
Transport Layer Security
Shaking Hands over the Web

Lena Heimberger
Secure Application Design

May 23, 2025



Table of Contents

1. Introduction

2. TLS 1.3

3. Demo: TLS in Wireshark

4. Attacks

5. Extensions

6. Post-Quantum TLS

7. KEM-TLS

8. Demo: TLS 1.3 in Golang

9. Bonus 1



Introduction



Transport Layer Security (TLS)

• adds confidentiality, authentication and integrity to the protocol
• Confidentiality through encryption
• Identification and Authentication through X.509 certificates
• Integrity through message digests

2



X.509 Certificates

Version

Certificate Serial Number

Signature Algorithm Identifier

Validity Period (Not Before,Not After)

Subject Name

Subject Public Key Info
Public Key Algorithm
Public Key

Issuer Unique ID

Subject Unique ID

Extensions (optional)

Signature Value

Ve
rs

io
n

v1
Ve

rs
io

n
v2

Ve
rs

io
n

v3

All versions
3



TLS 1.3

• finalized in 2018
https://www.rfc-editor.org/rfc/rfc8446

• removed a lot of unnecessary add-on’s
◦ e.g. non-AEAD symmetric algorithms and static RSA/DH cipher

suites
◦ prevents passive decryption attacks: each session is negotiated again

• Forward secrecy with all public-key based key exchanges, include
elliptic curve algorithms

• handshake only requires one roundtrip (instead of two)
• resilient against downgrade attacks

4

https://www.rfc-editor.org/rfc/rfc8446


Record Protocol

• main bridge between TLS applications and internal subprotocols
◦ fragments data streams into managable blocks, consisting of 214

bytes or fewer
◦ protects the record with encryption
◦ verifies, decrypts and reassembles received data

5



Record Protocol Header

• records are typed by the used subprotocol, or ContentType:
◦ handshake (0x16)
◦ application data (0x17)
◦ alert(0x15)
◦ change cipher spec (0x14)

• version (03 04 for TLS 1.3)
• length of remaining record

+0 +1 +2 +3 +4Byte

Content type Version Length0

Payload5..n

MACn..m

Padding (block ciphers only)m..p

6



0x16: TLS Handshake

• starts the communication session
• agree on protocol version
• agree on used cryptographic algorithms
• establishes shared (secret) keys using public key cryptography
• authenticates server (and optionally client)
• detailed: https://tls12.xargs.org/

7

https://tls12.xargs.org/


0x17: Application Data

• sent after Finished message from handshake
MAC over entire handshake

• early_data: client can send data before
• unauthenticated, but fast!

8



0x15: Alert protocol

• indicate closure information and errors
• either a warning or fatal
• also has a level (for logging) and a description
• can indicate a number of problems:

◦ unexpected message
◦ handshake failure
◦ bad/revoked/expired/unknown certificate
◦ access denied
◦ ...

9



Example: Closure Alerts

• enables server and client to know that a connection is ending
• introduced to avoid truncation attack:

◦ blocks account logout request so user remains logged into a web
service

◦ when request to logout is sent, attacker injects FIN message to drop
the connection

• close_notify from a party means they will send no more messages
on this connection.

10



TLS 1.3



Cipher Suites

• supported cryptographic algorithms
• TLS 1.3 Cipher Suites:

◦ TLS_AES_128_GCM_SHA256 - must be implemented by a
TLS-compilant application

◦ TLS_AES_256_GCM_SHA384 - should be implemented
◦ TLS_CHACHA20_POLY1305_SHA256- should be implemented

• So, how does it look in practice?
◦ TLS_AES_256_GCM_SHA384 (https://www.tugraz.at)
◦ TLS_AES_128_GCM_SHA256 (https://eprint.iacr.org/)
◦ TLS_CHACHA20_POLY1305_SHA256 (https://heimberger.xyz/)
◦ TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (https://orf.at/)

• ORF still uses TLS 1.2!
it gets harder to find pages with TLS 1.2 each year

11

https://www.tugraz.at
https://eprint.iacr.org/
https://heimberger.xyz/
https://orf.at/


Client Hello

• Client says hi!
• uses the opportunity to

indicate:
◦ which TLS versions are

supported
◦ which cipher suites are

supported
◦ client random

• may include extensions
◦ Server Name Indication

(SNI)
tells server we try to reach
e.g. tugraz.at to get the
appropriate certificate for the
hostname

◦ Supported Signature
Algorithm

◦ Key Share
• already encrypted premaster

secret
◦ only have three options

Client Server

Client Hello

12

tugraz.at


Server Hello

• Server Hello!
• includes chosen cipher suite,

server random
• performs DH key exchange
• All handshake messages after

Server Hello are encrypted

Client Server

Client Hello

Server Hello

13



Server Certificates

• SSL certificate can be used by
the client to authenticate the
server (i.e. it is interacting with
the actual owner of the domain)

• Certificates, Signatures
• attach encrypted signature of

handshake for transcript
verification

• finished

Client Server

Client Hello

Server Hello

Encrypted Server Certificate

Encrypted Signature

Server Finished

14



Finalizing

• Client verifies signature and certificate
• generates master secret:

PRF(premaster_secret, ”master secret”,ClientRandom +
ServerRandom)

• sends finished message, but it does not count to the trips because
we just assume it is done

15



Protocol Ossification

• The natural process of bone formation.
• loss of flexibility due to middleboxes (and inflexible endpoint

implementations)
• Ossification:

or: the more implementations, the more likely ossification occurs
• in the beginning, they did not support TLS 1.3
• revision 22: make TLS 1.3 look like TLS 1.2
• E.g. unnecessary fields were added to ClientHello to pad to size
• TLS 1.3 advertises itself as TLS 1.2!
• Server who does not understand TLS 1.3 would not see that TLS

1.3 was used and believes it to be TLS 1.2

16



Demo: TLS in Wireshark



Attacks



Attack: Weak Premaster Secret1

• Researchers found that Netscape Navigator only used three
randomness sources in 1996:

◦ time of the day
◦ process ID
◦ parent process ID

• → guess in 25 seconds (in 1996!)

1Article: How secure is the World Wide Web?, by Ian Goldberg and David Wagner,
https://people.eecs.berkeley.edu/~daw/papers/ddj-netscape.html

17

https://people.eecs.berkeley.edu/~daw/papers/ddj-netscape.html


Server Random, Client Random and Premaster Secrets today

• 48 bytes of randomness
• client-generated value → we need the server random
• also: MitM replay attack → same premaster secret

18



Adoption Rate

Figure 1: Adoption of TLS protocols
https://radar.cloudflare.com/adoption-and-usage 19

https://radar.cloudflare.com/adoption-and-usage


How can I build my own?

• https://pkg.go.dev/crypto/tls
• Pretty much 1:1 https://eli.thegreenplace.net/2021/

go-https-servers-with-tls/

20

https://pkg.go.dev/crypto/tls
https://eli.thegreenplace.net/2021/go-https-servers-with-tls/
https://eli.thegreenplace.net/2021/go-https-servers-with-tls/


Extensions



Zero-Roundtrip Time Resumption

• One round can take a long time
• idea: if we have authenticated a

server before, we can trust
them the next time

• Use a Session Ticket, including
a preshared key issued by the
server to the client

• derive shared secret from the
last session: resumption main
secret

0 100 200 300 400
London

Netherlands

Tokio

Santiago

SouthCarolina

Sydney

Delhi

LosAngeles

TelAviv

Ping (ms)

Figure 2: Ping between London and
other cities, on Debian 11 using the
simplest Google Cloud instance, 2023.

21



0-RTT Replay attacks2

• Use the ticket for several instances in different zones
• spec says not to handle requests that modify data until after replay

window is up (handshake is finished)
• solved on application level (or with fancy cryptography)

2https://eprint.iacr.org/2017/082.pdf
22

https://eprint.iacr.org/2017/082.pdf


mTLS

• mutual TLS
• Client needs a certificate and prove their identity as well!
• e.g. internal services or sign-on
• follows paradigm: public key crypto > passwords

23



Post-Quantum TLS



Moving to Post-Quantum

• TLS needs:
Check Symmetric ciphers
◦ Key agreement protocols

harvest now, decrypt later more urgent, KEMS are being rolled out
◦ Signatures

less urgent, less performant than KEMs
• IETF Post-Quantum Guidance for TLS3

3. Start using hybrid KEMs: once practical, do not use non-hybrid
groups

4. Do nothing for now on signatures

3https://www.ietf.org/archive/id/draft-farrell-tls-pqg-00.html
24



Adoption Rate: PQ TLS

Figure 3: Post-Quantum cryptography on the Internet
https://radar.cloudflare.com/adoption-and-usage

25

https://radar.cloudflare.com/adoption-and-usage


KEM-TLS



KEM-TLS

• authentication in a post-quantum setting:
◦ PQ-KEM (Key Encapsulation Mechanism) for encryption main

difference: result is used to decrypt (decapsulate) a (session) key
◦ PQ-Signature? quite big and slow compared to KEMs

• idea: to authenticate, we encapsulate a secret with the public key
• authentication works if the party we want to authenticate can

decapsulte the secret
→ prove knowledge of key!
the secret is used to derive a key and then MAC-checked

• https://kemtls.org/

26

https://kemtls.org/


Challenges for KEMTLS

• do you see the problem?
• TLS 1.3: single roundtrip to finish handshake!
• solution: use implicit authentication

The client encapsulates to the long-term public key but does not
wait for the MAC: just starts sending using the derived key.
(unfortunate if mac check fails)

• works for 0-RTT! also may work with predistributed KEM public
keys, but: statefulness may cause problems

27



What you should know

• ...how a TLS handshake works
• ...that TLS 1.3 is the current version
• ...what types of records exist in TLS 1.3
• ...why TLS 1.3 has forward secrecy
• ...that there are extensions, and you should be able to name some

28



Join Losfuzzy’s Spritzerstand and win a free drink by helping
Edona and I!

29



Demo: TLS 1.3 in Golang



References i

• illustrated TLS 1.3 connection: https://tls13.xargs.org/

• https://eli.thegreenplace.net/2021/
go-https-servers-with-tls/

• again, David Wong’s book Real-World Cryptography
• RFC!

30

https://tls13.xargs.org/
https://eli.thegreenplace.net/2021/go-https-servers-with-tls/
https://eli.thegreenplace.net/2021/go-https-servers-with-tls/


Bonus



Encrypted Client Hello

• Server Name Indication (SNI) is transmitted in plaintext!
• predecessor: ESNI, used DNS to get server public key and encrypt

SNI
• irrelevant for self-hosted, but not if you use CDN!
• ...but that leaks the server name via the DNS query
• idea: SNI is only decryptable by client or client-facing server
• realized by using details in HTTPS record
• no more adavantage in idenifiying the server than guessing (in set of

possible servers)
• also other extensions, e.g. the protocol to decide which application

layer protocol should be used (ALPN) are protected
• e.g. firefox deactivates it in child protection mode

31


	Introduction
	TLS 1.3
	Demo: TLS in Wireshark
	Attacks
	Extensions
	Post-Quantum TLS
	KEM-TLS
	Demo: TLS 1.3 in Golang
	Bonus

