
Side-Channel Security

Chapter 2: Caches & Cache Attacks

Daniel Gruss, Roland Czerny

March 6, 2025

Graz University of Technology

TLB and Paging

• Paging: memory translated page-wise from virtual to physical

• TLB (translation lookaside buffer) caches virtual to physical mapping

• TLB has some latency

• Worst case for Cache: mapping not in TLB, need to load mapping from

RAM

• Solution: Use virtual addresses instead of physical addresses

TLB and Paging

• Paging: memory translated page-wise from virtual to physical

• TLB (translation lookaside buffer) caches virtual to physical mapping

• TLB has some latency

• Worst case for Cache: mapping not in TLB, need to load mapping from

RAM

• Solution: Use virtual addresses instead of physical addresses

Cache indexing methods

• VIVT: Virtually indexed, virtually tagged

• PIPT: Physically indexed, physically tagged

• PIVT: Physically indexed, virtually tagged

• VIPT: Virtually indexed, physically tagged

VIVT

Virtual Address Cache

Tag Datab bitsn bits

Cache Index

VPN

f 2n cache sets

Way 2 Tag Way 2 Data
Way 1 Tag Way 1 Data

=?

=?Tag

Data

• Fast

• Virtual Tag is not unique (Context switches)

• Shared memory more than once in cache

VIVT

Virtual Address Cache

Tag Datab bitsn bits

Cache Index

VPN

f 2n cache sets

Way 2 Tag Way 2 Data
Way 1 Tag Way 1 Data

=?

=?Tag

Data

• Fast

• Virtual Tag is not unique (Context switches)

• Shared memory more than once in cache

PIPT

Virtual Address Cache

Tag Datab bitsn bits

Cac
he I

nde
x

TLB

b bitsn bits

f

2n cache sets

Way 2 Tag Way 2 Data
Way 1 Tag Way 1 Data

=?

=?Tag

Data

• Slow (TLB lookup for index)

• Shared memory only once in cache!

PIPT

Virtual Address Cache

Tag Datab bitsn bits

Cac
he I

nde
x

TLB

b bitsn bits

f

2n cache sets

Way 2 Tag Way 2 Data
Way 1 Tag Way 1 Data

=?

=?Tag

Data

• Slow (TLB lookup for index)

• Shared memory only once in cache!

(PIVT)

Virtual Address Cache

Tag Datab bitsn bits

Cac
he I

nde
x

TLB

b bitsn bits

f

2n cache sets

Way 2 Tag Way 2 Data
Way 1 Tag Way 1 Data

=?

=?Tag

Data

• Slow (TLB lookup for index)

• Virtual Tag is not unique (Context switches)

• Shared memory more than once in cache

(PIVT)

Virtual Address Cache

Tag Datab bitsn bits

Cac
he I

nde
x

TLB

b bitsn bits

f

2n cache sets

Way 2 Tag Way 2 Data
Way 1 Tag Way 1 Data

=?

=?Tag

Data

• Slow (TLB lookup for index)

• Virtual Tag is not unique (Context switches)

• Shared memory more than once in cache

VIPT

Virtual Address Cache

Tag Datab bitsn bitsVPN

Cache Index

TLB

PPN

f

2n cache sets

Way 2 Tag Way 2 Data
Way 1 Tag Way 1 Data

=?

=?Tag

Data

• Fast

• 4 KiB pages: last 12 bits of VA and PA are equal

• Using more bits is unpractical (like VIVT)

→ Cache size ≤ # ways · page size

VIPT

Virtual Address Cache

Tag Datab bitsn bitsVPN

Cache Index

TLB

PPN

f

2n cache sets

Way 2 Tag Way 2 Data
Way 1 Tag Way 1 Data

=?

=?Tag

Data

• Fast

• 4 KiB pages: last 12 bits of VA and PA are equal

• Using more bits is unpractical (like VIVT)

→ Cache size ≤ # ways · page size

Remarks

• L1 caches: VIVT or VIPT

• L2/L3 caches: PIPT

Flush+Reload

Attacker
address space Cache

Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache

Flush+Reload

Attacker
address space Cache

Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache

cached cached

Flush+Reload

Attacker
address space Cache

Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache

step 1: attacker flushes the shared line

flushes

Flush+Reload

Attacker
address space Cache

Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache

step 1: attacker flushes the shared line

step 2: victim loads data while performing encryption

loads data

Flush+Reload

Attacker
address space Cache

Victim
address space

step 0: attacker maps shared library→ shared memory, shared in cache

step 1: attacker flushes the shared line

step 2: victim loads data while performing encryption

step 3: attacker reloads data→ fast access if the victim loaded the line

reloads data

Flush+Reload

Pros: fine granularity (1 line)

Cons: restrictive

1. needs clflush instruction (not available e.g., in JS)

2. needs shared memory

Variants of Flush+Reload

• Flush+Flush [2]

• Evict+Reload [3] on ARM [5]

Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

loads data

Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

loads data

Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

loads data

Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

loads data

Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

step 2: attacker probes data to determine if the set was accessed

Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

step 2: attacker probes data to determine if the set was accessed

fast
access

Prime+Probe

Attacker
address space Cache

Victim
address space

step 0: attacker fills the cache (prime)

step 1: victim evicts cache lines while performing encryption

step 2: attacker probes data to determine if the set was accessed

slow
access

Prime+Probe

Pros: less restrictive

1. no need for clflush instruction (not available e.g., in JS)

2. no need for shared memory

Cons: coarser granularity (1 set)

Issues with Prime+Probe

We need to evict caches lines without clflush or shared memory:

1. which addresses do we access to have congruent cache lines?

2. without any privilege?

3. and in which order do we access them?

#1.1: Which physical addresses to access?

“LRU eviction”:

• assume that cache uses LRU replacement

• accessing n addresses from the same cache set to evict an n-way set

• eviction from last level → from whole hierarchy (it’s inclusive!)

#1.2: Which addresses map to the same set?

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line

• function H that maps slices is

undocumented

• reverse-engineered by [4, 7, 9]

• hash function basically an XOR

of address bits

#1.2: Which addresses map to the same set?

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line

• function H that maps slices is

undocumented

• reverse-engineered by [4, 7, 9]

• hash function basically an XOR

of address bits

#1.2: Which addresses map to the same set?

3 functions, depending on the number of cores

Address bit

3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0

7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

2 cores o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

4 cores
o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

8 cores

o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
o2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

#2: Obtain information without root privileges

• last-level cache is physically indexed

• root privileges needed for physical addresses

• use 2MB pages → lowest 21 bits are the same as virtual address

→ enough to compute the cache set

#2: Obtain information without root privileges

• last-level cache is physically indexed

• root privileges needed for physical addresses

• use 2MB pages → lowest 21 bits are the same as virtual address

→ enough to compute the cache set

#2: Obtain information without root privileges

• last-level cache is physically indexed

• root privileges needed for physical addresses

• use 2MB pages → lowest 21 bits are the same as virtual address

→ enough to compute the cache set

#2: Obtain information without root privileges

• last-level cache is physically indexed

• root privileges needed for physical addresses

• use 2MB pages → lowest 21 bits are the same as virtual address

→ enough to compute the cache set

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

load

9

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 49

load

10

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910

load
11

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11

load

12

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11 12

load

13

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11 1213

load

14

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11 1213 14

load

15

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

#3.1: Replacement policy on older CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11 1213 1415

load

16

• LRU replacement policy: oldest entry first

• timestamps for every cache line

• access updates timestamp

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4

load

9

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 49

load

10

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910

load

11

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 11

load

12

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 1112

load
13

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 1112 13

load
14

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 1112 1314

load

15

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 1112 1314 15

load

16

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 1112 1314 1516

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

#3.2: Replacement policy on recent CPUs

“LRU eviction” memory accesses

cache set 2 5 8 1 7 6 3 4910 1112 1314 1516

• no LRU replacement

• only 75% success rate on Haswell

• more accesses → higher success rate, but too slow

#3.3: Cache eviction strategy
A
dd

re
ss

a1

a2

a3

a4

a5

a6

a7

a8

a9

Time

Figure 1: Fast and effective on Haswell. Eviction rate >99.97%.

Cache covert channels

Side channels vs covert channels

• side channel: attacker spies a victim process

• covert channel: communication between two processes

• that are not supposed to communicate

• that are collaborating

1-bit cache covert channels

ideas for 1-bit channels:

• Prime+Probe: use one cache set to transmit

0: sender does not access the set → low access time in receiver

1: sender does access the set → high access time in receiver

• Flush+Reload/Flush+Flush/Evict+Reload: use one address to transmit

0: sender does not access the address → high access time in receiver

1: sender does access the address → low access time in receiver

1-bit cache covert channels

ideas for 1-bit channels:

• Prime+Probe: use one cache set to transmit

0: sender does not access the set → low access time in receiver

1: sender does access the set → high access time in receiver

• Flush+Reload/Flush+Flush/Evict+Reload: use one address to transmit

0: sender does not access the address → high access time in receiver

1: sender does access the address → low access time in receiver

1-bit cache covert channels

ideas for 1-bit channels:

• Prime+Probe: use one cache set to transmit

0: sender does not access the set → low access time in receiver

1: sender does access the set → high access time in receiver

• Flush+Reload/Flush+Flush/Evict+Reload: use one address to transmit

0: sender does not access the address → high access time in receiver

1: sender does access the address → low access time in receiver

1-bit covert channels

• 1 bit data, 0 bit control?

• idea: divide time into slices (e.g., 50µs frames)

• synchronize sender and receiver with a shared clock

1-bit covert channels

• 1 bit data, 0 bit control?

• idea: divide time into slices (e.g., 50µs frames)

• synchronize sender and receiver with a shared clock

Problems of 1-bit covert channels

• errors?

→ error-correcting codes

• retransmission may be more efficient (less overhead)

• desynchronization

• optimal transmission duration may vary

Problems of 1-bit covert channels

• errors? → error-correcting codes

• retransmission may be more efficient (less overhead)

• desynchronization

• optimal transmission duration may vary

Multi-bit covert channels

• combine multiple 1-bit channels

• avoid interferences

→ higher performance

• use 1-bit for sending = true/false

Multi-bit covert channels

• combine multiple 1-bit channels

• avoid interferences

→ higher performance

• use 1-bit for sending = true/false

Multi-bit covert channels

• combine multiple 1-bit channels

• avoid interferences

→ higher performance

• use 1-bit for sending = true/false

Packets / frames

Organize data in packets / frames:

• some data bits

• check sum

• sequence number

→ keep sender and receiver synchronous

→ check whether retransmission is necessary

Efficient retransmission

How can the sender know when to retransmit?

• idea: acknowledge packets (requires a backward channel)

• use some bits as a backward channel

• use the same bits as a backward channel (sender sending bit/receiver

sending bit)

• why wait for retransmission?

→ sender should retransmit until receiver acknowledged

Efficient retransmission

How can the sender know when to retransmit?

• idea: acknowledge packets (requires a backward channel)

• use some bits as a backward channel

• use the same bits as a backward channel (sender sending bit/receiver

sending bit)

• why wait for retransmission?

→ sender should retransmit until receiver acknowledged

Efficient retransmission

How can the sender know when to retransmit?

• idea: acknowledge packets (requires a backward channel)

• use some bits as a backward channel

• use the same bits as a backward channel (sender sending bit/receiver

sending bit)

• why wait for retransmission?

→ sender should retransmit until receiver acknowledged

Efficient retransmission

How can the sender know when to retransmit?

• idea: acknowledge packets (requires a backward channel)

• use some bits as a backward channel

• use the same bits as a backward channel (sender sending bit/receiver

sending bit)

• why wait for retransmission?

→ sender should retransmit until receiver acknowledged

Raw capacity C

• number of bits per second

• measure over ≥ 1 minute

s bits transmitted in 1 minute:

C =
s

60

Bit error rate p

• count bits that are wrong w

• count total bits sent bs

• count total bits received br

Error rate:

p =
w + |br − bs|
max (bs, br)

,

or if br = bs:

p =
w

br
,

Capacity

True capacity T :

T = C · (1 + ((1− p) · log2 (1− p) + p · log2 (p)))

C is the raw capacity and p is the bit error rate.

Capacity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

Error rate

T
ru
e
ca
pa
ci
ty

State of the art

method raw capacity err. rate true capacity env.

F+F [2] 3968Kbps 0.840% 3690Kbps native

F+R [2] 2384Kbps 0.005% 2382Kbps native

E+R [5] 1141Kbps 1.100% 1041Kbps native

P+P [8] 601Kbps 0.000% 601Kbps native

P+P [6] 600Kbps 1.000% 552Kbps virt

P+P [8] 362Kbps 0.000% 362Kbps native

Cache template attacks

Cache Template Attacks

• State of the art: cache attacks are powerful

• Problem: manual identification of attack targets

• Solution: Cache Template Attacks

• Automatically find any secret-dependent cache access

• Can be used for attacks and to improve software

• Examples:

• Cache-based keylogger

• Automatic attacks on crypto algorithms

Cache Template Attacks

• State of the art: cache attacks are powerful

• Problem: manual identification of attack targets

• Solution: Cache Template Attacks

• Automatically find any secret-dependent cache access

• Can be used for attacks and to improve software

• Examples:

• Cache-based keylogger

• Automatic attacks on crypto algorithms

Cache Template Attacks

• State of the art: cache attacks are powerful

• Problem: manual identification of attack targets

• Solution: Cache Template Attacks

• Automatically find any secret-dependent cache access

• Can be used for attacks and to improve software

• Examples:

• Cache-based keylogger

• Automatic attacks on crypto algorithms

Cache Template Attacks

• State of the art: cache attacks are powerful

• Problem: manual identification of attack targets

• Solution: Cache Template Attacks

• Automatically find any secret-dependent cache access

• Can be used for attacks and to improve software

• Examples:

• Cache-based keylogger

• Automatic attacks on crypto algorithms

Challenges

• How to locate key-dependent memory accesses?

• It’s complicated:

• Large binaries and libraries (third-party code)

• Many libraries (gedit: 60MB)

• Closed-source / unknown binaries

• Self-compiled binaries

• Difficult to find all exploitable addresses

Challenges

• How to locate key-dependent memory accesses?

• It’s complicated:

• Large binaries and libraries (third-party code)

• Many libraries (gedit: 60MB)

• Closed-source / unknown binaries

• Self-compiled binaries

• Difficult to find all exploitable addresses

Challenges

• How to locate key-dependent memory accesses?

• It’s complicated:

• Large binaries and libraries (third-party code)

• Many libraries (gedit: 60MB)

• Closed-source / unknown binaries

• Self-compiled binaries

• Difficult to find all exploitable addresses

Cache Template Attacks

Profiling Phase

• Preprocessing step to find exploitable addresses automatically

• w.r.t. “events” (keystrokes, encryptions, ...)

• called “Cache Template”

Exploitation Phase

• Monitor exploitable addresses

Cache Template Attacks

Profiling Phase

• Preprocessing step to find exploitable addresses automatically

• w.r.t. “events” (keystrokes, encryptions, ...)

• called “Cache Template”

Exploitation Phase

• Monitor exploitable addresses

Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Cache is empty

Profiling Phase

Attacker address space

Cache

Victim address space

A

Shared 0x0

Shared 0x0

Attacker triggers an event

Shared 0x0

Shared 0x0

Shared 0x0

Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Attacker checks one address for cache hits (“Reload”)

Shared 0x0

Shared 0x0

Shared 0x0

Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Update cache hit ratio (per event and address)

Shared 0x0

Shared 0x0

Shared 0x0

Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Attacker flushes shared memory

Shared 0x0

Shared 0x0

Shared 0x0

flush

Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Repeat for higher accuracy

A

Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Repeat for all events

B

Profiling Phase

Attacker address space

Cache

Victim address space

Shared 0x0

Shared 0x0

Repeat for all events

C

Profiling Phase

Attacker address space

Cache

Victim address space

Continue with next address

A

Shared 0x40

Shared 0x40

Profiling Phase

Attacker address space

Cache

Victim address space

Continue with next address

A

Shared 0x80

Shared 0x80

Cache Template Attack Demo

Profiling Phase: 1 Event, 1 Address

A
d
d
r
e
ss

Key
n

0x7c800

Profiling Phase: 1 Event, 1 Address

A
d
d
r
e
ss

Key
n

0x7c800

Example: Cache Hit Ratio for (0x7c800,n): 200 / 200

Profiling Phase: All Events, 1 Address

A
d
d
r
e
ss

Key
g h i j k l m n o p q r s t u v w x y z

0x7c800

Profiling Phase: All Events, 1 Address

A
d
d
r
e
ss

Key
g h i j k l m n o p q r s t u v w x y z

0x7c800

Example: Cache Hit Ratio for (0x7c800,u): 13 / 200

Profiling Phase: All Events, 1 Address

A
d
d
r
e
ss

Key
g h i j k l m n o p q r s t u v w x y z

0x7c800

Distinguish n from other keys by monitoring 0x7c800

Profiling Phase: All Events, All Addresses

A
d
d
r
e
ss

Key
g h i j k l m n o p q r s t u v w x y z

0x7c680
0x7c6c0
0x7c700
0x7c740
0x7c780
0x7c7c0
0x7c800
0x7c840
0x7c880
0x7c8c0
0x7c900
0x7c940
0x7c980
0x7c9c0
0x7ca00
0x7cb80
0x7cc40
0x7cc80
0x7ccc0
0x7cd00

Attack 3: Locate AES T-Tables

AES uses T-Tables (precomputed from S-Boxes)

• 4 T-Tables

•
T0

[
k{0,4,8,12} ⊕ p{0,4,8,12}

]
T1

[
k{1,5,9,13} ⊕ p{1,5,9,13}

]
...

• If we know which entry of T is accessed, we know the result of ki ⊕ pi.

• Known-plaintext attack (pi is known) → ki can be determined

Attack 3: Locate AES T-Tables

AES T-Table implementation from OpenSSL 1.0.2

• Most addresses in two groups:

• Cache hit ratio 100% (always cache hits)

• Cache hit ratio 0% (no cache hits)

• One 4096 byte memory block:

• Cache hit ratio of 92%

• Cache hits depend on key value and plaintext value

• The T-Tables

Attack 3: Locate AES T-Tables

AES T-Table implementation from OpenSSL 1.0.2

• Most addresses in two groups:

• Cache hit ratio 100% (always cache hits)

• Cache hit ratio 0% (no cache hits)

• One 4096 byte memory block:

• Cache hit ratio of 92%

• Cache hits depend on key value and plaintext value

• The T-Tables

Attack 3: Locate AES T-Tables

AES T-Table implementation from OpenSSL 1.0.2

• Most addresses in two groups:

• Cache hit ratio 100% (always cache hits)

• Cache hit ratio 0% (no cache hits)

• One 4096 byte memory block:

• Cache hit ratio of 92%

• Cache hits depend on key value and plaintext value

• The T-Tables

Attack 4: AES T-Table Template Attack

AES T-Table implementation from OpenSSL 1.0.2

• Known-plaintext attack

• Events: encryption with only one fixed key byte

• Profile each event

Attack 4: AES T-Table Template Attack

AES T-Table implementation from OpenSSL 1.0.2

• Known-plaintext attack

• Events: encryption with only one fixed key byte

• Profile each event

Attack 4: AES T-Table Template

k0 = 0x00 k0 = 0x55

(transposed)

Attack 4: AES T-Table Template Attack

AES T-Table implementation from OpenSSL 1.0.2

• Known-plaintext attack

• Exploitation phase:

• Eliminate key candidates

• Reduction of key space in first-round attack:

• 64 bits after 16–160 encryptions

• State of the art: full key recovery after 30000 encryptions

Attack 4: AES T-Table Template Attack

AES T-Table implementation from OpenSSL 1.0.2

• Known-plaintext attack

• Exploitation phase:

• Eliminate key candidates
• Reduction of key space in first-round attack:

• 64 bits after 16–160 encryptions

• State of the art: full key recovery after 30000 encryptions

Attack 4: AES T-Table Template Attack

AES T-Table implementation from OpenSSL 1.0.2

• Known-plaintext attack

• Exploitation phase:

• Eliminate key candidates
• Reduction of key space in first-round attack:

• 64 bits after 16–160 encryptions

• State of the art: full key recovery after 30000 encryptions

AES T-Table Template Attack: Exercise Hints

• Exploitation phase only

• get table addresses from AESlib_get_table_address([0-3])

• Eliminate key candidates

• Fix one plaintext byte at a time
• One cacheline will be accessed with 100% probability

• Infer the corresponding key byte upper nibble

• pi ⊕ ? = Tentry

• Repeat for other plaintext bytes

• Recover 64 bits of key

• 3 bonus points for full key recovery

AES T-Table Template Attack: Exercise Hints

• Exploitation phase only

• get table addresses from AESlib_get_table_address([0-3])

• Eliminate key candidates

• Fix one plaintext byte at a time

• One cacheline will be accessed with 100% probability

• Infer the corresponding key byte upper nibble

• pi ⊕ ? = Tentry

• Repeat for other plaintext bytes

• Recover 64 bits of key

• 3 bonus points for full key recovery

AES T-Table Template Attack: Exercise Hints

• Exploitation phase only

• get table addresses from AESlib_get_table_address([0-3])

• Eliminate key candidates

• Fix one plaintext byte at a time
• One cacheline will be accessed with 100% probability

• Infer the corresponding key byte upper nibble

• pi ⊕ ? = Tentry

• Repeat for other plaintext bytes

• Recover 64 bits of key

• 3 bonus points for full key recovery

AES T-Table Template Attack: Exercise Hints

• Exploitation phase only

• get table addresses from AESlib_get_table_address([0-3])

• Eliminate key candidates

• Fix one plaintext byte at a time
• One cacheline will be accessed with 100% probability

• Infer the corresponding key byte upper nibble

• pi ⊕ ? = Tentry

• Repeat for other plaintext bytes

• Recover 64 bits of key

• 3 bonus points for full key recovery

AES T-Table Template Attack: Exercise Hints

• Exploitation phase only

• get table addresses from AESlib_get_table_address([0-3])

• Eliminate key candidates

• Fix one plaintext byte at a time
• One cacheline will be accessed with 100% probability

• Infer the corresponding key byte upper nibble

• pi ⊕ ? = Tentry

• Repeat for other plaintext bytes

• Recover 64 bits of key

• 3 bonus points for full key recovery

Conclusion

• Technique to find any cache side-channel leakage

• Attacks

• Detect vulnerabilities

• Works on virtually all Intel CPUs

• Works even with unknown binaries

• Marks a change of perspective:

• Large scale analysis of binaries

• Large scale automated attacks

• Apply templating to other side-channel leakage

Conclusion

• Technique to find any cache side-channel leakage

• Attacks

• Detect vulnerabilities

• Works on virtually all Intel CPUs

• Works even with unknown binaries

• Marks a change of perspective:

• Large scale analysis of binaries

• Large scale automated attacks

• Apply templating to other side-channel leakage

Conclusion

• Technique to find any cache side-channel leakage

• Attacks

• Detect vulnerabilities

• Works on virtually all Intel CPUs

• Works even with unknown binaries

• Marks a change of perspective:

• Large scale analysis of binaries

• Large scale automated attacks

• Apply templating to other side-channel leakage

Conclusion

• Technique to find any cache side-channel leakage

• Attacks

• Detect vulnerabilities

• Works on virtually all Intel CPUs

• Works even with unknown binaries

• Marks a change of perspective:

• Large scale analysis of binaries

• Large scale automated attacks

• Apply templating to other side-channel leakage

Conclusion

• Technique to find any cache side-channel leakage

• Attacks

• Detect vulnerabilities

• Works on virtually all Intel CPUs

• Works even with unknown binaries

• Marks a change of perspective:

• Large scale analysis of binaries

• Large scale automated attacks

• Apply templating to other side-channel leakage

Flush+Reload Variants

Evict+Reload

• Variant of Flush+Reload with cache eviction instead of clflush

• Works on ARMv7

• Applicable to millions of devices

• Cache Template Attacks using Evict+Reload

• ARMageddon: Last-Level Cache Attacks on Mobile Devices [5]

Flush+Flush: Motivation

• cache attacks → many cache misses

• detect via performance counters

→ good idea, but is it good enough?

• causing a cache flush ̸= causing a cache miss

Flush+Flush: Motivation

• cache attacks → many cache misses

• detect via performance counters

→ good idea, but is it good enough?

• causing a cache flush ̸= causing a cache miss

Flush+Flush: Motivation

• cache attacks → many cache misses

• detect via performance counters

→ good idea, but is it good enough?

• causing a cache flush ̸= causing a cache miss

clflush execution time

Flush+Flush

Attacker
address space Cache

Victim
address space

Flush+Flush

Attacker
address space Cache

Victim
address space

cached cached

Flush+Flush

Attacker
address space Cache

Victim
address space

flushes

Flush+Flush

Attacker
address space Cache

Victim
address space

loads data

Flush+Flush

Attacker
address space Cache

Victim
address space

flushes (slow)

Flush+Flush: Conclusion

• attacker causes no direct cache misses

→ fast

→ stealthy

• same side channel targets as Flush+Reload

• 496KB/s covert channel

Flush+Flush: Conclusion

• attacker causes no direct cache misses

→ fast

→ stealthy

• same side channel targets as Flush+Reload

• 496KB/s covert channel

Flush+Flush: Conclusion

• attacker causes no direct cache misses

→ fast

→ stealthy

• same side channel targets as Flush+Reload

• 496KB/s covert channel

Cache Attacks on mobile devices?

• powerful cache attacks on Intel x86 in the last 10 years

• nothing like Flush+Reload or Prime+Probe on mobile devices

→ why?

Cache Attacks on mobile devices?

• powerful cache attacks on Intel x86 in the last 10 years

• nothing like Flush+Reload or Prime+Probe on mobile devices

→ why?

Prefetch Side-Channel Attacks

Overview

• prefetch instructions don’t check privileges

• prefetch instructions leak timing information

exploit this to:

• locate a driver in kernel = defeat KASLR

• translate virtual to physical addresses

Overview

• prefetch instructions don’t check privileges

• prefetch instructions leak timing information

exploit this to:

• locate a driver in kernel = defeat KASLR

• translate virtual to physical addresses

Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in

cache. Use of software prefetch should be limited to memory addresses that are

managed or owned within the application context. Prefetching to addresses that

are not mapped to physical pages can experience non-deterministic performance

penalty. For example specifying a NULL pointer (0L) as address for a prefetch

can cause long delays.

Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in

cache.

Use of software prefetch should be limited to memory addresses that are

managed or owned within the application context. Prefetching to addresses that

are not mapped to physical pages can experience non-deterministic performance

penalty. For example specifying a NULL pointer (0L) as address for a prefetch

can cause long delays.

Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in

cache. Use of software prefetch should be limited to memory addresses that are

managed or owned within the application context.

Prefetching to addresses that

are not mapped to physical pages can experience non-deterministic performance

penalty. For example specifying a NULL pointer (0L) as address for a prefetch

can cause long delays.

Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in

cache. Use of software prefetch should be limited to memory addresses that are

managed or owned within the application context. Prefetching to addresses that

are not mapped to physical pages can experience non-deterministic performance

penalty.

For example specifying a NULL pointer (0L) as address for a prefetch

can cause long delays.

Intel being overspecific

NOTE

Using the PREFETCH instruction is recommended only if data does not fit in

cache. Use of software prefetch should be limited to memory addresses that are

managed or owned within the application context. Prefetching to addresses that

are not mapped to physical pages can experience non-deterministic performance

penalty. For example specifying a NULL pointer (0L) as address for a prefetch

can cause long delays.

CPU Caches

Memory (DRAM) is slow compared to the CPU

• buffer frequently used memory

• every memory reference goes through the cache

• based on physical addresses

Memory Access Latency

50 100 150 200 250 300 350 400
100

101

102

103

104

105

106

107

Access time in cycles

N
um

b
er

of
ac
ce
ss
es

cache hits cache misses

Unprivileged cache maintainance

Optimize cache usage:

• prefetch: suggest CPU to load data into cache

• clflush: throw out data from all caches

... based on virtual addresses

Software prefetching

prefetch instructions are somewhat unusual

• hints – can be ignored by the CPU

• do not check privileges or cause exceptions

but they do need to translate virtual to physical

Kernel must be mapped in every address space

Today’s operating systems:

Shared address space

User memory Kernel memory
0 −1

context switch

Address translation on x86-64

PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
···

#PML4I
···

PML4E 511

PDPT

PDPTE 0

PDPTE 1
···

#PDPTI
···

PDPTE 511

Page Directory

PDE 0

PDE 1
···

PDE #PDI
···

PDE 511

Page Table

PTE 0

PTE 1
···

PTE #PTI
···

PTE 511

4 KiB Page

Byte 0

Byte 1
···

Offset
···

Byte 4095

Address Translation Caches

Core 0

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Core 1

ITLB DTLB

PDE cache

PDPTE cache

PML4E cache

Page table structures in
system memory (DRAM)

L
ookup

direction

Address Space Layout Randomization (ASLR)

Process A

0 −1

Process B

0 −1

Process C

0 −1

Same library – different offset!

Address Space Layout Randomization (ASLR)

Process A

0 −1

Process B

0 −1

Process C

0 −1

Same library – different offset!

Kernel Address Space Layout Randomization (KASLR)

Process A

0 −1

Process B

0 −1

Process C

0 −1

Same driver – different offset!

Kernel Address Space Layout Randomization (KASLR)

Process A

0 −1

Process B

0 −1

Process C

0 −1

Same driver – different offset!

Kernel direct-physical map

Virtual address space
User Kernel

Physical memory

0

0 max. phys.

247 −247 −1

dir
ec
t m

ap

OS X, Linux, BSD, Xen PVM (Amazon EC2)

Kernel direct-physical map

Virtual address space
User Kernel

Physical memory

0

0 max. phys.

247 −247 −1

dir
ec
t m

ap

OS X, Linux, BSD, Xen PVM (Amazon EC2)

Address-Translation Oracle

User space Cache

Kernel space

Address-Translation Oracle

User space Cache

Kernel space

cached

ca
ch
ed

Address-Translation Oracle

User space Cache

Kernel space

flush
clflush

Address-Translation Oracle

User space Cache

Kernel space

loa
d

prefetch

Address-Translation Oracle

User space Cache

Kernel space

reload (cache hit)

load

Translation-Level Oracle

PDPT PD PT cached P. uncached P.

200

300

400

230
246

222

181

383

Mapping level

E
xe
cu
ti
on

ti
m
e
in

cy
cl
es

Timing the prefetch instruction

The CPU may reorder instructions

instruction 1

cpuid

instruction 2

cpuid

instruction 3

but not over cpuid!

Breaking KASLR with Prefetch

-16 -8 0 8 16 24 32 40
100

200

300

400

500

Kernel offset [MB]

P
re
fe
tc
h
ti
m
e

Last-level Cache Addressing

Last-level cache addressing

slice 0 slice 1 slice 2 slice 3

H

2

offsetsettagphysical address

30

061735

11

line

Last-level cache addressing

• last-level cache → as many slices as cores

• undocumented hash function that maps a physical address to a slice

• designed for performance

H
physical address

30 bits
slice (o0, . . . , ok−1)

k bits
For 2k slices:

Prime+Probe on recent procesors?

Complex addressing → impossible to target a set

Attacker
address space Cache Victim

address space

?

?

?

?

Reverse engineering method

1. find some way to map one address to one slice

2. repeat for every address with a 64B stride

3. infer a function out of it

Reverse engineering method

1. find some way to map one address to one slice

2. repeat for every address with a 64B stride

3. infer a function out of it

Reverse engineering method

1. find some way to map one address to one slice

2. repeat for every address with a 64B stride

3. infer a function out of it

How to map addresses to slices?

• with performance counters

• with a timing attack

• using clflush

• using memory access

How to map addresses to slices?

• with performance counters

• with a timing attack

• using clflush

• using memory access

How to map addresses to slices?

• with performance counters

• with a timing attack

• using clflush

• using memory access

How to map addresses to slices?

• with performance counters

• with a timing attack

• using clflush

• using memory access

How to map addresses to slices?

• with performance counters

• with a timing attack

• using clflush

• using memory access

Method #1: Performance counters

• event UNC CBO CACHE LOOKUP counts accesses to a slice

slice 0 slice 1 slice 2 slice 3

CBo 0 CBo 1 CBo 2 CBo 3

H

address

UNC CBO CACHE LOOKUP 0 0 0 0

Method #1: Performance counters

• event UNC CBO CACHE LOOKUP counts accesses to a slice

slice 0 slice 1 slice 2 slice 3

CBo 0 CBo 1 CBo 2 CBo 3

H

UNC CBO CACHE LOOKUP

0x3a0071010

1 0 0 0

CBo 0

slice 0

Method #1: Performance counters

• event UNC CBO CACHE LOOKUP counts accesses to a slice

slice 0 slice 1 slice 2 slice 3

CBo 0 CBo 1 CBo 2 CBo 3

H

UNC CBO CACHE LOOKUP

0x3a0071090

1 0 1 0

CBo 2

slice 2

Method #1: Performance counters

• event UNC CBO CACHE LOOKUP counts accesses to a slice

slice 0 slice 1 slice 2 slice 3

CBo 0 CBo 1 CBo 2 CBo 3

H

UNC CBO CACHE LOOKUP

0x3a00710d0

1 0 1 1

CBo 3

slice 3

Mapping a physical addr. to a slice [7]

1. translate virtual to physical address with /proc/pid/pagemap

2. set up monitoring session

3. repeat access to a single address

→ hint: clflush is already counted as an access

4. read UNC CBO CACHE LOOKUP event for each CBo

5. slice is the one that has the maximum lookup events

Mapping a physical addr. to a slice [7]

1. translate virtual to physical address with /proc/pid/pagemap

2. set up monitoring session

3. repeat access to a single address

→ hint: clflush is already counted as an access

4. read UNC CBO CACHE LOOKUP event for each CBo

5. slice is the one that has the maximum lookup events

Mapping a physical addr. to a slice [7]

1. translate virtual to physical address with /proc/pid/pagemap

2. set up monitoring session

3. repeat access to a single address

→ hint: clflush is already counted as an access

4. read UNC CBO CACHE LOOKUP event for each CBo

5. slice is the one that has the maximum lookup events

Mapping a physical addr. to a slice [7]

1. translate virtual to physical address with /proc/pid/pagemap

2. set up monitoring session

3. repeat access to a single address

→ hint: clflush is already counted as an access

4. read UNC CBO CACHE LOOKUP event for each CBo

5. slice is the one that has the maximum lookup events

Mapping a physical addr. to a slice [7]

1. translate virtual to physical address with /proc/pid/pagemap

2. set up monitoring session

3. repeat access to a single address

→ hint: clflush is already counted as an access

4. read UNC CBO CACHE LOOKUP event for each CBo

5. slice is the one that has the maximum lookup events

Mapping a physical addr. to a slice [7]

1. translate virtual to physical address with /proc/pid/pagemap

2. set up monitoring session

3. repeat access to a single address

→ hint: clflush is already counted as an access

4. read UNC CBO CACHE LOOKUP event for each CBo

5. slice is the one that has the maximum lookup events

Mapping physical addresses to slices

0x3a0071010 0x3a0071050 0x3a0071090 0x3a00710d0
102

103

104

N
um

b
er

of

lo
ok
up

ev
en
ts

CBo 0 CBo 1 CBo 2 CBo 3

Method #2: Flush+Flush [2]

• side channel similar to Flush+Reload, using only clflush execution time

differences

• time difference between cached and not cached

• time difference between slices

Method #2: Flush+Flush [2]

• side channel similar to Flush+Reload, using only clflush execution time

differences

• time difference between cached and not cached

• time difference between slices

Method #2: Flush+Flush [2]

• side channel similar to Flush+Reload, using only clflush execution time

differences

• time difference between cached and not cached

• time difference between slices

Last-level cache and Ring interconnect

Intel Optimization Manual:

“The LLC hit latency [...] depends on the core location relative to the LLC block,

and how far the request needs to travel on the ring.”

clflush time difference between slices

140 142 144 146 148 150 152 154 156 158

0

2

4

6

·105

Execution Time (in cycles)

N
u
m
b
e
r
o
f
c
a
se

s

core 0
core 1
core 2
core 3

clflush histogram for an address in slice 1 on different cores

Inferring the function

Two cases:

1. linear function: 2n number of cores

2. non-linear function: the rest

Methods

• brute-force

• smarter method

• let a solver do it! [1]

Perspective: the first two methods assume that we know what the functions look

like (XORs of address bits)

Brute force

For each bit of output o0, . . . , ok−1

1. try one function

→ e.g., b6 ⊕ b7 ⊕ . . .⊕ b32

2. test if the function corresponds to the mapping you already have

3. if not → try another function until it works!

Brute force

For each bit of output o0, . . . , ok−1

1. try one function

→ e.g., b6 ⊕ b7 ⊕ . . .⊕ b32

2. test if the function corresponds to the mapping you already have

3. if not → try another function until it works!

Brute force

For each bit of output o0, . . . , ok−1

1. try one function

→ e.g., b6 ⊕ b7 ⊕ . . .⊕ b32

2. test if the function corresponds to the mapping you already have

3. if not → try another function until it works!

Fail fast, but still tolerate some errors

Finding linear function (1/2) [7]

• XOR is commutative: A⊕B ⇔ B ⊕ A

• XOR is associative: A⊕ (B ⊕ C) ⇔ (A⊕B)⊕ C

• you can treat all the input bits independently

Finding linear function (1/2) [7]

• XOR is commutative: A⊕B ⇔ B ⊕ A

• XOR is associative: A⊕ (B ⊕ C) ⇔ (A⊕B)⊕ C

• you can treat all the input bits independently

Finding linear function (1/2) [7]

• XOR is commutative: A⊕B ⇔ B ⊕ A

• XOR is associative: A⊕ (B ⊕ C) ⇔ (A⊕B)⊕ C

• you can treat all the input bits independently

Finding linear function (2/2) [7]

For each bit of output o0, . . . , ok−1

• find two addresses that differ by a single bit bi

• compare output

• if different: bi is part of the function

• if equal: bi is not part of the function

Side-Channel Security

Chapter 2: Caches & Cache Attacks

Daniel Gruss, Roland Czerny

March 6, 2025

Graz University of Technology

References

[1] Gerlach, L., Schwarz, S., Faroß, N., and Schwarz, M. (2024). Efficient and

Generic Microarchitectural Hash-Function Recovery. In S&P.

[2] Gruss, D., Maurice, C., Wagner, K., and Mangard, S. (2016). Flush+Flush:

A Fast and Stealthy Cache Attack. In DIMVA.

[3] Gruss, D., Spreitzer, R., and Mangard, S. (2015). Cache Template Attacks:

Automating Attacks on Inclusive Last-Level Caches. In USENIX Security

Symposium.

[4] Inci, M. S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., and Sunar, B.

(2015). Seriously, get off my cloud! cross-vm rsa key recovery in a public

cloud. Cryptology ePrint Archive, Report 2015/898.

[5] Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., and Mangard, S. (2016).

ARMageddon: Cache Attacks on Mobile Devices. In USENIX Security

Symposium.

[6] Liu, F., Yarom, Y., Ge, Q., Heiser, G., and Lee, R. B. (2015). Last-Level

Cache Side-Channel Attacks are Practical. In S&P.

[7] Maurice, C., Le Scouarnec, N., Neumann, C., Heen, O., and Francillon, A.

(2015). Reverse Engineering Intel Complex Addressing Using Performance

Counters. In RAID.

[8] Maurice, C., Weber, M., Schwarz, M., Giner, L., Gruss, D., Alberto Boano,

C., Mangard, S., and Römer, K. (2017). Hello from the Other Side: SSH over

Robust Cache Covert Channels in the Cloud. In NDSS.

[9] Yarom, Y., Ge, Q., Liu, F., Lee, R. B., and Heiser, G. (2015). Mapping the

Intel Last-Level Cache. Cryptology ePrint Archive, Report 2015/905.

