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TLB and Paging

• Paging: memory translated page-wise from virtual to physical

• TLB (translation lookaside buffer) caches virtual to physical mapping

• TLB has some latency

• Worst case for Cache: mapping not in TLB, need to load mapping from

RAM

• Solution: Use virtual addresses instead of physical addresses
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Cache indexing methods

• VIVT: Virtually indexed, virtually tagged

• PIPT: Physically indexed, physically tagged

• PIVT: Physically indexed, virtually tagged

• VIPT: Virtually indexed, physically tagged
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Remarks

• L1 caches: VIVT or VIPT

• L2/L3 caches: PIPT
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Flush+Reload

Attacker
address space Cache

Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache

step 1: attacker flushes the shared line

step 2: victim loads data while performing encryption

step 3: attacker reloads data→ fast access if the victim loaded the line

reloads data



Flush+Reload

Pros: fine granularity (1 line)

Cons: restrictive

1. needs clflush instruction (not available e.g., in JS)

2. needs shared memory



Variants of Flush+Reload

• Flush+Flush [2]

• Evict+Reload [3] on ARM [5]



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

loads data



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

loads data



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

loads data



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

loads data



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

step 2: attacker probes data to determine if the set was accessed



Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

step 2: attacker probes data to determine if the set was accessed

fast
access



Prime+Probe
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step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

step 2: attacker probes data to determine if the set was accessed

slow
access



Prime+Probe

Pros: less restrictive

1. no need for clflush instruction (not available e.g., in JS)

2. no need for shared memory

Cons: coarser granularity (1 set)



Issues with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?

2. without any privilege?

3. and in which order do we access them?



#1.1: Which physical addresses to access?

“LRU eviction”:

• assume that cache uses LRU replacement

• accessing n addresses from the same cache set to evict an n-way set

• eviction from last level → from whole hierarchy (it’s inclusive!)



#1.2: Which addresses map to the same set?
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• reverse-engineered by [4, 7, 9]

• hash function basically an XOR

of address bits
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#1.2: Which addresses map to the same set?

3 functions, depending on the number of cores

Address bit

3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0

7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

2 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

4 cores
o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

8 cores

o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕



#2: Obtain information without root privileges

• last-level cache is physically indexed

• root privileges needed for physical addresses

• use 2MB pages → lowest 21 bits are the same as virtual address

→ enough to compute the cache set
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#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow
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#3.3: Cache eviction strategy
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Figure 1: Fast and effective on Haswell. Eviction rate >99.97%.



Cache covert channels



Side channels vs covert channels

• side channel: attacker spies a victim process

• covert channel: communication between two processes

• that are not supposed to communicate

• that are collaborating



1-bit cache covert channels

ideas for 1-bit channels:

• Prime+Probe: use one cache set to transmit

0: sender does not access the set → low access time in receiver

1: sender does access the set → high access time in receiver

• Flush+Reload/Flush+Flush/Evict+Reload: use one address to transmit

0: sender does not access the address → high access time in receiver

1: sender does access the address → low access time in receiver
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1-bit covert channels

• 1 bit data, 0 bit control?

• idea: divide time into slices (e.g., 50µs frames)

• synchronize sender and receiver with a shared clock
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Problems of 1-bit covert channels

• errors?

→ error-correcting codes

• retransmission may be more efficient (less overhead)

• desynchronization

• optimal transmission duration may vary



Problems of 1-bit covert channels

• errors? → error-correcting codes

• retransmission may be more efficient (less overhead)

• desynchronization

• optimal transmission duration may vary



Multi-bit covert channels

• combine multiple 1-bit channels

• avoid interferences

→ higher performance

• use 1-bit for sending = true/false
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Packets / frames

Organize data in packets / frames:

• some data bits

• check sum

• sequence number

→ keep sender and receiver synchronous

→ check whether retransmission is necessary



Efficient retransmission

How can the sender know when to retransmit?

• idea: acknowledge packets (requires a backward channel)

• use some bits as a backward channel

• use the same bits as a backward channel (sender sending bit/receiver

sending bit)

• why wait for retransmission?

→ sender should retransmit until receiver acknowledged
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Raw capacity C

• number of bits per second

• measure over ≥ 1 minute

s bits transmitted in 1 minute:

C =
s

60



Bit error rate p

• count bits that are wrong w

• count total bits sent bs

• count total bits received br

Error rate:

p =
w + |br − bs|
max (bs, br)

,

or if br = bs:

p =
w

br
,



Capacity

True capacity T :

T = C · (1 + ((1− p) · log2 (1− p) + p · log2 (p)))

C is the raw capacity and p is the bit error rate.



Capacity
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State of the art

method raw capacity err. rate true capacity env.

F+F [2] 3968Kbps 0.840% 3690Kbps native

F+R [2] 2384Kbps 0.005% 2382Kbps native

E+R [5] 1141Kbps 1.100% 1041Kbps native

P+P [8] 601Kbps 0.000% 601Kbps native

P+P [6] 600Kbps 1.000% 552Kbps virt

P+P [8] 362Kbps 0.000% 362Kbps native





Cache template attacks



Cache Template Attacks

• State of the art: cache attacks are powerful

• Problem: manual identification of attack targets

• Solution: Cache Template Attacks

• Automatically find any secret-dependent cache access

• Can be used for attacks and to improve software

• Examples:

• Cache-based keylogger

• Automatic attacks on crypto algorithms
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Challenges

• How to locate key-dependent memory accesses?

• It’s complicated:

• Large binaries and libraries (third-party code)

• Many libraries (gedit: 60MB)

• Closed-source / unknown binaries

• Self-compiled binaries

• Difficult to find all exploitable addresses
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Profiling Phase

• Preprocessing step to find exploitable addresses automatically

• w.r.t. “events” (keystrokes, encryptions, ...)

• called “Cache Template”

Exploitation Phase

• Monitor exploitable addresses
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Profiling Phase
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Attacker address space
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Cache Template Attack Demo



Profiling Phase: 1 Event, 1 Address
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Profiling Phase: All Events, 1 Address
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Distinguish n from other keys by monitoring 0x7c800



Profiling Phase: All Events, All Addresses
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Attack 3: Locate AES T-Tables

AES uses T-Tables (precomputed from S-Boxes)

• 4 T-Tables

•
T0

[
k{0,4,8,12} ⊕ p{0,4,8,12}

]
T1

[
k{1,5,9,13} ⊕ p{1,5,9,13}

]
...

• If we know which entry of T is accessed, we know the result of ki ⊕ pi.

• Known-plaintext attack (pi is known) → ki can be determined
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AES T-Table implementation from OpenSSL 1.0.2

• Most addresses in two groups:

• Cache hit ratio 100% (always cache hits)

• Cache hit ratio 0% (no cache hits)

• One 4096 byte memory block:

• Cache hit ratio of 92%

• Cache hits depend on key value and plaintext value

• The T-Tables
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• Known-plaintext attack

• Events: encryption with only one fixed key byte

• Profile each event
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Attack 4: AES T-Table Template

k0 = 0x00 k0 = 0x55

(transposed)
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AES T-Table implementation from OpenSSL 1.0.2

• Known-plaintext attack

• Exploitation phase:

• Eliminate key candidates

• Reduction of key space in first-round attack:

• 64 bits after 16–160 encryptions

• State of the art: full key recovery after 30000 encryptions
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AES T-Table Template Attack: Exercise Hints

• Exploitation phase only

• get table addresses from AESlib_get_table_address([0-3])

• Eliminate key candidates

• Fix one plaintext byte at a time
• One cacheline will be accessed with 100% probability

• Infer the corresponding key byte upper nibble

• pi ⊕ ? = Tentry

• Repeat for other plaintext bytes

• Recover 64 bits of key

• 3 bonus points for full key recovery
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Conclusion

• Technique to find any cache side-channel leakage

• Attacks

• Detect vulnerabilities

• Works on virtually all Intel CPUs

• Works even with unknown binaries

• Marks a change of perspective:

• Large scale analysis of binaries

• Large scale automated attacks

• Apply templating to other side-channel leakage
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• Large scale automated attacks
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Flush+Reload Variants



Evict+Reload

• Variant of Flush+Reload with cache eviction instead of clflush

• Works on ARMv7

• Applicable to millions of devices

• Cache Template Attacks using Evict+Reload

• ARMageddon: Last-Level Cache Attacks on Mobile Devices [5]





Flush+Flush: Motivation

• cache attacks → many cache misses

• detect via performance counters

→ good idea, but is it good enough?

• causing a cache flush ̸= causing a cache miss
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Flush+Flush: Motivation

• cache attacks → many cache misses

• detect via performance counters

→ good idea, but is it good enough?

• causing a cache flush ̸= causing a cache miss



clflush execution time
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Flush+Flush

Attacker
address space Cache

Victim
address space

flushes (slow)



Flush+Flush: Conclusion

• attacker causes no direct cache misses

→ fast

→ stealthy

• same side channel targets as Flush+Reload

• 496KB/s covert channel
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Prefetch Side-Channel Attacks



Overview

• prefetch instructions don’t check privileges

• prefetch instructions leak timing information

exploit this to:

• locate a driver in kernel = defeat KASLR

• translate virtual to physical addresses
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Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in

cache. Use of software prefetch should be limited to memory addresses that are

managed or owned within the application context. Prefetching to addresses that

are not mapped to physical pages can experience non-deterministic performance

penalty. For example specifying a NULL pointer (0L) as address for a prefetch

can cause long delays.



Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in

cache.

Use of software prefetch should be limited to memory addresses that are

managed or owned within the application context. Prefetching to addresses that

are not mapped to physical pages can experience non-deterministic performance

penalty. For example specifying a NULL pointer (0L) as address for a prefetch

can cause long delays.



Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in

cache. Use of software prefetch should be limited to memory addresses that are

managed or owned within the application context.

Prefetching to addresses that

are not mapped to physical pages can experience non-deterministic performance

penalty. For example specifying a NULL pointer (0L) as address for a prefetch

can cause long delays.



Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in

cache. Use of software prefetch should be limited to memory addresses that are

managed or owned within the application context. Prefetching to addresses that

are not mapped to physical pages can experience non-deterministic performance

penalty.

For example specifying a NULL pointer (0L) as address for a prefetch

can cause long delays.



Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in
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CPU Caches

Memory (DRAM) is slow compared to the CPU

• buffer frequently used memory

• every memory reference goes through the cache

• based on physical addresses



Memory Access Latency
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Unprivileged cache maintainance

Optimize cache usage:

• prefetch: suggest CPU to load data into cache

• clflush: throw out data from all caches

... based on virtual addresses



Software prefetching

prefetch instructions are somewhat unusual

• hints – can be ignored by the CPU

• do not check privileges or cause exceptions

but they do need to translate virtual to physical



Kernel must be mapped in every address space

Today’s operating systems:

Shared address space

User memory Kernel memory
0 −1

context switch



Address translation on x86-64

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
···

#PML4I
···

PML4E 511

PDPT

PDPTE 0

PDPTE 1
···

#PDPTI
···

PDPTE 511

Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095



Address Translation Caches

Core 0

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Core 1

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Page table structures in
system memory (DRAM)

L
ookup

direction



Address Space Layout Randomization (ASLR)

Process A

0 −1

Process B

0 −1

Process C

0 −1

Same library – different offset!
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Address-Translation Oracle

User space Cache

Kernel space

flush
clflush



Address-Translation Oracle

User space Cache

Kernel space

loa
d

prefetch



Address-Translation Oracle

User space Cache

Kernel space

reload (cache hit)

load



Translation-Level Oracle
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Timing the prefetch instruction

The CPU may reorder instructions

instruction 1

cpuid

instruction 2

cpuid

instruction 3

but not over cpuid!



Breaking KASLR with Prefetch
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Last-level Cache Addressing



Last-level cache addressing

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line



Last-level cache addressing

• last-level cache → as many slices as cores

• undocumented hash function that maps a physical address to a slice

• designed for performance

H
physical address

30 bits
slice (o0, . . . , ok−1)

k bits
For 2k slices:



Prime+Probe on recent procesors?

Complex addressing → impossible to target a set

Attacker
address space Cache Victim

address space

?

?

?

?



Reverse engineering method

1. find some way to map one address to one slice

2. repeat for every address with a 64B stride

3. infer a function out of it
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• with performance counters

• with a timing attack

• using clflush

• using memory access
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Method #1: Performance counters

• event UNC CBO CACHE LOOKUP counts accesses to a slice

slice 0 slice 1 slice 2 slice 3

CBo 0 CBo 1 CBo 2 CBo 3

H
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UNC CBO CACHE LOOKUP 0 0 0 0
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Method #1: Performance counters

• event UNC CBO CACHE LOOKUP counts accesses to a slice

slice 0 slice 1 slice 2 slice 3

CBo 0 CBo 1 CBo 2 CBo 3

H

UNC CBO CACHE LOOKUP
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1 0 1 1

CBo 3
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Mapping a physical addr. to a slice [7]

1. translate virtual to physical address with /proc/pid/pagemap

2. set up monitoring session

3. repeat access to a single address

→ hint: clflush is already counted as an access

4. read UNC CBO CACHE LOOKUP event for each CBo

5. slice is the one that has the maximum lookup events
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Mapping physical addresses to slices
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Method #2: Flush+Flush [2]

• side channel similar to Flush+Reload, using only clflush execution time

differences

• time difference between cached and not cached

• time difference between slices
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• side channel similar to Flush+Reload, using only clflush execution time
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• time difference between cached and not cached
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Last-level cache and Ring interconnect

Intel Optimization Manual:

“The LLC hit latency [...] depends on the core location relative to the LLC block,

and how far the request needs to travel on the ring.”



clflush time difference between slices
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Inferring the function

Two cases:

1. linear function: 2n number of cores

2. non-linear function: the rest



Methods

• brute-force

• smarter method

• let a solver do it! [1]

Perspective: the first two methods assume that we know what the functions look

like (XORs of address bits)



Brute force

For each bit of output o0, . . . , ok−1

1. try one function

→ e.g., b6 ⊕ b7 ⊕ . . .⊕ b32

2. test if the function corresponds to the mapping you already have

3. if not → try another function until it works!
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Brute force

For each bit of output o0, . . . , ok−1

1. try one function

→ e.g., b6 ⊕ b7 ⊕ . . .⊕ b32

2. test if the function corresponds to the mapping you already have

3. if not → try another function until it works!

Fail fast, but still tolerate some errors



Finding linear function (1/2) [7]

• XOR is commutative: A⊕B ⇔ B ⊕ A

• XOR is associative: A⊕ (B ⊕ C) ⇔ (A⊕B)⊕ C

• you can treat all the input bits independently



Finding linear function (1/2) [7]

• XOR is commutative: A⊕B ⇔ B ⊕ A

• XOR is associative: A⊕ (B ⊕ C) ⇔ (A⊕B)⊕ C

• you can treat all the input bits independently



Finding linear function (1/2) [7]

• XOR is commutative: A⊕B ⇔ B ⊕ A
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Finding linear function (2/2) [7]

For each bit of output o0, . . . , ok−1

• find two addresses that differ by a single bit bi

• compare output

• if different: bi is part of the function

• if equal: bi is not part of the function
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