Analyse the Noise www.tugraz.at

Lemma 1: Noise is someone else’s data

lim =
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ZombieLoad [6] www.tugraz.at

Deep Dive: Intel Analysis of Microarchitectural Data Sampling

Fill buffers may retain stale data from prior memory requests until a new memory request

overwrites the fill buffer.

Under certain conditions, the fill buffer may speculatively forward

data, including stale data, to a load operation that will cause a fault/assist.
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ZombieLoad Cache-line Conflicts www.tugraz.at

Page

cache line
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Complex Load Situations www.tugraz.at
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Data Encoding www.tugraz.at
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ZombieLoad Variant 1 www.tugraz.at
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ZombieLoad Variant 3 www.tugraz.at
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Microcode Assist (Variant 3) www.tugraz.at
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Microcode Assist (Variant 3) www.tugraz.at

• Microcode assist handles rare cases

→ Microarchitectural fault

• Setting accessed/dirty bit in page table

→ Regularly reset on Windows
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ZombieLoad Variant 2 www.tugraz.at
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Abort Transactions www.tugraz.at

• Data Conflicts

• Limited Transactional Resources

• Certain Instructions

• IO instructions, syscall, . . .

• Synchronous Exception Events

• #BR, #PF, #DB, #BP/INT3, . . .
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TSX Intel Manual www.tugraz.at

12.2.4.5 Miscellaneous Transactional Aborts

Asynchronous events (NMI, SMI, INTR, IPI, PMI, etc.) occurring during

transactional execution may cause the transactional execution to abort

and transition to a non-transactional execution.

[...] For example,

operating systems with timer ticks generate interrupts that can cause

transactional aborts.
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Attack Targets www.tugraz.at

• Leak data on same and sibling hyperthread

Applications Operating System SGX Enclave

Virtual Machine Hypervisor
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ZombieLoad Insights www.tugraz.at
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MDS take-away: Microcode assists www.tugraz.at

• Optimization: only implement fast-path in silicon

• More complex edge cases (slow-path) in microcode

• Need help? Re-issue the load with a microcode assist

• assist == “microarchitectural fault”

• Example: setting A/D bits in the page table walk

• Likely many more!
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Extended Meltdown tree with microcode assists https://transient.failwww.tugraz.at

Transient cause Meltdown-type

Meltdown-NM-REG

Meltdown-AC

Meltdown-DE

Meltdown-PF

Meltdown-UD

Meltdown-SS

Meltdown-BR

Meltdown-GP

Meltdown-MCA

Meltdown-AC-LFB

Meltdown-AC-LP

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

Meltdown-CPL-REG

Meltdown-NC-SB

Meltdown-AVX

Meltdown-AD

Meltdown-TAA

Meltdown-PRM-LFB

Meltdown-UC-LFB

Meltdown-US-L1

Meltdown-US-LFB

Meltdown-US-SB

Meltdown-P-L1

Meltdown-P-LFB

Meltdown-P-SB

Meltdown-P-LP

Meltdown-PK-L1

Meltdown-PK-SB

Meltdown-AVX-SB

Meltdown-AVX-LP

Meltdown-AD-LFB

Meltdown-AD-SB

Meltdown-TAA-LFB

Meltdown-TAA-LP

Meltdown-TAA-SB

59 Daniel Gruss — Graz University of Technology

https://transient.fail




















»A table for 6 please«





Speculative Cooking



»A table for 6 please«











Speculation Causes www.tugraz.at

• Many predictors in modern CPUs

• Branch taken/not taken (PHT)

• Call/Jump destination (BTB)

• Function return destination (RSB)

• Load matches previous store (STL)

• Most are even shared among processes
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Spectre-PHT (Variant 1) www.tugraz.at
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Spectre-BTB (Variant 2) www.tugraz.at

a->move()

Animal* a = bird;

LUT[data[a->m] * 4096] 0

fly
()
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swim()
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Spectre-STL (Variant 4) [1] www.tugraz.at

• Loads can be executed out-of-order

→ need to check for previous

stores

• Check is time consuming

• Optimization: Speculate whether a store happened or not

• no store: bypass check

• stall
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Spectre-RSB (Variant 5) [3, 5] www.tugraz.at

Victim Attacker

function()

...

RSB
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Spectre Root Cause www.tugraz.at

operation #n

time
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Mistraining Location www.tugraz.at
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Reviving Race Conditions with Spectre: GhostRace www.tugraz.at

• Well known: Race conditions & use-after-free

• Fix: Proper cleanup & locking

• What happens to locks in transient execution?
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GhostRace: Scenario www.tugraz.at

Thread 1: Thread 2:

func(A_ptr){

mutex lock(&Aptr ->m);

if(Aptr ->Bptr ->fptr){

Aptr ->Bptr ->fptr(arg);

}

kfree(Aptr->Bptr);

Aptr->Bptr = NULL;

mutex unlock(&Aptr ->m);

}

func(A_ptr){

mutex lock(&Aptr ->m);

if(Aptr ->Bptr ->fptr){

Aptr->Bptr->fptr(arg);

}

kfree(Aptr ->Bptr);

Aptr ->Bptr = NULL;

mutex unlock(&Aptr ->m);

}
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GhostRace: Challenges www.tugraz.at

• Challenge 1: How to bypass the mutex in thread 2?

• Challenge 2: How to change memory at Aptr→Bptr after kfree but

before NULL?

→ IPI Storm: blast membarrier IPI to make

victim core stop forever after kfree & before NULL

76 Daniel Gruss — Graz University of Technology



GhostRace: Challenges www.tugraz.at

• Challenge 1: How to bypass the mutex in thread 2?

• Challenge 2: How to change memory at Aptr→Bptr after kfree but

before NULL?

→ IPI Storm: blast membarrier IPI to make

victim core stop forever after kfree & before NULL

76 Daniel Gruss — Graz University of Technology



GhostRace: Challenges www.tugraz.at

• Challenge 1: How to bypass the mutex in thread 2?

• Challenge 2: How to change memory at Aptr→Bptr after kfree but

before NULL?

→ IPI Storm: blast membarrier IPI to make

victim core stop forever after kfree & before NULL

76 Daniel Gruss — Graz University of Technology



GhostRace: Challenge 1 www.tugraz.at

if (! __mutex_trylock_fast(lock))

if(atomic_long_try_cmpxchg_acquire (&lock , ...))

↪→arch_atomic_long_try_cmpxchg_acquire (&lock , ,...)

↪→arch_atomic_try_cmpxchg_acquire (&lock ,,...)

↪→arch_atomic_try_cmpxchg (&lock ,,...)

↪→arch_try_cmpxchg ((&lock ,, ...)

↪→ __raw_try_cmpxchg(ptr , ...)({

asm volatile( "lock cmpxchgq %2, %1"

: "=a" (ret), "+m" (*ptr)

: "r" (new), "0" (old)

: "memory"

);

})

return true;

• lock cmpxchgq is

atomic not serializing

• We can speculate past

it!
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GhostRace: Attack www.tugraz.at

• Freeze thread between kfree and

• Fill memory with suitable code

• Make victim thread speculate past lock & execute chosen

code

• Leak Data!
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Recapping: Transient Execution Attacks www.tugraz.at

Transient

cause?

Spectre-type

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

microarchitec-

tural buffer
Cross-address-space

Same-address-space

PHT-CA-IP

PHT-CA-OP

PHT-SA-IP

PHT-SA-OP

mistraining

strategy

Cross-address-space

Same-address-space

BTB-CA-IP

BTB-CA-OP

BTB-SA-IP

BTB-SA-OP

Cross-address-space

Same-address-space

RSB-CA-IP

RSB-CA-OP

RSB-SA-IP

RSB-SA-OP

in-place (IP) vs., out-of-place (OP)

Meltdown-NM

Meltdown-AC

Meltdown-DE

Meltdown-PF

Meltdown-UD

Meltdown-SS

Meltdown-BR

Meltdown-GP

Meltdown-US

Meltdown-P

Meltdown-RW

Meltdown-PK

Meltdown-XD

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

prediction

fault

Meltdown-US-L1

Meltdown-US-L3

Meltdown-US-LFB

(The tree is even larger now, too large to show!)
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Meltdown-XD

Meltdown-SM-SB

Meltdown-MPX

Meltdown-BND

prediction

fault

Meltdown-US-L1

Meltdown-US-L3

Meltdown-US-LFB

(The tree is even larger now, too large to show!)
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Learn from it www.tugraz.at

We have ignored software side-channels for many many years:

• attacks on crypto → “software should be fixed”

• attacks on ASLR → “ASLR is broken anyway”

• attacks on SGX and TrustZone → “not part of the threat model”

→ for years we solely optimized for performance
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When you read the manuals... www.tugraz.at

After learning about a side channel you realize:

• the side channels were documented in the Intel manual

• only now we understand the implications
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Conclusion www.tugraz.at

• Underestimated microarchitectural attacks for a long time

• Meltdown, Spectre and Foreshadow exploit performance optimizations

• Allow to leak arbitrary memory

• CPUs are deterministic - there is no noise
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