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Motivation

• Systems run software from various sources

• Protect computation against compromised OS

• Protect system against malicious software

• Cloud servers: must run any untrusted virtual machines

• Cloud VMs: may run in compromised or hostile enviroments

• CPU providers: tamper-resistant mechanism

• Key enabler of confidential computing
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Virtualization

VM1 VM2 VM3 VM4

Hypervisor

SMT

Thread
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Memory

• Hypervisor: manages virtual

machines (VMs)

• Traditional virtualization:

Hypervisor has total control

• All VMs share components

• Check out Cloud Operating

Systems!

• Confidential Computing (CoCo):

hardware guarantees for secure VM

operation
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A Simple Correlation Attack [17] (2011)

• VMEXIT: VM hands control back to the hypervisor with a reason

:

• RDMSR, WRMSR, CPUID, Access Control Registers, Debug Registers

• Number of VMEXITs and reasons leak information

• Infer what applications are running (Bootup, SSH, Apache, StartX)
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TEE & CoCo Throughout The Years

• ARM TrustZone — 2009 [2]

• Samsung Knox

• Intel Software Guard Extensions (SGX) — 2015 [5]

• AMD Secure Encrypted Virtualization (SEV) — 2016 [11]

• AMD SEV with Encrypted State (SEV-ES) — 2017 [10]

• AMD SEV Secure Nested Paging (SEV-SNP) — 2020 [1]

• Intel Trusted Domain Extensions (TDX) — 2021 [8]

• ARM Confidential Computing Architecture (CCA) — 2021 [3]
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Intel Software Guard Extension

(SGX)



Intel SGX Overview

• x86 instruction-set extension

• Isolate trusted code from untrusted applications

• The OS cannot access enclave memory

• Enclave memory is encrypted and integrity protected

• Enclave has full access to virtual memory of host

application
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SGX Model

Application

Untrusted part

Operating System
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Threat Model

• Attacking the enclave: malicious OS

• Attacking the OS: malicious enclave

• Side-Channel Attacks are out of scope

• Only CPU is trusted
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Attack Targets

What are some components of a system?

Cache Page Table DRAM Network Predictors Interrupt

CPU Ports Power Counters

Fault

Attacks

(Lecture 4)

Transient

Execution

(Lecture 3)

Read “SoK: SGX.Fail: How Stuff Gets eXposed” [20]
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Side-Channel Attacks on Intel

SGX



Controlled-Channel Attacks [24]

• Target mechanism which translates virtual to physical

addresses

• Enclave memory is set up by OS

• Consequence: OS can unmap page, observe page fault

• Granularity: 1 page (4kB)
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Stealthier Controlled-Channel Attacks [19, 21]

P RW US WT UC A D S G Ignored

Physical Page Number
Ignored X
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DRAM Attacks [21]

• Enclaves share same physical range of memory

• DRAM contains row buffers

• Use row conflicts to spy on victim

• Granularity: 512B to 8KB
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Cache Attacks

• Flush+Reload not possible

, Prime+Probe is possible

• Physical address determines cache set

• Easy to prime cache set as OS

• Examples: [15], [21], [4], [14]
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Malicious Enclave

• SGX Bomb [9]: Rowhammer within enclave

, cause bit flips,

integrity check fail, system lock ⇒ Denial of Service

• Another Flip in the Wall of Rowhammer Defenses [7]:

• A new hammering technique bypasses all rowhammer

defenses

• Leverages SGX to be stealthy

• SGX prevents inspection of enclave memory

• SGX makes it hard for host OS to detect enclave’s

behavior by excluding CPU perfomance counter tracking

⇒ perfect way to be stealthy

• ...bizarre threat model: Why would an enclave be

malicious?
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behavior by excluding CPU perfomance counter tracking
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SGX ROP [16]: A Malicious Enclave

• From enclave: host application’s memory is accessible, but

only if mapped

• If enclave reads unmapped host memory ⇒ terminated

• Transactional Synchronization Extensions (TSX): hardware

support for transactional memory

• Enclave wraps memory access inside a TSX transaction

• If accessible: transaction completes successfully

• If inaccessible: TSX aborts the transaction and supresses

enclave termination

• Search for ROP Gadgets, manipulate the stack, execute the

attack, come back to the enclave! Read the paper!
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Confidential Computing (CoCo)



Confidential Computing (CoCo) Overview

• x86 instruction-set extension

• Little reliance on the hypervisor: emulation, timekeeping,

interrupts, faults, privileged operations

• Confidential VMs (CVMs) and hypervisor are isolated

• CVM memory is encrypted, possibly integrity protected

• CVMs cannot access hypervisor memory (unlike SGX)

• Available in server CPUs (Intel Xeon, AMD EPYC)
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Attack Targets

Once again, what are some components of a system?

Cache Page Table DRAM Network Predictors Interrupt

CPU Ports Power Counters

Fault

Attacks

(Lecture 4)

Transient

Execution

(Lecture 3)
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Threat Model

• Attacking the CVM: malicious hypervisor

• Attacking the hypervisor: malicious CVM

• Malicious CVM attacks another CVM

• Side-Channel Attacks are out of scope

• Only CPU is trusted
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Side-Channel Attacks on CoCo



Register Inference Attacks [22]

• Recall: VMEXIT is an event where VM hands control back

to the hypervisor

• AMD SEV left CVM’s registers exposed after switching to

hypervisor

• Hypervisor can infer the CVM’s computation just by

inspecting the registers

• With AMD SEV-ES: registers are encrypted and integrity

protected

• :)
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Ciphertext Inference Attacks [12]

VM Save Area

Offset Size Content

0x150 16 bytes CR3 & CR0

0x170 16 bytes RFLAGS & RIP

0x1D8 8 bytes RSP

0x1F8 8 bytes RAX

0x240 8 bytes CR2

0x308 8 bytes RCX

0x310 16 bytes RDX & RBX

... ... ...

• With AMD SEV-ES: registers are encrypted

and integrity protected

• 16-byte blocks are encrypted independently

using AES XEX (XOR-Encrypt-XOR)

• The same plaintext always has the same

ciphertext

• Change in the CVM’s ciphertext: malicious

hypervisor can infer the changes of the

corresponding plaintext

• Build a dictionary of plaintext-ciphertext

pairs for targeted registers
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CacheWarp [25]

• INVD

: Invalidates all levels of cache

• INVD: No data is written back to main memory

• WBINVD: data is written back to main memory and

invalidates cache

• Intel SGX & TDX: disable INVD

• AMD SEV, SEV-ES, SEV-SNP: INVD works

• How can a malicious hypervisor exploit this?
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CacheWarp [25]

1 int ret1() {

2 return 1;

3 }

4 int ret0() {

5 return 0;

6 }

7 int main() {

8 while(1){

9 if (ret1() == 0){

10 printf("Win!");

11 }

12 ret0();

13 }

14 }
Sudheendra Neela 22 / 40



This is running in a Confidential VM



CacheWarp [25]
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7 int main() {
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1 main:
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CacheWarp [25]

• Bypass OpenSSH authentication: sys auth passwd

• Break RSA-CRT: Drop write using INVD, generate faulty

signature

• Bypass sudo authentication:

• Normal user: UID >0 ⇒ sudo fails

• Drop write when sudo checks UID (GUID, RUID, EUID)

• UID 0: root
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CounterSEVeillance [6]

• CPU provides hardware performance counters:

• Retired Instructions

• Retired Branch Instructions

• Retired Taken Branch Instructions

• AMD: Report accurate values when SEV, SEV-ES,

SEV-SNP CVMs run

• Intel: Disabled hardware performance counters when SGX

enclaves, TDX CVMs run

• Leak whether branches (if) were taken
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CounterSEVeillance [6]

1 char time_str[data->digits+1];

2 memset(time_str, 0, data->digits+1);

3 for (size_t i=0; i<data->digits; i++) {

4 if (key[i] != time_str[i])

5 return OTP_ERROR;

6 }

7 return OTP_OK;

0 10 20

taken

retired

Step

0 10 20

taken

retired

Step
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Limitations & Solutions



Some limitations

• No shared memory

• No physical addresses

• No access to high-precision timer: rdtsca

• No syscalls (SGX)

aAMD SEV-SNP and Intel TDX now have secure timers

Sudheendra Neela 26 / 40



Some limitations

• No shared memory

• No physical addresses

• No access to high-precision timer: rdtsca

• No syscalls (SGX)

aAMD SEV-SNP and Intel TDX now have secure timers

Sudheendra Neela 26 / 40



Some limitations

• No shared memory

• No physical addresses

• No access to high-precision timer: rdtsca

• No syscalls (SGX)

aAMD SEV-SNP and Intel TDX now have secure timers

Sudheendra Neela 26 / 40



Some limitations

• No shared memory

• No physical addresses

• No access to high-precision timer: rdtsca

• No syscalls (SGX)

aAMD SEV-SNP and Intel TDX now have secure timers

Sudheendra Neela 26 / 40



Timer

• We can build our own timer [13, 15]

• Start a thread that continuously increments a global

variable

• The global variable is our timestamp
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Self-built Timer

CPU cycles one increment takes

Optimized

Assembly

C

rdtsc 3

4.7

4.67

0.87

3

t imestamp = r d t s c ( ) ;
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Combining Everything: Malware Guard Extensions (on SGX) [15]

1. Use the counting primitive to measure DRAM accesses

2. Use DRAM side-channel to build eviction set

3. Mount Prime+Probe on the buffer containing the multiplier
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Measured Trace

Raw Prime+Probe trace...
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Measured Trace

...processed with a simple moving average...
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Measured Trace

...allows to clearly see the bits of the exponent
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Single-Stepping [18, 23]

• CVM / Enclave: executes many instructions until support

from the hypervisor / host is required

• Single Step: CVM / Enclave executes only one instruction

at a time

• local Advanced Programmable Interrupt Controller (APIC)

• Timer: 3 modes

• One-shot

• Periodic

• TSC-deadline
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Conclusion

• TEEs / CVMs developed to protect sensitive

information/critical code execution

• Allow for a very powerful threat model: Malicious

hypervisor

• SCAs often not “out of scope”
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