
Side-Channel Security

Chapter 3: Trusted Execution Environments

and Confidential Computing

Sudheendra Neela

March 13, 2025

Graz University of Technology

Sudheendra Neela 1 / 40

Motivation

• Systems run software from various sources

• Protect computation against compromised OS

• Protect system against malicious software

• Cloud servers: must run any untrusted virtual machines

• Cloud VMs: may run in compromised or hostile enviroments

• CPU providers: tamper-resistant mechanism

• Key enabler of confidential computing

Sudheendra Neela 2 / 40

Motivation

• Systems run software from various sources

• Protect computation against compromised OS

• Protect system against malicious software

• Cloud servers: must run any untrusted virtual machines

• Cloud VMs: may run in compromised or hostile enviroments

• CPU providers: tamper-resistant mechanism

• Key enabler of confidential computing

Sudheendra Neela 2 / 40

Motivation

• Systems run software from various sources

• Protect computation against compromised OS

• Protect system against malicious software

• Cloud servers: must run any untrusted virtual machines

• Cloud VMs: may run in compromised or hostile enviroments

• CPU providers: tamper-resistant mechanism

• Key enabler of confidential computing

Sudheendra Neela 2 / 40

Motivation

• Systems run software from various sources

• Protect computation against compromised OS

• Protect system against malicious software

• Cloud servers: must run any untrusted virtual machines

• Cloud VMs: may run in compromised or hostile enviroments

• CPU providers: tamper-resistant mechanism

• Key enabler of confidential computing

Sudheendra Neela 2 / 40

Motivation

• Systems run software from various sources

• Protect computation against compromised OS

• Protect system against malicious software

• Cloud servers: must run any untrusted virtual machines

• Cloud VMs: may run in compromised or hostile enviroments

• CPU providers: tamper-resistant mechanism

• Key enabler of confidential computing

Sudheendra Neela 2 / 40

Motivation

• Systems run software from various sources

• Protect computation against compromised OS

• Protect system against malicious software

• Cloud servers: must run any untrusted virtual machines

• Cloud VMs: may run in compromised or hostile enviroments

• CPU providers: tamper-resistant mechanism

• Key enabler of confidential computing

Sudheendra Neela 2 / 40

Motivation

• Systems run software from various sources

• Protect computation against compromised OS

• Protect system against malicious software

• Cloud servers: must run any untrusted virtual machines

• Cloud VMs: may run in compromised or hostile enviroments

• CPU providers: tamper-resistant mechanism

• Key enabler of confidential computing

Sudheendra Neela 2 / 40

Virtualization

VM1 VM2 VM3 VM4

Hypervisor

SMT

Thread

SMT

Thread

SMT

Thread

SMT

Thread

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache

Memory

• Hypervisor: manages virtual

machines (VMs)

• Traditional virtualization:

Hypervisor has total control

• All VMs share components

• Check out Cloud Operating

Systems!

• Confidential Computing (CoCo):

hardware guarantees for secure VM

operation

Sudheendra Neela 3 / 40

Virtualization

VM1 VM2 VM3 VM4

Hypervisor

SMT

Thread

SMT

Thread

SMT

Thread

SMT

Thread

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache

Memory

• Hypervisor: manages virtual

machines (VMs)

• Traditional virtualization:

Hypervisor has total control

• All VMs share components

• Check out Cloud Operating

Systems!

• Confidential Computing (CoCo):

hardware guarantees for secure VM

operation

Sudheendra Neela 3 / 40

Virtualization

VM1 VM2 VM3 VM4

Hypervisor

SMT

Thread

SMT

Thread

SMT

Thread

SMT

Thread

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache

Memory

• Hypervisor: manages virtual

machines (VMs)

• Traditional virtualization:

Hypervisor has total control

• All VMs share components

• Check out Cloud Operating

Systems!

• Confidential Computing (CoCo):

hardware guarantees for secure VM

operation

Sudheendra Neela 3 / 40

Virtualization

VM1 VM2 VM3 VM4

Hypervisor

SMT

Thread

SMT

Thread

SMT

Thread

SMT

Thread

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache

Memory

• Hypervisor: manages virtual

machines (VMs)

• Traditional virtualization:

Hypervisor has total control

• All VMs share components

• Check out Cloud Operating

Systems!

• Confidential Computing (CoCo):

hardware guarantees for secure VM

operation

Sudheendra Neela 3 / 40

Virtualization

VM1 VM2 VM3 VM4

Hypervisor

SMT

Thread

SMT

Thread

SMT

Thread

SMT

Thread

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache

Memory

• Hypervisor: manages virtual

machines (VMs)

• Traditional virtualization:

Hypervisor has total control

• All VMs share components

• Check out Cloud Operating

Systems!

• Confidential Computing (CoCo):

hardware guarantees for secure VM

operation

Sudheendra Neela 3 / 40

A Simple Correlation Attack [17] (2011)

• VMEXIT: VM hands control back to the hypervisor with a reason

:

• RDMSR, WRMSR, CPUID, Access Control Registers, Debug Registers

• Number of VMEXITs and reasons leak information

• Infer what applications are running (Bootup, SSH, Apache, StartX)

Sudheendra Neela 4 / 40

A Simple Correlation Attack [17] (2011)

• VMEXIT: VM hands control back to the hypervisor with a reason:

• RDMSR

, WRMSR, CPUID, Access Control Registers, Debug Registers

• Number of VMEXITs and reasons leak information

• Infer what applications are running (Bootup, SSH, Apache, StartX)

Sudheendra Neela 4 / 40

A Simple Correlation Attack [17] (2011)

• VMEXIT: VM hands control back to the hypervisor with a reason:

• RDMSR, WRMSR

, CPUID, Access Control Registers, Debug Registers

• Number of VMEXITs and reasons leak information

• Infer what applications are running (Bootup, SSH, Apache, StartX)

Sudheendra Neela 4 / 40

A Simple Correlation Attack [17] (2011)

• VMEXIT: VM hands control back to the hypervisor with a reason:

• RDMSR, WRMSR, CPUID

, Access Control Registers, Debug Registers

• Number of VMEXITs and reasons leak information

• Infer what applications are running (Bootup, SSH, Apache, StartX)

Sudheendra Neela 4 / 40

A Simple Correlation Attack [17] (2011)

• VMEXIT: VM hands control back to the hypervisor with a reason:

• RDMSR, WRMSR, CPUID, Access Control Registers

, Debug Registers

• Number of VMEXITs and reasons leak information

• Infer what applications are running (Bootup, SSH, Apache, StartX)

Sudheendra Neela 4 / 40

A Simple Correlation Attack [17] (2011)

• VMEXIT: VM hands control back to the hypervisor with a reason:

• RDMSR, WRMSR, CPUID, Access Control Registers, Debug Registers

• Number of VMEXITs and reasons leak information

• Infer what applications are running (Bootup, SSH, Apache, StartX)

Sudheendra Neela 4 / 40

A Simple Correlation Attack [17] (2011)

• VMEXIT: VM hands control back to the hypervisor with a reason:

• RDMSR, WRMSR, CPUID, Access Control Registers, Debug Registers

• Number of VMEXITs and reasons leak information

• Infer what applications are running (Bootup, SSH, Apache, StartX)

Sudheendra Neela 4 / 40

A Simple Correlation Attack [17] (2011)

• VMEXIT: VM hands control back to the hypervisor with a reason:

• RDMSR, WRMSR, CPUID, Access Control Registers, Debug Registers

• Number of VMEXITs and reasons leak information

• Infer what applications are running (Bootup, SSH, Apache, StartX)

Sudheendra Neela 4 / 40

A Simple Correlation Attack [17] (2011)

• VMEXIT: VM hands control back to the hypervisor with a reason:

• RDMSR, WRMSR, CPUID, Access Control Registers, Debug Registers

• Number of VMEXITs and reasons leak information

• Infer what applications are running (Bootup, SSH, Apache, StartX)

Sudheendra Neela 4 / 40

TEE & CoCo Throughout The Years

• ARM TrustZone — 2009 [2]

• Samsung Knox

• Intel Software Guard Extensions (SGX) — 2015 [5]

• AMD Secure Encrypted Virtualization (SEV) — 2016 [11]

• AMD SEV with Encrypted State (SEV-ES) — 2017 [10]

• AMD SEV Secure Nested Paging (SEV-SNP) — 2020 [1]

• Intel Trusted Domain Extensions (TDX) — 2021 [8]

• ARM Confidential Computing Architecture (CCA) — 2021 [3]

Sudheendra Neela 5 / 40

TEE & CoCo Throughout The Years

• ARM TrustZone — 2009 [2]

• Samsung Knox

• Intel Software Guard Extensions (SGX) — 2015 [5]

• AMD Secure Encrypted Virtualization (SEV) — 2016 [11]

• AMD SEV with Encrypted State (SEV-ES) — 2017 [10]

• AMD SEV Secure Nested Paging (SEV-SNP) — 2020 [1]

• Intel Trusted Domain Extensions (TDX) — 2021 [8]

• ARM Confidential Computing Architecture (CCA) — 2021 [3]

Sudheendra Neela 5 / 40

TEE & CoCo Throughout The Years

• ARM TrustZone — 2009 [2]

• Samsung Knox

• Intel Software Guard Extensions (SGX) — 2015 [5]

• AMD Secure Encrypted Virtualization (SEV) — 2016 [11]

• AMD SEV with Encrypted State (SEV-ES) — 2017 [10]

• AMD SEV Secure Nested Paging (SEV-SNP) — 2020 [1]

• Intel Trusted Domain Extensions (TDX) — 2021 [8]

• ARM Confidential Computing Architecture (CCA) — 2021 [3]

Sudheendra Neela 5 / 40

TEE & CoCo Throughout The Years

• ARM TrustZone — 2009 [2]

• Samsung Knox

• Intel Software Guard Extensions (SGX) — 2015 [5]

• AMD Secure Encrypted Virtualization (SEV) — 2016 [11]

• AMD SEV with Encrypted State (SEV-ES) — 2017 [10]

• AMD SEV Secure Nested Paging (SEV-SNP) — 2020 [1]

• Intel Trusted Domain Extensions (TDX) — 2021 [8]

• ARM Confidential Computing Architecture (CCA) — 2021 [3]

Sudheendra Neela 5 / 40

TEE & CoCo Throughout The Years

• ARM TrustZone — 2009 [2]

• Samsung Knox

• Intel Software Guard Extensions (SGX) — 2015 [5]

• AMD Secure Encrypted Virtualization (SEV) — 2016 [11]

• AMD SEV with Encrypted State (SEV-ES) — 2017 [10]

• AMD SEV Secure Nested Paging (SEV-SNP) — 2020 [1]

• Intel Trusted Domain Extensions (TDX) — 2021 [8]

• ARM Confidential Computing Architecture (CCA) — 2021 [3]

Sudheendra Neela 5 / 40

TEE & CoCo Throughout The Years

• ARM TrustZone — 2009 [2]

• Samsung Knox

• Intel Software Guard Extensions (SGX) — 2015 [5]

• AMD Secure Encrypted Virtualization (SEV) — 2016 [11]

• AMD SEV with Encrypted State (SEV-ES) — 2017 [10]

• AMD SEV Secure Nested Paging (SEV-SNP) — 2020 [1]

• Intel Trusted Domain Extensions (TDX) — 2021 [8]

• ARM Confidential Computing Architecture (CCA) — 2021 [3]

Sudheendra Neela 5 / 40

TEE & CoCo Throughout The Years

• ARM TrustZone — 2009 [2]

• Samsung Knox

• Intel Software Guard Extensions (SGX) — 2015 [5]

• AMD Secure Encrypted Virtualization (SEV) — 2016 [11]

• AMD SEV with Encrypted State (SEV-ES) — 2017 [10]

• AMD SEV Secure Nested Paging (SEV-SNP) — 2020 [1]

• Intel Trusted Domain Extensions (TDX) — 2021 [8]

• ARM Confidential Computing Architecture (CCA) — 2021 [3]

Sudheendra Neela 5 / 40

TEE & CoCo Throughout The Years

• ARM TrustZone — 2009 [2]

• Samsung Knox

• Intel Software Guard Extensions (SGX) — 2015 [5]

• AMD Secure Encrypted Virtualization (SEV) — 2016 [11]

• AMD SEV with Encrypted State (SEV-ES) — 2017 [10]

• AMD SEV Secure Nested Paging (SEV-SNP) — 2020 [1]

• Intel Trusted Domain Extensions (TDX) — 2021 [8]

• ARM Confidential Computing Architecture (CCA) — 2021 [3]

Sudheendra Neela 5 / 40

Intel Software Guard Extension

(SGX)

Intel SGX Overview

• x86 instruction-set extension

• Isolate trusted code from untrusted applications

• The OS cannot access enclave memory

• Enclave memory is encrypted and integrity protected

• Enclave has full access to virtual memory of host

application

Sudheendra Neela 6 / 40

Intel SGX Overview

• x86 instruction-set extension

• Isolate trusted code from untrusted applications

• The OS cannot access enclave memory

• Enclave memory is encrypted and integrity protected

• Enclave has full access to virtual memory of host

application

Sudheendra Neela 6 / 40

Intel SGX Overview

• x86 instruction-set extension

• Isolate trusted code from untrusted applications

• The OS cannot access enclave memory

• Enclave memory is encrypted and integrity protected

• Enclave has full access to virtual memory of host

application

Sudheendra Neela 6 / 40

Intel SGX Overview

• x86 instruction-set extension

• Isolate trusted code from untrusted applications

• The OS cannot access enclave memory

• Enclave memory is encrypted and integrity protected

• Enclave has full access to virtual memory of host

application

Sudheendra Neela 6 / 40

Intel SGX Overview

• x86 instruction-set extension

• Isolate trusted code from untrusted applications

• The OS cannot access enclave memory

• Enclave memory is encrypted and integrity protected

• Enclave has full access to virtual memory of host

application

Sudheendra Neela 6 / 40

SGX Model

Application

Untrusted part

Operating System

Sudheendra Neela 7 / 40

SGX Model

Application

Untrusted part

Create Enclave

Operating System

Sudheendra Neela 7 / 40

SGX Model

Application

Trusted part

C
al
l
G
at
e

Untrusted part

Create Enclave

Trusted Fnc.

Operating System

Sudheendra Neela 7 / 40

SGX Model

Application

Trusted part

C
al
l
G
at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Operating System

Sudheendra Neela 7 / 40

SGX Model

Application

Trusted part

C
al
l
G
at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Operating System

Sudheendra Neela 7 / 40

SGX Model

Application

Trusted part

C
al
l
G
at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Operating System

Sudheendra Neela 7 / 40

SGX Model

Application

Trusted part

C
al
l
G
at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Return

Operating System

Sudheendra Neela 7 / 40

SGX Model

Application

Trusted part

C
al
l
G
at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

Trusted Fnc.

Return

Operating System

Sudheendra Neela 7 / 40

SGX Model

Application

Trusted part

C
al
l
G
at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

. . .

Trusted Fnc.

Return

Operating System

Sudheendra Neela 7 / 40

SGX Model

Application

Trusted part

C
al
l
G
at
e

Untrusted part

Create Enclave

Call Trusted Fnc.

. . .

Trusted Fnc.

Return

Operating System

Sudheendra Neela 7 / 40

Threat Model

• Attacking the enclave: malicious OS

• Attacking the OS: malicious enclave

• Side-Channel Attacks are out of scope

• Only CPU is trusted

Sudheendra Neela 8 / 40

Threat Model

• Attacking the enclave: malicious OS

• Attacking the OS: malicious enclave

• Side-Channel Attacks are out of scope

• Only CPU is trusted

Sudheendra Neela 8 / 40

Threat Model

• Attacking the enclave: malicious OS

• Attacking the OS: malicious enclave

• Side-Channel Attacks are out of scope

• Only CPU is trusted

Sudheendra Neela 8 / 40

Threat Model

• Attacking the enclave: malicious OS

• Attacking the OS: malicious enclave

• Side-Channel Attacks are out of scope

• Only CPU is trusted

Sudheendra Neela 8 / 40

Attack Targets

What are some components of a system?

Cache Page Table DRAM Network Predictors Interrupt

CPU Ports Power Counters

Fault

Attacks

(Lecture 4)

Transient

Execution

(Lecture 3)

Read “SoK: SGX.Fail: How Stuff Gets eXposed” [20]

Sudheendra Neela 9 / 40

Attack Targets

What are some components of a system?

Cache

Page Table DRAM Network Predictors Interrupt

CPU Ports Power Counters

Fault

Attacks

(Lecture 4)

Transient

Execution

(Lecture 3)

Read “SoK: SGX.Fail: How Stuff Gets eXposed” [20]

Sudheendra Neela 9 / 40

Attack Targets

What are some components of a system?

Cache Page Table

DRAM Network Predictors Interrupt

CPU Ports Power Counters

Fault

Attacks

(Lecture 4)

Transient

Execution

(Lecture 3)

Read “SoK: SGX.Fail: How Stuff Gets eXposed” [20]

Sudheendra Neela 9 / 40

Attack Targets

What are some components of a system?

Cache Page Table DRAM

Network Predictors Interrupt

CPU Ports Power Counters

Fault

Attacks

(Lecture 4)

Transient

Execution

(Lecture 3)

Read “SoK: SGX.Fail: How Stuff Gets eXposed” [20]

Sudheendra Neela 9 / 40

Attack Targets

What are some components of a system?

Cache Page Table DRAM Network

Predictors Interrupt

CPU Ports Power Counters

Fault

Attacks

(Lecture 4)

Transient

Execution

(Lecture 3)

Read “SoK: SGX.Fail: How Stuff Gets eXposed” [20]

Sudheendra Neela 9 / 40

Attack Targets

What are some components of a system?

Cache Page Table DRAM Network Predictors

Interrupt

CPU Ports Power Counters

Fault

Attacks

(Lecture 4)

Transient

Execution

(Lecture 3)

Read “SoK: SGX.Fail: How Stuff Gets eXposed” [20]

Sudheendra Neela 9 / 40

Attack Targets

What are some components of a system?

Cache Page Table DRAM Network Predictors Interrupt

CPU Ports Power Counters

Fault

Attacks

(Lecture 4)

Transient

Execution

(Lecture 3)

Read “SoK: SGX.Fail: How Stuff Gets eXposed” [20]

Sudheendra Neela 9 / 40

Attack Targets

What are some components of a system?

Cache Page Table DRAM Network Predictors Interrupt

CPU Ports

Power Counters

Fault

Attacks

(Lecture 4)

Transient

Execution

(Lecture 3)

Read “SoK: SGX.Fail: How Stuff Gets eXposed” [20]

Sudheendra Neela 9 / 40

Attack Targets

What are some components of a system?

Cache Page Table DRAM Network Predictors Interrupt

CPU Ports Power

Counters

Fault

Attacks

(Lecture 4)

Transient

Execution

(Lecture 3)

Read “SoK: SGX.Fail: How Stuff Gets eXposed” [20]

Sudheendra Neela 9 / 40

Attack Targets

What are some components of a system?

Cache Page Table DRAM Network Predictors Interrupt

CPU Ports Power Counters

Fault

Attacks

(Lecture 4)

Transient

Execution

(Lecture 3)

Read “SoK: SGX.Fail: How Stuff Gets eXposed” [20]

Sudheendra Neela 9 / 40

Attack Targets

What are some components of a system?

Cache Page Table DRAM Network Predictors Interrupt

CPU Ports Power Counters

Fault

Attacks

(Lecture 4)

Transient

Execution

(Lecture 3)

Read “SoK: SGX.Fail: How Stuff Gets eXposed” [20]

Sudheendra Neela 9 / 40

Attack Targets

What are some components of a system?

Cache Page Table DRAM Network Predictors Interrupt

CPU Ports Power Counters

Fault

Attacks

(Lecture 4)

Transient

Execution

(Lecture 3)

Read “SoK: SGX.Fail: How Stuff Gets eXposed” [20]

Sudheendra Neela 9 / 40

Attack Targets

What are some components of a system?

Cache Page Table DRAM Network Predictors Interrupt

CPU Ports Power Counters

Fault

Attacks

(Lecture 4)

Transient

Execution

(Lecture 3)

Read “SoK: SGX.Fail: How Stuff Gets eXposed” [20]

Sudheendra Neela 9 / 40

Side-Channel Attacks on Intel

SGX

Controlled-Channel Attacks [24]

• Target mechanism which translates virtual to physical

addresses

• Enclave memory is set up by OS

• Consequence: OS can unmap page, observe page fault

• Granularity: 1 page (4kB)

Sudheendra Neela 10 / 40

Controlled-Channel Attacks [24]

• Target mechanism which translates virtual to physical

addresses

• Enclave memory is set up by OS

• Consequence: OS can unmap page, observe page fault

• Granularity: 1 page (4kB)

Sudheendra Neela 10 / 40

Controlled-Channel Attacks [24]

• Target mechanism which translates virtual to physical

addresses

• Enclave memory is set up by OS

• Consequence: OS can unmap page, observe page fault

• Granularity: 1 page (4kB)

Sudheendra Neela 10 / 40

Controlled-Channel Attacks [24]

• Target mechanism which translates virtual to physical

addresses

• Enclave memory is set up by OS

• Consequence: OS can unmap page, observe page fault

• Granularity: 1 page (4kB)

Sudheendra Neela 10 / 40

Stealthier Controlled-Channel Attacks [19, 21]

P RW US WT UC A D S G Ignored

Physical Page Number
Ignored X

Sudheendra Neela 11 / 40

Stealthier Controlled-Channel Attacks [19, 21]

P RW US WT UC AA D S G Ignored

Physical Page Number
Ignored X

Sudheendra Neela 11 / 40

Stealthier Controlled-Channel Attacks [19, 21]

P RW US WT UC AA D S G Ignored

Physical Page Number
Ignored X

Sudheendra Neela 11 / 40

DRAM Attacks [21]

• Enclaves share same physical range of memory

• DRAM contains row buffers

• Use row conflicts to spy on victim

• Granularity: 512B to 8KB

Sudheendra Neela 12 / 40

DRAM Attacks [21]

• Enclaves share same physical range of memory

• DRAM contains row buffers

• Use row conflicts to spy on victim

• Granularity: 512B to 8KB

Sudheendra Neela 12 / 40

DRAM Attacks [21]

• Enclaves share same physical range of memory

• DRAM contains row buffers

• Use row conflicts to spy on victim

• Granularity: 512B to 8KB

Sudheendra Neela 12 / 40

DRAM Attacks [21]

• Enclaves share same physical range of memory

• DRAM contains row buffers

• Use row conflicts to spy on victim

• Granularity: 512B to 8KB

Sudheendra Neela 12 / 40

Cache Attacks

• Flush+Reload not possible

, Prime+Probe is possible

• Physical address determines cache set

• Easy to prime cache set as OS

• Examples: [15], [21], [4], [14]

Sudheendra Neela 13 / 40

Cache Attacks

• Flush+Reload not possible, Prime+Probe is possible

• Physical address determines cache set

• Easy to prime cache set as OS

• Examples: [15], [21], [4], [14]

Sudheendra Neela 13 / 40

Cache Attacks

• Flush+Reload not possible, Prime+Probe is possible

• Physical address determines cache set

• Easy to prime cache set as OS

• Examples: [15], [21], [4], [14]

Sudheendra Neela 13 / 40

Cache Attacks

• Flush+Reload not possible, Prime+Probe is possible

• Physical address determines cache set

• Easy to prime cache set as OS

• Examples: [15], [21], [4], [14]

Sudheendra Neela 13 / 40

Cache Attacks

• Flush+Reload not possible, Prime+Probe is possible

• Physical address determines cache set

• Easy to prime cache set as OS

• Examples: [15], [21], [4], [14]

Sudheendra Neela 13 / 40

Malicious Enclave

• SGX Bomb [9]: Rowhammer within enclave

, cause bit flips,

integrity check fail, system lock ⇒ Denial of Service

• Another Flip in the Wall of Rowhammer Defenses [7]:

• A new hammering technique bypasses all rowhammer

defenses

• Leverages SGX to be stealthy

• SGX prevents inspection of enclave memory

• SGX makes it hard for host OS to detect enclave’s

behavior by excluding CPU perfomance counter tracking

⇒ perfect way to be stealthy

• ...bizarre threat model: Why would an enclave be

malicious?

Sudheendra Neela 14 / 40

Malicious Enclave

• SGX Bomb [9]: Rowhammer within enclave, cause bit flips

,

integrity check fail, system lock ⇒ Denial of Service

• Another Flip in the Wall of Rowhammer Defenses [7]:

• A new hammering technique bypasses all rowhammer

defenses

• Leverages SGX to be stealthy

• SGX prevents inspection of enclave memory

• SGX makes it hard for host OS to detect enclave’s

behavior by excluding CPU perfomance counter tracking

⇒ perfect way to be stealthy

• ...bizarre threat model: Why would an enclave be

malicious?

Sudheendra Neela 14 / 40

Malicious Enclave

• SGX Bomb [9]: Rowhammer within enclave, cause bit flips,

integrity check fail

, system lock ⇒ Denial of Service

• Another Flip in the Wall of Rowhammer Defenses [7]:

• A new hammering technique bypasses all rowhammer

defenses

• Leverages SGX to be stealthy

• SGX prevents inspection of enclave memory

• SGX makes it hard for host OS to detect enclave’s

behavior by excluding CPU perfomance counter tracking

⇒ perfect way to be stealthy

• ...bizarre threat model: Why would an enclave be

malicious?

Sudheendra Neela 14 / 40

Malicious Enclave

• SGX Bomb [9]: Rowhammer within enclave, cause bit flips,

integrity check fail, system lock

⇒ Denial of Service

• Another Flip in the Wall of Rowhammer Defenses [7]:

• A new hammering technique bypasses all rowhammer

defenses

• Leverages SGX to be stealthy

• SGX prevents inspection of enclave memory

• SGX makes it hard for host OS to detect enclave’s

behavior by excluding CPU perfomance counter tracking

⇒ perfect way to be stealthy

• ...bizarre threat model: Why would an enclave be

malicious?

Sudheendra Neela 14 / 40

Malicious Enclave

• SGX Bomb [9]: Rowhammer within enclave, cause bit flips,

integrity check fail, system lock ⇒ Denial of Service

• Another Flip in the Wall of Rowhammer Defenses [7]:

• A new hammering technique bypasses all rowhammer

defenses

• Leverages SGX to be stealthy

• SGX prevents inspection of enclave memory

• SGX makes it hard for host OS to detect enclave’s

behavior by excluding CPU perfomance counter tracking

⇒ perfect way to be stealthy

• ...bizarre threat model: Why would an enclave be

malicious?

Sudheendra Neela 14 / 40

Malicious Enclave

• SGX Bomb [9]: Rowhammer within enclave, cause bit flips,

integrity check fail, system lock ⇒ Denial of Service

• Another Flip in the Wall of Rowhammer Defenses [7]:

• A new hammering technique bypasses all rowhammer

defenses

• Leverages SGX to be stealthy

• SGX prevents inspection of enclave memory

• SGX makes it hard for host OS to detect enclave’s

behavior by excluding CPU perfomance counter tracking

⇒ perfect way to be stealthy

• ...bizarre threat model: Why would an enclave be

malicious?

Sudheendra Neela 14 / 40

Malicious Enclave

• SGX Bomb [9]: Rowhammer within enclave, cause bit flips,

integrity check fail, system lock ⇒ Denial of Service

• Another Flip in the Wall of Rowhammer Defenses [7]:

• A new hammering technique bypasses all rowhammer

defenses

• Leverages SGX to be stealthy

• SGX prevents inspection of enclave memory

• SGX makes it hard for host OS to detect enclave’s

behavior by excluding CPU perfomance counter tracking

⇒ perfect way to be stealthy

• ...bizarre threat model: Why would an enclave be

malicious?

Sudheendra Neela 14 / 40

Malicious Enclave

• SGX Bomb [9]: Rowhammer within enclave, cause bit flips,

integrity check fail, system lock ⇒ Denial of Service

• Another Flip in the Wall of Rowhammer Defenses [7]:

• A new hammering technique bypasses all rowhammer

defenses

• Leverages SGX to be stealthy

• SGX prevents inspection of enclave memory

• SGX makes it hard for host OS to detect enclave’s

behavior by excluding CPU perfomance counter tracking

⇒ perfect way to be stealthy

• ...bizarre threat model: Why would an enclave be

malicious?

Sudheendra Neela 14 / 40

Malicious Enclave

• SGX Bomb [9]: Rowhammer within enclave, cause bit flips,

integrity check fail, system lock ⇒ Denial of Service

• Another Flip in the Wall of Rowhammer Defenses [7]:

• A new hammering technique bypasses all rowhammer

defenses

• Leverages SGX to be stealthy

• SGX prevents inspection of enclave memory

• SGX makes it hard for host OS to detect enclave’s

behavior by excluding CPU perfomance counter tracking

⇒ perfect way to be stealthy

• ...bizarre threat model: Why would an enclave be

malicious?

Sudheendra Neela 14 / 40

Malicious Enclave

• SGX Bomb [9]: Rowhammer within enclave, cause bit flips,

integrity check fail, system lock ⇒ Denial of Service

• Another Flip in the Wall of Rowhammer Defenses [7]:

• A new hammering technique bypasses all rowhammer

defenses

• Leverages SGX to be stealthy

• SGX prevents inspection of enclave memory

• SGX makes it hard for host OS to detect enclave’s

behavior by excluding CPU perfomance counter tracking

⇒ perfect way to be stealthy

• ...bizarre threat model: Why would an enclave be

malicious?

Sudheendra Neela 14 / 40

Malicious Enclave

• SGX Bomb [9]: Rowhammer within enclave, cause bit flips,

integrity check fail, system lock ⇒ Denial of Service

• Another Flip in the Wall of Rowhammer Defenses [7]:

• A new hammering technique bypasses all rowhammer

defenses

• Leverages SGX to be stealthy

• SGX prevents inspection of enclave memory

• SGX makes it hard for host OS to detect enclave’s

behavior by excluding CPU perfomance counter tracking

⇒ perfect way to be stealthy

• ...bizarre threat model: Why would an enclave be

malicious?
Sudheendra Neela 14 / 40

SGX ROP [16]: A Malicious Enclave

• From enclave: host application’s memory is accessible, but

only if mapped

• If enclave reads unmapped host memory ⇒ terminated

• Transactional Synchronization Extensions (TSX): hardware

support for transactional memory

• Enclave wraps memory access inside a TSX transaction

• If accessible: transaction completes successfully

• If inaccessible: TSX aborts the transaction and supresses

enclave termination

• Search for ROP Gadgets, manipulate the stack, execute the

attack, come back to the enclave! Read the paper!

Sudheendra Neela 15 / 40

SGX ROP [16]: A Malicious Enclave

• From enclave: host application’s memory is accessible, but

only if mapped

• If enclave reads unmapped host memory

⇒ terminated

• Transactional Synchronization Extensions (TSX): hardware

support for transactional memory

• Enclave wraps memory access inside a TSX transaction

• If accessible: transaction completes successfully

• If inaccessible: TSX aborts the transaction and supresses

enclave termination

• Search for ROP Gadgets, manipulate the stack, execute the

attack, come back to the enclave! Read the paper!

Sudheendra Neela 15 / 40

SGX ROP [16]: A Malicious Enclave

• From enclave: host application’s memory is accessible, but

only if mapped

• If enclave reads unmapped host memory ⇒ terminated

• Transactional Synchronization Extensions (TSX): hardware

support for transactional memory

• Enclave wraps memory access inside a TSX transaction

• If accessible: transaction completes successfully

• If inaccessible: TSX aborts the transaction and supresses

enclave termination

• Search for ROP Gadgets, manipulate the stack, execute the

attack, come back to the enclave! Read the paper!

Sudheendra Neela 15 / 40

SGX ROP [16]: A Malicious Enclave

• From enclave: host application’s memory is accessible, but

only if mapped

• If enclave reads unmapped host memory ⇒ terminated

• Transactional Synchronization Extensions (TSX): hardware

support for transactional memory

• Enclave wraps memory access inside a TSX transaction

• If accessible: transaction completes successfully

• If inaccessible: TSX aborts the transaction and supresses

enclave termination

• Search for ROP Gadgets, manipulate the stack, execute the

attack, come back to the enclave! Read the paper!

Sudheendra Neela 15 / 40

SGX ROP [16]: A Malicious Enclave

• From enclave: host application’s memory is accessible, but

only if mapped

• If enclave reads unmapped host memory ⇒ terminated

• Transactional Synchronization Extensions (TSX): hardware

support for transactional memory

• Enclave wraps memory access inside a TSX transaction

• If accessible: transaction completes successfully

• If inaccessible: TSX aborts the transaction and supresses

enclave termination

• Search for ROP Gadgets, manipulate the stack, execute the

attack, come back to the enclave! Read the paper!

Sudheendra Neela 15 / 40

SGX ROP [16]: A Malicious Enclave

• From enclave: host application’s memory is accessible, but

only if mapped

• If enclave reads unmapped host memory ⇒ terminated

• Transactional Synchronization Extensions (TSX): hardware

support for transactional memory

• Enclave wraps memory access inside a TSX transaction

• If accessible: transaction completes successfully

• If inaccessible: TSX aborts the transaction and supresses

enclave termination

• Search for ROP Gadgets, manipulate the stack, execute the

attack, come back to the enclave! Read the paper!

Sudheendra Neela 15 / 40

SGX ROP [16]: A Malicious Enclave

• From enclave: host application’s memory is accessible, but

only if mapped

• If enclave reads unmapped host memory ⇒ terminated

• Transactional Synchronization Extensions (TSX): hardware

support for transactional memory

• Enclave wraps memory access inside a TSX transaction

• If accessible: transaction completes successfully

• If inaccessible: TSX aborts the transaction and supresses

enclave termination

• Search for ROP Gadgets, manipulate the stack, execute the

attack, come back to the enclave! Read the paper!

Sudheendra Neela 15 / 40

SGX ROP [16]: A Malicious Enclave

• From enclave: host application’s memory is accessible, but

only if mapped

• If enclave reads unmapped host memory ⇒ terminated

• Transactional Synchronization Extensions (TSX): hardware

support for transactional memory

• Enclave wraps memory access inside a TSX transaction

• If accessible: transaction completes successfully

• If inaccessible: TSX aborts the transaction and supresses

enclave termination

• Search for ROP Gadgets

, manipulate the stack, execute the

attack, come back to the enclave! Read the paper!

Sudheendra Neela 15 / 40

SGX ROP [16]: A Malicious Enclave

• From enclave: host application’s memory is accessible, but

only if mapped

• If enclave reads unmapped host memory ⇒ terminated

• Transactional Synchronization Extensions (TSX): hardware

support for transactional memory

• Enclave wraps memory access inside a TSX transaction

• If accessible: transaction completes successfully

• If inaccessible: TSX aborts the transaction and supresses

enclave termination

• Search for ROP Gadgets, manipulate the stack

, execute the

attack, come back to the enclave! Read the paper!

Sudheendra Neela 15 / 40

SGX ROP [16]: A Malicious Enclave

• From enclave: host application’s memory is accessible, but

only if mapped

• If enclave reads unmapped host memory ⇒ terminated

• Transactional Synchronization Extensions (TSX): hardware

support for transactional memory

• Enclave wraps memory access inside a TSX transaction

• If accessible: transaction completes successfully

• If inaccessible: TSX aborts the transaction and supresses

enclave termination

• Search for ROP Gadgets, manipulate the stack, execute the

attack

, come back to the enclave! Read the paper!

Sudheendra Neela 15 / 40

SGX ROP [16]: A Malicious Enclave

• From enclave: host application’s memory is accessible, but

only if mapped

• If enclave reads unmapped host memory ⇒ terminated

• Transactional Synchronization Extensions (TSX): hardware

support for transactional memory

• Enclave wraps memory access inside a TSX transaction

• If accessible: transaction completes successfully

• If inaccessible: TSX aborts the transaction and supresses

enclave termination

• Search for ROP Gadgets, manipulate the stack, execute the

attack, come back to the enclave!

Read the paper!

Sudheendra Neela 15 / 40

SGX ROP [16]: A Malicious Enclave

• From enclave: host application’s memory is accessible, but

only if mapped

• If enclave reads unmapped host memory ⇒ terminated

• Transactional Synchronization Extensions (TSX): hardware

support for transactional memory

• Enclave wraps memory access inside a TSX transaction

• If accessible: transaction completes successfully

• If inaccessible: TSX aborts the transaction and supresses

enclave termination

• Search for ROP Gadgets, manipulate the stack, execute the

attack, come back to the enclave! Read the paper!
Sudheendra Neela 15 / 40

Confidential Computing (CoCo)

Confidential Computing (CoCo) Overview

• x86 instruction-set extension

• Little reliance on the hypervisor: emulation, timekeeping,

interrupts, faults, privileged operations

• Confidential VMs (CVMs) and hypervisor are isolated

• CVM memory is encrypted, possibly integrity protected

• CVMs cannot access hypervisor memory (unlike SGX)

• Available in server CPUs (Intel Xeon, AMD EPYC)

Sudheendra Neela 16 / 40

Confidential Computing (CoCo) Overview

• x86 instruction-set extension

• Little reliance on the hypervisor: emulation, timekeeping,

interrupts, faults, privileged operations

• Confidential VMs (CVMs) and hypervisor are isolated

• CVM memory is encrypted, possibly integrity protected

• CVMs cannot access hypervisor memory (unlike SGX)

• Available in server CPUs (Intel Xeon, AMD EPYC)

Sudheendra Neela 16 / 40

Confidential Computing (CoCo) Overview

• x86 instruction-set extension

• Little reliance on the hypervisor: emulation, timekeeping,

interrupts, faults, privileged operations

• Confidential VMs (CVMs) and hypervisor are isolated

• CVM memory is encrypted, possibly integrity protected

• CVMs cannot access hypervisor memory (unlike SGX)

• Available in server CPUs (Intel Xeon, AMD EPYC)

Sudheendra Neela 16 / 40

Confidential Computing (CoCo) Overview

• x86 instruction-set extension

• Little reliance on the hypervisor: emulation, timekeeping,

interrupts, faults, privileged operations

• Confidential VMs (CVMs) and hypervisor are isolated

• CVM memory is encrypted, possibly integrity protected

• CVMs cannot access hypervisor memory (unlike SGX)

• Available in server CPUs (Intel Xeon, AMD EPYC)

Sudheendra Neela 16 / 40

Confidential Computing (CoCo) Overview

• x86 instruction-set extension

• Little reliance on the hypervisor: emulation, timekeeping,

interrupts, faults, privileged operations

• Confidential VMs (CVMs) and hypervisor are isolated

• CVM memory is encrypted, possibly integrity protected

• CVMs cannot access hypervisor memory (unlike SGX)

• Available in server CPUs (Intel Xeon, AMD EPYC)

Sudheendra Neela 16 / 40

Confidential Computing (CoCo) Overview

• x86 instruction-set extension

• Little reliance on the hypervisor: emulation, timekeeping,

interrupts, faults, privileged operations

• Confidential VMs (CVMs) and hypervisor are isolated

• CVM memory is encrypted, possibly integrity protected

• CVMs cannot access hypervisor memory (unlike SGX)

• Available in server CPUs (Intel Xeon, AMD EPYC)

Sudheendra Neela 16 / 40

Attack Targets

Once again, what are some components of a system?

Cache Page Table DRAM Network Predictors Interrupt

CPU Ports Power Counters

Fault

Attacks

(Lecture 4)

Transient

Execution

(Lecture 3)

Sudheendra Neela 17 / 40

Attack Targets

Once again, what are some components of a system?

Cache Page Table DRAM Network Predictors Interrupt

CPU Ports Power Counters

Fault

Attacks

(Lecture 4)

Transient

Execution

(Lecture 3)

Sudheendra Neela 17 / 40

Threat Model

• Attacking the CVM: malicious hypervisor

• Attacking the hypervisor: malicious CVM

• Malicious CVM attacks another CVM

• Side-Channel Attacks are out of scope

• Only CPU is trusted

Sudheendra Neela 18 / 40

Threat Model

• Attacking the CVM: malicious hypervisor

• Attacking the hypervisor: malicious CVM

• Malicious CVM attacks another CVM

• Side-Channel Attacks are out of scope

• Only CPU is trusted

Sudheendra Neela 18 / 40

Threat Model

• Attacking the CVM: malicious hypervisor

• Attacking the hypervisor: malicious CVM

• Malicious CVM attacks another CVM

• Side-Channel Attacks are out of scope

• Only CPU is trusted

Sudheendra Neela 18 / 40

Threat Model

• Attacking the CVM: malicious hypervisor

• Attacking the hypervisor: malicious CVM

• Malicious CVM attacks another CVM

• Side-Channel Attacks are out of scope

• Only CPU is trusted

Sudheendra Neela 18 / 40

Threat Model

• Attacking the CVM: malicious hypervisor

• Attacking the hypervisor: malicious CVM

• Malicious CVM attacks another CVM

• Side-Channel Attacks are out of scope

• Only CPU is trusted

Sudheendra Neela 18 / 40

Side-Channel Attacks on CoCo

Register Inference Attacks [22]

• Recall: VMEXIT is an event where VM hands control back

to the hypervisor

• AMD SEV left CVM’s registers exposed after switching to

hypervisor

• Hypervisor can infer the CVM’s computation just by

inspecting the registers

• With AMD SEV-ES: registers are encrypted and integrity

protected

• :)

Sudheendra Neela 19 / 40

Register Inference Attacks [22]

• Recall: VMEXIT is an event where VM hands control back

to the hypervisor

• AMD SEV left CVM’s registers exposed after switching to

hypervisor

• Hypervisor can infer the CVM’s computation just by

inspecting the registers

• With AMD SEV-ES: registers are encrypted and integrity

protected

• :)

Sudheendra Neela 19 / 40

Register Inference Attacks [22]

• Recall: VMEXIT is an event where VM hands control back

to the hypervisor

• AMD SEV left CVM’s registers exposed after switching to

hypervisor

• Hypervisor can infer the CVM’s computation just by

inspecting the registers

• With AMD SEV-ES: registers are encrypted and integrity

protected

• :)

Sudheendra Neela 19 / 40

Register Inference Attacks [22]

• Recall: VMEXIT is an event where VM hands control back

to the hypervisor

• AMD SEV left CVM’s registers exposed after switching to

hypervisor

• Hypervisor can infer the CVM’s computation just by

inspecting the registers

• With AMD SEV-ES: registers are encrypted and integrity

protected

• :)

Sudheendra Neela 19 / 40

Register Inference Attacks [22]

• Recall: VMEXIT is an event where VM hands control back

to the hypervisor

• AMD SEV left CVM’s registers exposed after switching to

hypervisor

• Hypervisor can infer the CVM’s computation just by

inspecting the registers

• With AMD SEV-ES: registers are encrypted and integrity

protected

• :)

Sudheendra Neela 19 / 40

Ciphertext Inference Attacks [12]

VM Save Area

Offset Size Content

0x150 16 bytes CR3 & CR0

0x170 16 bytes RFLAGS & RIP

0x1D8 8 bytes RSP

0x1F8 8 bytes RAX

0x240 8 bytes CR2

0x308 8 bytes RCX

0x310 16 bytes RDX & RBX

...

• With AMD SEV-ES: registers are encrypted

and integrity protected

• 16-byte blocks are encrypted independently

using AES XEX (XOR-Encrypt-XOR)

• The same plaintext always has the same

ciphertext

• Change in the CVM’s ciphertext: malicious

hypervisor can infer the changes of the

corresponding plaintext

• Build a dictionary of plaintext-ciphertext

pairs for targeted registers

Sudheendra Neela 20 / 40

Ciphertext Inference Attacks [12]

VM Save Area

Offset Size Content

0x150 16 bytes CR3 & CR0

0x170 16 bytes RFLAGS & RIP

0x1D8 8 bytes RSP

0x1F8 8 bytes RAX

0x240 8 bytes CR2

0x308 8 bytes RCX

0x310 16 bytes RDX & RBX

...

• With AMD SEV-ES: registers are encrypted

and integrity protected

• 16-byte blocks are encrypted independently

using AES XEX (XOR-Encrypt-XOR)

• The same plaintext always has the same

ciphertext

• Change in the CVM’s ciphertext: malicious

hypervisor can infer the changes of the

corresponding plaintext

• Build a dictionary of plaintext-ciphertext

pairs for targeted registers

Sudheendra Neela 20 / 40

Ciphertext Inference Attacks [12]

VM Save Area

Offset Size Content

0x150 16 bytes CR3 & CR0

0x170 16 bytes RFLAGS & RIP

0x1D8 8 bytes RSP

0x1F8 8 bytes RAX

0x240 8 bytes CR2

0x308 8 bytes RCX

0x310 16 bytes RDX & RBX

...

• With AMD SEV-ES: registers are encrypted

and integrity protected

• 16-byte blocks are encrypted independently

using AES XEX (XOR-Encrypt-XOR)

• The same plaintext always has the same

ciphertext

• Change in the CVM’s ciphertext: malicious

hypervisor can infer the changes of the

corresponding plaintext

• Build a dictionary of plaintext-ciphertext

pairs for targeted registers

Sudheendra Neela 20 / 40

Ciphertext Inference Attacks [12]

VM Save Area

Offset Size Content

0x150 16 bytes CR3 & CR0

0x170 16 bytes RFLAGS & RIP

0x1D8 8 bytes RSP

0x1F8 8 bytes RAX

0x240 8 bytes CR2

0x308 8 bytes RCX

0x310 16 bytes RDX & RBX

...

• With AMD SEV-ES: registers are encrypted

and integrity protected

• 16-byte blocks are encrypted independently

using AES XEX (XOR-Encrypt-XOR)

• The same plaintext always has the same

ciphertext

• Change in the CVM’s ciphertext: malicious

hypervisor can infer the changes of the

corresponding plaintext

• Build a dictionary of plaintext-ciphertext

pairs for targeted registers

Sudheendra Neela 20 / 40

Ciphertext Inference Attacks [12]

VM Save Area

Offset Size Content

0x150 16 bytes CR3 & CR0

0x170 16 bytes RFLAGS & RIP

0x1D8 8 bytes RSP

0x1F8 8 bytes RAX

0x240 8 bytes CR2

0x308 8 bytes RCX

0x310 16 bytes RDX & RBX

...

• With AMD SEV-ES: registers are encrypted

and integrity protected

• 16-byte blocks are encrypted independently

using AES XEX (XOR-Encrypt-XOR)

• The same plaintext always has the same

ciphertext

• Change in the CVM’s ciphertext: malicious

hypervisor can infer the changes of the

corresponding plaintext

• Build a dictionary of plaintext-ciphertext

pairs for targeted registers

Sudheendra Neela 20 / 40

CacheWarp [25]

• INVD

: Invalidates all levels of cache

• INVD: No data is written back to main memory

• WBINVD: data is written back to main memory and

invalidates cache

• Intel SGX & TDX: disable INVD

• AMD SEV, SEV-ES, SEV-SNP: INVD works

• How can a malicious hypervisor exploit this?

Sudheendra Neela 21 / 40

CacheWarp [25]

• INVD: Invalidates all levels of cache

• INVD

: No data is written back to main memory

• WBINVD: data is written back to main memory and

invalidates cache

• Intel SGX & TDX: disable INVD

• AMD SEV, SEV-ES, SEV-SNP: INVD works

• How can a malicious hypervisor exploit this?

Sudheendra Neela 21 / 40

CacheWarp [25]

• INVD: Invalidates all levels of cache

• INVD: No data is written back to main memory

• WBINVD: data is written back to main memory and

invalidates cache

• Intel SGX & TDX: disable INVD

• AMD SEV, SEV-ES, SEV-SNP: INVD works

• How can a malicious hypervisor exploit this?

Sudheendra Neela 21 / 40

CacheWarp [25]

• INVD: Invalidates all levels of cache

• INVD: No data is written back to main memory

• WBINVD

: data is written back to main memory and

invalidates cache

• Intel SGX & TDX: disable INVD

• AMD SEV, SEV-ES, SEV-SNP: INVD works

• How can a malicious hypervisor exploit this?

Sudheendra Neela 21 / 40

CacheWarp [25]

• INVD: Invalidates all levels of cache

• INVD: No data is written back to main memory

• WBINVD: data is written back to main memory and

invalidates cache

• Intel SGX & TDX: disable INVD

• AMD SEV, SEV-ES, SEV-SNP: INVD works

• How can a malicious hypervisor exploit this?

Sudheendra Neela 21 / 40

CacheWarp [25]

• INVD: Invalidates all levels of cache

• INVD: No data is written back to main memory

• WBINVD: data is written back to main memory and

invalidates cache

• Intel SGX & TDX: disable INVD

• AMD SEV, SEV-ES, SEV-SNP: INVD works

• How can a malicious hypervisor exploit this?

Sudheendra Neela 21 / 40

CacheWarp [25]

• INVD: Invalidates all levels of cache

• INVD: No data is written back to main memory

• WBINVD: data is written back to main memory and

invalidates cache

• Intel SGX & TDX: disable INVD

• AMD SEV, SEV-ES, SEV-SNP: INVD works

• How can a malicious hypervisor exploit this?

Sudheendra Neela 21 / 40

CacheWarp [25]

• INVD: Invalidates all levels of cache

• INVD: No data is written back to main memory

• WBINVD: data is written back to main memory and

invalidates cache

• Intel SGX & TDX: disable INVD

• AMD SEV, SEV-ES, SEV-SNP: INVD works

• How can a malicious hypervisor exploit this?

Sudheendra Neela 21 / 40

CacheWarp [25]

1 int ret1() {

2 return 1;

3 }

4 int ret0() {

5 return 0;

6 }

7 int main() {

8 while(1){

9 if (ret1() == 0){

10 printf("Win!");

11 }

12 ret0();

13 }

14 }
Sudheendra Neela 22 / 40

This is running in a Confidential VM

CacheWarp [25]

1 int ret1() {

2 return 1;

3 }

4 int ret0() {

5 return 0;

6 }

7 int main() {

8 while(1){

9 if (ret1() == 0){

10 printf("Win!");

11 }

12 ret0();

13 }

14 }

1 main:

2 push %rbp

3 mov %rsp,%rbp

4 mov $0x0,%eax

5 call <ret1>

6 test %eax,%eax

7 jne 118c <main+0x25>

8 lea 0xe80(%rip),%rax

9 mov %rax,%rdi

10 call <printf@plt>

11 mov $0x0,%eax

12 call 1158 <ret0>

13 jmp 116f <main+0x8>

Sudheendra Neela 22 / 40

CacheWarp [25]

1 int ret1() {

2 return 1;

3 }

4 int ret0() {

5 return 0;

6 }

7 int main() {

8 while(1){

9 if (ret1() == 0){

10 printf("Win!");

11 }

12 ret0();

13 }

14 }

1 main:

2 push %rbp

3 mov %rsp,%rbp

4 mov $0x0,%eax

5 call <ret1>

6 test %eax,%eax

7 jne 118c <main+0x25>

8 lea 0xe80(%rip),%rax

9 mov %rax,%rdi

10 call <printf@plt>

11 mov $0x0,%eax

12 call 1158 <ret0>

13 jmp 116f <main+0x8>

Cache:
main:6

Sudheendra Neela 22 / 40

CacheWarp [25]

1 int ret1() {

2 return 1;

3 }

4 int ret0() {

5 return 0;

6 }

7 int main() {

8 while(1){

9 if (ret1() == 0){

10 printf("Win!");

11 }

12 ret0();

13 }

14 }

1 main:

2 push %rbp

3 mov %rsp,%rbp

4 mov $0x0,%eax

5 call <ret1>

6 test %eax,%eax

7 jne 118c <main+0x25>

8 lea 0xe80(%rip),%rax

9 mov %rax,%rdi

10 call <printf@plt>

11 mov $0x0,%eax

12 call 1158 <ret0>

13 jmp 116f <main+0x8>

Cache:
main:6

WBINVD

Sudheendra Neela 22 / 40

CacheWarp [25]

1 int ret1() {

2 return 1;

3 }

4 int ret0() {

5 return 0;

6 }

7 int main() {

8 while(1){

9 if (ret1() == 0){

10 printf("Win!");

11 }

12 ret0();

13 }

14 }

1 main:

2 push %rbp

3 mov %rsp,%rbp

4 mov $0x0,%eax

5 call <ret1>

6 test %eax,%eax

7 jne 118c <main+0x25>

8 lea 0xe80(%rip),%rax

9 mov %rax,%rdi

10 call <printf@plt>

11 mov $0x0,%eax

12 call 1158 <ret0>

13 jmp 116f <main+0x8>

Cache:
main:6

WBINVD

Memory:

main:6

Sudheendra Neela 22 / 40

CacheWarp [25]

1 int ret1() {

2 return 1;

3 }

4 int ret0() {

5 return 0;

6 }

7 int main() {

8 while(1){

9 if (ret1() == 0){

10 printf("Win!");

11 }

12 ret0();

13 }

14 }

1 main:

2 push %rbp

3 mov %rsp,%rbp

4 mov $0x0,%eax

5 call <ret1>

6 test %eax,%eax

7 jne 118c <main+0x25>

8 lea 0xe80(%rip),%rax

9 mov %rax,%rdi

10 call <printf@plt>

11 mov $0x0,%eax

12 call 1158 <ret0>

13 jmp 116f <main+0x8>

Cache:
main:6

Memory:

main:6

Sudheendra Neela 22 / 40

CacheWarp [25]

1 int ret1() {

2 return 1;

3 }

4 int ret0() {

5 return 0;

6 }

7 int main() {

8 while(1){

9 if (ret1() == 0){

10 printf("Win!");

11 }

12 ret0();

13 }

14 }

1 main:

2 push %rbp

3 mov %rsp,%rbp

4 mov $0x0,%eax

5 call <ret1>

6 test %eax,%eax

7 jne 118c <main+0x25>

8 lea 0xe80(%rip),%rax

9 mov %rax,%rdi

10 call <printf@plt>

11 mov $0x0,%eax

12 call 1158 <ret0>

13 jmp 116f <main+0x8>

Cache:
main:6

Memory:

main:6

Registers:

EAX: 1

Sudheendra Neela 22 / 40

CacheWarp [25]

1 int ret1() {

2 return 1;

3 }

4 int ret0() {

5 return 0;

6 }

7 int main() {

8 while(1){

9 if (ret1() == 0){

10 printf("Win!");

11 }

12 ret0();

13 }

14 }

1 main:

2 push %rbp

3 mov %rsp,%rbp

4 mov $0x0,%eax

5 call <ret1>

6 test %eax,%eax

7 jne 118c <main+0x25>

8 lea 0xe80(%rip),%rax

9 mov %rax,%rdi

10 call <printf@plt>

11 mov $0x0,%eax

12 call 1158 <ret0>

13 jmp 116f <main+0x8>

Cache:

Memory:

main:6

Registers:

EAX: 1

Sudheendra Neela 22 / 40

CacheWarp [25]

1 int ret1() {

2 return 1;

3 }

4 int ret0() {

5 return 0;

6 }

7 int main() {

8 while(1){

9 if (ret1() == 0){

10 printf("Win!");

11 }

12 ret0();

13 }

14 }

1 main:

2 push %rbp

3 mov %rsp,%rbp

4 mov $0x0,%eax

5 call <ret1>

6 test %eax,%eax

7 jne 118c <main+0x25>

8 lea 0xe80(%rip),%rax

9 mov %rax,%rdi

10 call <printf@plt>

11 mov $0x0,%eax

12 call 1158 <ret0>

13 jmp 116f <main+0x8>

Cache:

Memory:

main:6

Registers:

EAX: 1

Sudheendra Neela 22 / 40

CacheWarp [25]

1 int ret1() {

2 return 1;

3 }

4 int ret0() {

5 return 0;

6 }

7 int main() {

8 while(1){

9 if (ret1() == 0){

10 printf("Win!");

11 }

12 ret0();

13 }

14 }

1 main:

2 push %rbp

3 mov %rsp,%rbp

4 mov $0x0,%eax

5 call <ret1>

6 test %eax,%eax

7 jne 118c <main+0x25>

8 lea 0xe80(%rip),%rax

9 mov %rax,%rdi

10 call <printf@plt>

11 mov $0x0,%eax

12 call 1158 <ret0>

13 jmp 116f <main+0x8>

Cache:

Memory:

main:6

Registers:

EAX: 1

main:13

Sudheendra Neela 22 / 40

CacheWarp [25]

1 int ret1() {

2 return 1;

3 }

4 int ret0() {

5 return 0;

6 }

7 int main() {

8 while(1){

9 if (ret1() == 0){

10 printf("Win!");

11 }

12 ret0();

13 }

14 }

1 main:

2 push %rbp

3 mov %rsp,%rbp

4 mov $0x0,%eax

5 call <ret1>

6 test %eax,%eax

7 jne 118c <main+0x25>

8 lea 0xe80(%rip),%rax

9 mov %rax,%rdi

10 call <printf@plt>

11 mov $0x0,%eax

12 call 1158 <ret0>

13 jmp 116f <main+0x8>

Cache:

Memory:

main:6

Registers:

EAX: 1

main:13

Sudheendra Neela 22 / 40

CacheWarp [25]

1 int ret1() {

2 return 1;

3 }

4 int ret0() {

5 return 0;

6 }

7 int main() {

8 while(1){

9 if (ret1() == 0){

10 printf("Win!");

11 }

12 ret0();

13 }

14 }

1 main:

2 push %rbp

3 mov %rsp,%rbp

4 mov $0x0,%eax

5 call <ret1>

6 test %eax,%eax

7 jne 118c <main+0x25>

8 lea 0xe80(%rip),%rax

9 mov %rax,%rdi

10 call <printf@plt>

11 mov $0x0,%eax

12 call 1158 <ret0>

13 jmp 116f <main+0x8>

Cache:

Memory:

main:6

Registers:

EAX: 1

main:13

INVD

Sudheendra Neela 22 / 40

CacheWarp [25]

1 int ret1() {

2 return 1;

3 }

4 int ret0() {

5 return 0;

6 }

7 int main() {

8 while(1){

9 if (ret1() == 0){

10 printf("Win!");

11 }

12 ret0();

13 }

14 }

1 main:

2 push %rbp

3 mov %rsp,%rbp

4 mov $0x0,%eax

5 call <ret1>

6 test %eax,%eax

7 jne 118c <main+0x25>

8 lea 0xe80(%rip),%rax

9 mov %rax,%rdi

10 call <printf@plt>

11 mov $0x0,%eax

12 call 1158 <ret0>

13 jmp 116f <main+0x8>

Cache:

Memory:

main:6

Registers:

EAX: 1

INVD

Sudheendra Neela 22 / 40

CacheWarp [25]

1 int ret1() {

2 return 1;

3 }

4 int ret0() {

5 return 0;

6 }

7 int main() {

8 while(1){

9 if (ret1() == 0){

10 printf("Win!");

11 }

12 ret0();

13 }

14 }

1 main:

2 push %rbp

3 mov %rsp,%rbp

4 mov $0x0,%eax

5 call <ret1>

6 test %eax,%eax

7 jne 118c <main+0x25>

8 lea 0xe80(%rip),%rax

9 mov %rax,%rdi

10 call <printf@plt>

11 mov $0x0,%eax

12 call 1158 <ret0>

13 jmp 116f <main+0x8>

Cache:

Memory:

main:6

Registers:

EAX: 0

Sudheendra Neela 22 / 40

CacheWarp [25]

1 int ret1() {

2 return 1;

3 }

4 int ret0() {

5 return 0;

6 }

7 int main() {

8 while(1){

9 if (ret1() == 0){

10 printf("Win!");

11 }

12 ret0();

13 }

14 }

1 main:

2 push %rbp

3 mov %rsp,%rbp

4 mov $0x0,%eax

5 call <ret1>

6 test %eax,%eax

7 jne 118c <main+0x25>

8 lea 0xe80(%rip),%rax

9 mov %rax,%rdi

10 call <printf@plt>

11 mov $0x0,%eax

12 call 1158 <ret0>

13 jmp 116f <main+0x8>

Cache:

Memory:

main:6

Registers:

EAX: 0

main:6

Sudheendra Neela 22 / 40

CacheWarp [25]

1 int ret1() {

2 return 1;

3 }

4 int ret0() {

5 return 0;

6 }

7 int main() {

8 while(1){

9 if (ret1() == 0){

10 printf("Win!");

11 }

12 ret0();

13 }

14 }

1 main:

2 push %rbp

3 mov %rsp,%rbp

4 mov $0x0,%eax

5 call <ret1>

6 test %eax,%eax

7 jne 118c <main+0x25>

8 lea 0xe80(%rip),%rax

9 mov %rax,%rdi

10 call <printf@plt>

11 mov $0x0,%eax

12 call 1158 <ret0>

13 jmp 116f <main+0x8>

Cache:

Memory:

main:6

Registers:

EAX: 0

main:6

Sudheendra Neela 22 / 40

CacheWarp [25]

1 int ret1() {

2 return 1;

3 }

4 int ret0() {

5 return 0;

6 }

7 int main() {

8 while(1){

9 if (ret1() == 0){

10 printf("Win!");

11 }

12 ret0();

13 }

14 }

1 main:

2 push %rbp

3 mov %rsp,%rbp

4 mov $0x0,%eax

5 call <ret1>

6 test %eax,%eax

7 jne 118c <main+0x25>

8 lea 0xe80(%rip),%rax

9 mov %rax,%rdi

10 call <printf@plt>

11 mov $0x0,%eax

12 call 1158 <ret0>

13 jmp 116f <main+0x8>

Cache:

Memory:

main:6

Registers:

EAX: 0

Sudheendra Neela 22 / 40

CacheWarp [25]

• Bypass OpenSSH authentication: sys auth passwd

• Break RSA-CRT: Drop write using INVD, generate faulty

signature

• Bypass sudo authentication:

• Normal user: UID >0 ⇒ sudo fails

• Drop write when sudo checks UID (GUID, RUID, EUID)

• UID 0: root

Sudheendra Neela 23 / 40

CacheWarp [25]

• Bypass OpenSSH authentication: sys auth passwd

• Break RSA-CRT: Drop write using INVD, generate faulty

signature

• Bypass sudo authentication:

• Normal user: UID >0 ⇒ sudo fails

• Drop write when sudo checks UID (GUID, RUID, EUID)

• UID 0: root

Sudheendra Neela 23 / 40

CacheWarp [25]

• Bypass OpenSSH authentication: sys auth passwd

• Break RSA-CRT: Drop write using INVD, generate faulty

signature

• Bypass sudo authentication:

• Normal user: UID >0 ⇒ sudo fails

• Drop write when sudo checks UID (GUID, RUID, EUID)

• UID 0: root

Sudheendra Neela 23 / 40

CacheWarp [25]

• Bypass OpenSSH authentication: sys auth passwd

• Break RSA-CRT: Drop write using INVD, generate faulty

signature

• Bypass sudo authentication:

• Normal user: UID >0

⇒ sudo fails

• Drop write when sudo checks UID (GUID, RUID, EUID)

• UID 0: root

Sudheendra Neela 23 / 40

CacheWarp [25]

• Bypass OpenSSH authentication: sys auth passwd

• Break RSA-CRT: Drop write using INVD, generate faulty

signature

• Bypass sudo authentication:

• Normal user: UID >0 ⇒ sudo fails

• Drop write when sudo checks UID (GUID, RUID, EUID)

• UID 0: root

Sudheendra Neela 23 / 40

CacheWarp [25]

• Bypass OpenSSH authentication: sys auth passwd

• Break RSA-CRT: Drop write using INVD, generate faulty

signature

• Bypass sudo authentication:

• Normal user: UID >0 ⇒ sudo fails

• Drop write when sudo checks UID (GUID, RUID, EUID)

• UID 0: root

Sudheendra Neela 23 / 40

CacheWarp [25]

• Bypass OpenSSH authentication: sys auth passwd

• Break RSA-CRT: Drop write using INVD, generate faulty

signature

• Bypass sudo authentication:

• Normal user: UID >0 ⇒ sudo fails

• Drop write when sudo checks UID (GUID, RUID, EUID)

• UID 0: root

Sudheendra Neela 23 / 40

CounterSEVeillance [6]

• CPU provides hardware performance counters:

• Retired Instructions

• Retired Branch Instructions

• Retired Taken Branch Instructions

• AMD: Report accurate values when SEV, SEV-ES,

SEV-SNP CVMs run

• Intel: Disabled hardware performance counters when SGX

enclaves, TDX CVMs run

• Leak whether branches (if) were taken

Sudheendra Neela 24 / 40

CounterSEVeillance [6]

• CPU provides hardware performance counters:

• Retired Instructions

• Retired Branch Instructions

• Retired Taken Branch Instructions

• AMD: Report accurate values when SEV, SEV-ES,

SEV-SNP CVMs run

• Intel: Disabled hardware performance counters when SGX

enclaves, TDX CVMs run

• Leak whether branches (if) were taken

Sudheendra Neela 24 / 40

CounterSEVeillance [6]

• CPU provides hardware performance counters:

• Retired Instructions

• Retired Branch Instructions

• Retired Taken Branch Instructions

• AMD: Report accurate values when SEV, SEV-ES,

SEV-SNP CVMs run

• Intel: Disabled hardware performance counters when SGX

enclaves, TDX CVMs run

• Leak whether branches (if) were taken

Sudheendra Neela 24 / 40

CounterSEVeillance [6]

• CPU provides hardware performance counters:

• Retired Instructions

• Retired Branch Instructions

• Retired Taken Branch Instructions

• AMD: Report accurate values when SEV, SEV-ES,

SEV-SNP CVMs run

• Intel: Disabled hardware performance counters when SGX

enclaves, TDX CVMs run

• Leak whether branches (if) were taken

Sudheendra Neela 24 / 40

CounterSEVeillance [6]

• CPU provides hardware performance counters:

• Retired Instructions

• Retired Branch Instructions

• Retired Taken Branch Instructions

• AMD: Report accurate values when SEV, SEV-ES,

SEV-SNP CVMs run

• Intel: Disabled hardware performance counters when SGX

enclaves, TDX CVMs run

• Leak whether branches (if) were taken

Sudheendra Neela 24 / 40

CounterSEVeillance [6]

• CPU provides hardware performance counters:

• Retired Instructions

• Retired Branch Instructions

• Retired Taken Branch Instructions

• AMD: Report accurate values when SEV, SEV-ES,

SEV-SNP CVMs run

• Intel: Disabled hardware performance counters when SGX

enclaves, TDX CVMs run

• Leak whether branches (if) were taken

Sudheendra Neela 24 / 40

CounterSEVeillance [6]

• CPU provides hardware performance counters:

• Retired Instructions

• Retired Branch Instructions

• Retired Taken Branch Instructions

• AMD: Report accurate values when SEV, SEV-ES,

SEV-SNP CVMs run

• Intel: Disabled hardware performance counters when SGX

enclaves, TDX CVMs run

• Leak whether branches (if) were taken

Sudheendra Neela 24 / 40

CounterSEVeillance [6]

• CPU provides hardware performance counters:

• Retired Instructions

• Retired Branch Instructions

• Retired Taken Branch Instructions

• AMD: Report accurate values when SEV, SEV-ES,

SEV-SNP CVMs run

• Intel: Disabled hardware performance counters when SGX

enclaves, TDX CVMs run

• Leak whether branches (if) were taken

Sudheendra Neela 24 / 40

CounterSEVeillance [6]

1 char time_str[data->digits+1];

2 memset(time_str, 0, data->digits+1);

3 for (size_t i=0; i<data->digits; i++) {

4 if (key[i] != time_str[i])

5 return OTP_ERROR;

6 }

7 return OTP_OK;

0 10 20

taken

retired

Step

0 10 20

taken

retired

Step

Sudheendra Neela 25 / 40

Limitations & Solutions

Some limitations

• No shared memory

• No physical addresses

• No access to high-precision timer: rdtsca

• No syscalls (SGX)

aAMD SEV-SNP and Intel TDX now have secure timers

Sudheendra Neela 26 / 40

Some limitations

• No shared memory

• No physical addresses

• No access to high-precision timer: rdtsca

• No syscalls (SGX)

aAMD SEV-SNP and Intel TDX now have secure timers

Sudheendra Neela 26 / 40

Some limitations

• No shared memory

• No physical addresses

• No access to high-precision timer: rdtsca

• No syscalls (SGX)

aAMD SEV-SNP and Intel TDX now have secure timers

Sudheendra Neela 26 / 40

Some limitations

• No shared memory

• No physical addresses

• No access to high-precision timer: rdtsca

• No syscalls (SGX)

aAMD SEV-SNP and Intel TDX now have secure timers

Sudheendra Neela 26 / 40

Timer

• We can build our own timer [13, 15]

• Start a thread that continuously increments a global

variable

• The global variable is our timestamp

Sudheendra Neela 27 / 40

Timer

• We can build our own timer [13, 15]

• Start a thread that continuously increments a global

variable

• The global variable is our timestamp

Sudheendra Neela 27 / 40

Timer

• We can build our own timer [13, 15]

• Start a thread that continuously increments a global

variable

• The global variable is our timestamp

Sudheendra Neela 27 / 40

Sudheendra Neela 27 / 40

Sudheendra Neela 27 / 40

Self-built Timer

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

t imestamp = r d t s c () ;

Sudheendra Neela 28 / 40

Self-built Timer

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

while (1) {
t imestamp++;

}

Sudheendra Neela 28 / 40

Self-built Timer

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7
while (1) {

t imestamp++;

}

Sudheendra Neela 28 / 40

Self-built Timer

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7
while (1) {

t imestamp++;

}

Sudheendra Neela 28 / 40

Self-built Timer

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7
mov ×tamp , %rcx

1 : i n c l (%rcx)

jmp 1b

Sudheendra Neela 28 / 40

Self-built Timer

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7

4.67

mov ×tamp , %rcx

1 : i n c l (%rcx)

jmp 1b

Sudheendra Neela 28 / 40

Self-built Timer

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7

4.67

mov ×tamp , %rcx

1 : i n c l (%rcx)

jmp 1b

Sudheendra Neela 28 / 40

Self-built Timer

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7

4.67

mov ×tamp , %rcx

1 : inc %rax

mov %rax , (%rcx)

jmp 1b

Sudheendra Neela 28 / 40

Self-built Timer

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

4.7

4.67

0.87

mov ×tamp , %rcx

1 : inc %rax

mov %rax , (%rcx)

jmp 1b

Sudheendra Neela 28 / 40

Combining Everything: Malware Guard Extensions (on SGX) [15]

1. Use the counting primitive to measure DRAM accesses

2. Use DRAM side-channel to build eviction set

3. Mount Prime+Probe on the buffer containing the multiplier

Sudheendra Neela 29 / 40

Combining Everything: Malware Guard Extensions (on SGX) [15]

1. Use the counting primitive to measure DRAM accesses

2. Use DRAM side-channel to build eviction set

3. Mount Prime+Probe on the buffer containing the multiplier

Sudheendra Neela 29 / 40

Combining Everything: Malware Guard Extensions (on SGX) [15]

1. Use the counting primitive to measure DRAM accesses

2. Use DRAM side-channel to build eviction set

3. Mount Prime+Probe on the buffer containing the multiplier

Sudheendra Neela 29 / 40

Measured Trace

Raw Prime+Probe trace...

Sudheendra Neela 30 / 40

Measured Trace

...processed with a simple moving average...

Sudheendra Neela 31 / 40

Measured Trace

...allows to clearly see the bits of the exponent

1 1 1 00 1 1 1 01 1 1 00000001 000 1 0 1 00 1 1 00 1 1 01 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Sudheendra Neela 32 / 40

Single-Stepping [18, 23]

• CVM / Enclave: executes many instructions until support

from the hypervisor / host is required

• Single Step: CVM / Enclave executes only one instruction

at a time

• local Advanced Programmable Interrupt Controller (APIC)

• Timer: 3 modes

• One-shot

• Periodic

• TSC-deadline

Sudheendra Neela 33 / 40

Single-Stepping [18, 23]

• CVM / Enclave: executes many instructions until support

from the hypervisor / host is required

• Single Step: CVM / Enclave executes only one instruction

at a time

• local Advanced Programmable Interrupt Controller (APIC)

• Timer: 3 modes

• One-shot

• Periodic

• TSC-deadline

Sudheendra Neela 33 / 40

Single-Stepping [18, 23]

• CVM / Enclave: executes many instructions until support

from the hypervisor / host is required

• Single Step: CVM / Enclave executes only one instruction

at a time

• local Advanced Programmable Interrupt Controller (APIC)

• Timer: 3 modes

• One-shot

• Periodic

• TSC-deadline

Sudheendra Neela 33 / 40

Single-Stepping [18, 23]

• CVM / Enclave: executes many instructions until support

from the hypervisor / host is required

• Single Step: CVM / Enclave executes only one instruction

at a time

• local Advanced Programmable Interrupt Controller (APIC)

• Timer: 3 modes

• One-shot

• Periodic

• TSC-deadline

Sudheendra Neela 33 / 40

Single-Stepping [18, 23]

• CVM / Enclave: executes many instructions until support

from the hypervisor / host is required

• Single Step: CVM / Enclave executes only one instruction

at a time

• local Advanced Programmable Interrupt Controller (APIC)

• Timer: 3 modes

• One-shot

• Periodic

• TSC-deadline

Sudheendra Neela 33 / 40

Single-Stepping [18, 23]

• CVM / Enclave: executes many instructions until support

from the hypervisor / host is required

• Single Step: CVM / Enclave executes only one instruction

at a time

• local Advanced Programmable Interrupt Controller (APIC)

• Timer: 3 modes

• One-shot

• Periodic

• TSC-deadline

Sudheendra Neela 33 / 40

Single-Stepping [18, 23]

• CVM / Enclave: executes many instructions until support

from the hypervisor / host is required

• Single Step: CVM / Enclave executes only one instruction

at a time

• local Advanced Programmable Interrupt Controller (APIC)

• Timer: 3 modes

• One-shot

• Periodic

• TSC-deadline

Sudheendra Neela 33 / 40

Conclusion

• TEEs / CVMs developed to protect sensitive

information/critical code execution

• Allow for a very powerful threat model: Malicious

hypervisor

• SCAs often not “out of scope”

Sudheendra Neela 34 / 40

Conclusion

• TEEs / CVMs developed to protect sensitive

information/critical code execution

• Allow for a very powerful threat model: Malicious

hypervisor

• SCAs often not “out of scope”

Sudheendra Neela 34 / 40

Conclusion

• TEEs / CVMs developed to protect sensitive

information/critical code execution

• Allow for a very powerful threat model: Malicious

hypervisor

• SCAs often not “out of scope”

Sudheendra Neela 34 / 40

Side-Channel Security

Chapter 3: Trusted Execution Environments

and Confidential Computing

Sudheendra Neela

March 13, 2025

Graz University of Technology

Sudheendra Neela 35 / 40

References

[1] AMD (2020). AMD SEV-SNP: Strengthening VM Isolation with Integrity

Protection and More.

[2] ARM (2009). Building a Secure System using TrustZone Technology.

[3] ARM (2021). Arm CCA Security Model 1.0.

[4] Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., and

Sadeghi, A.-R. (2017). Software Grand Exposure: SGX Cache Attacks Are

Practical. In WOOT.

[5] Costan, V. and Devadas, S. (2016). Intel SGX Explained.

Sudheendra Neela 36 / 40

[6] Gast, S., Weissteiner, H., Schröder, R. L., and Gruss, D. (2025).

CounterSEVeillance: Performance-Counter Attacks on AMD SEV-SNP. In

NDSS.

[7] Gruss, D., Lipp, M., Schwarz, M., Genkin, D., Juffinger, J., O’Connell, S.,

Schoechl, W., and Yarom, Y. (2018). Another Flip in the Wall of Rowhammer

Defenses. In S&P.

[8] Intel (2024). Intel Trust Domain Extensions Module Base Architecture

Specification.

[9] Jang, Y., Lee, J., Lee, S., and Kim, T. (2017). SGX-Bomb: Locking Down

the Processor via Rowhammer Attack. In SysTEX.

[10] Kaplan, D. (2017). Protecting VM register state with SEV-ES.

[11] Kaplan, D., Powell, J., and Woller, T. (2016). AMD Memory Encryption.

Sudheendra Neela 37 / 40

[12] Li, M., Zhang, Y., Wang, H., Li, K., and Cheng, Y. (2021).

CIPHERLEAKS: Breaking Constant-time Cryptography on AMD SEV via the

Ciphertext Side Channel. In USENIX Security.

[13] Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., and Mangard, S. (2016).

ARMageddon: Cache Attacks on Mobile Devices. In USENIX Security

Symposium.

[14] Moghimi, A., Irazoqui, G., and Eisenbarth, T. (2017). CacheZoom: How

SGX amplifies the power of cache attacks. In CHES.

[15] Schwarz, M., Gruss, D., Weiser, S., Maurice, C., and Mangard, S. (2017).

Malware Guard Extension: Using SGX to Conceal Cache Attacks. In DIMVA.

[16] Schwarz, M., Weiser, S., and Gruss, D. (2019). Practical Enclave Malware

with Intel SGX. In DIMVA.

Sudheendra Neela 38 / 40

[17] Szefer, J., Keller, E., Lee, R. B., and Rexford, J. (2011). Eliminating the

hypervisor attack surface for a more secure cloud. In CCS.

[18] Van Bulck, J., Piessens, F., and Strackx, R. (2017a). SGX-Step: A Practical

Attack Framework for Precise Enclave Execution Control. In SysTEX.

[19] Van Bulck, J., Weichbrodt, N., Kapitza, R., Piessens, F., and Strackx, R.

(2017b). Telling Your Secrets Without Page Faults: Stealthy Page

Table-Based Attacks on Enclaved Execution. In USENIX Security.

[20] Van Schaik, S., Seto, A., Yurek, T., Batori, A., AlBassam, B., Genkin, D.,

Miller, A., Ronen, E., Yarom, Y., and Garman, C. (2024). SoK: SGX.Fail:

How Stuff Gets eXposed. In S&P.

[21] Wang, W., Chen, G., Pan, X., Zhang, Y., Wang, X., Bindschaedler, V.,

Tang, H., and Gunter, C. A. (2017). Leaky Cauldron on the Dark Land:

Understanding Memory Side-Channel Hazards in SGX. In CCS.

Sudheendra Neela 39 / 40

[22] Werner, J., Mason, J., Antonakakis, M., Polychronakis, M., and Monrose,

F. (2019). The SEVerESt Of Them All: Inference Attacks Against Secure

Virtual Enclaves. In AsiaCCS.

[23] Wilke, L., Wichelmann, J., Rabich, A., and Eisenbarth, T. (2023).

SEV-Step A Single-Stepping Framework for AMD-SEV. CHES.

[24] Xu, Y., Cui, W., and Peinado, M. (2015). Controlled-Channel Attacks:

Deterministic Side Channels for Untrusted Operating Systems. In S&P.

[25] Zhang, R., Center, C. H., Gerlach, L., Weber, D., Hetterich, L., Lü, Y.,

Kogler, A., and Schwarz, M. (2024). CacheWarp: Software-based Fault

Injection using Selective State Reset. In USENIX Security.

Sudheendra Neela 40 / 40

