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Introduction



Transport Layer Security (TLS)

• adds confidentiality, authentication and integrity to the protocol
• Confidentiality through encryption
• Identification and Authentication through X.509 certificates
• Integrity through message digests
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TLS 1.3

• finalized in 2018
https://www.rfc-editor.org/rfc/rfc8446

• removed a lot of unnecessary add-on’s
◦ e.g. non-AEAD symmetric algorithms and static RSA/DH cipher

suites
◦ prevents passive decryption attacks: each session is negotiated again

• Forward secrecy with all public-key based key exchanges, include
elliptic curve algorithms

• handshake only requires one roundtrip (instead of two)
• resilient against downgrade attacks
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Record Protocol

• main bridge between TLS applications and internal subprotocols
◦ fragments data streams into managable blocks, consisting of 214

bytes or fewer
◦ protects the record with encryption
◦ verifies, decrypts and reassembles received data
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Record Protocol Header

• records are typed by the used subprotocol, or ContentType:
◦ handshake (0x16)
◦ application data (0x17)
◦ alert(0x15)
◦ change cipher spec (0x14)

• version (03 04 for TLS 1.3)
• length of remaining record

+0 +1 +2 +3 +4Byte

Content type Version Length0

Payload5..n

MACn..m

Padding (block ciphers only)m..p
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0x16: TLS Handshake

• starts the communication session
• agree on protocol version
• agree on used cryptographic algorithms
• establishes shared (secret) keys using public key cryptography
• authenticates server (and optionally client)
• detailed: https://tls12.xargs.org/
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0x17: Application Data

• sent after Finished message from handshake
MAC over entire handshake

• early_data: client can send data before
• unauthenticated, but fast!
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0x15: Alert protocol

• indicate closure information and errors
• either a warning or fatal
• also has a level (for logging) and a description
• can indicate a number of problems:

◦ unexpected message
◦ handshake failure
◦ bad/revoked/expired/unknown certificate
◦ access denied
◦ ...

9



Example: Closure Alerts

• enables server and client to know that a connection is ending
• introduced to avoid truncation attack:

◦ blocks account logout request so user remains logged into a web
service

◦ when request to logout is sent, attacker injects FIN message to drop
the connection

• close_notify from a party means they will send no more messages
on this connection.
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TLS 1.3



Cipher Suites

• supported cryptographic algorithms
• TLS 1.3 Cipher Suites:

◦ TLS_AES_128_GCM_SHA256 - must be implemented by a
TLS-compilant application

◦ TLS_AES_256_GCM_SHA384 - should be implemented
◦ TLS_CHACHA20_POLY1305_SHA256- should be implemented

• So, how does it look in practice?
◦ TLS_AES_256_GCM_SHA384 (https://www.tugraz.at)
◦ TLS_AES_128_GCM_SHA256 (https://eprint.iacr.org/)
◦ TLS_CHACHA20_POLY1305_SHA256 (https://heimberger.xyz/)
◦ TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (https://orf.at/)

• ORF still uses TLS 1.2!
it gets harder to find pages with TLS 1.2 each year
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Client Hello

• Client says hi!
• uses the opportunity to

indicate:
◦ which TLS versions are

supported
◦ which cipher suites are

supported
◦ client random

• may include extensions
◦ Server Name Indication

(SNI)
tells server we try to reach
e.g. tugraz.at to get the
appropriate certificate for the
hostname

◦ Supported Signature
Algorithm

◦ Key Share
• already encrypted premaster

secret
◦ only have three options

Client Server

Client Hello
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Server Hello

• Server Hello!
• includes chosen cipher suite,

server random
• performs DH key exchange
• All handshake messages after

Server Hello are encrypted

Client Server

Client Hello

Server Hello
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Server Certificates

• SSL certificate can be used by
the client to authenticate the
server (i.e. it is interacting with
the actual owner of the domain)

• Certificates, Signatures
• attach encrypted signature of

handshake for transcript
verification

• finished

Client Server

Client Hello

Server Hello

Encrypted Server Certificate

Encrypted Signature

Server Finished
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Finalizing

• Client verifies signature and certificate
• generates master secret:

PRF(premaster_secret, ”master secret”,ClientRandom +
ServerRandom)

• sends finished message, but it does not count to the trips because
we just assume it is done
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Protocol Ossification

• The natural process of bone formation.
• loss of flexibility due to middleboxes (and inflexible endpoint

implementations)
• Ossification:

or: the more implementations, the more likely ossification occurs
• in the beginning, they did not support TLS 1.3
• revision 22: make TLS 1.3 look like TLS 1.2
• E.g. unnecessary fields were added to ClientHello to pad to size
• TLS 1.3 advertises itself as TLS 1.2!
• Server who does not understand TLS 1.3 would not see that TLS

1.3 was used and believes it to be TLS 1.2
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Demo: TLS in Wireshark



Attacks



Attack: Weak Premaster Secret1

• Researchers found that Netscape Navigator only used three
randomness sources in 1996:

◦ time of the day
◦ process ID
◦ parent process ID

• → guess in 25 seconds (in 1996!)

1Article: How secure is the World Wide Web?, by Ian Goldberg and David Wagner,
https://people.eecs.berkeley.edu/~daw/papers/ddj-netscape.html
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Server Random, Client Random and Premaster Secrets today

• 48 bytes of randomness
• client-generated value → we need the server random
• also: MitM replay attack → same premaster secret
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Adoption Rate

Figure 1: Adoption of TLS protocols
https://radar.cloudflare.com/adoption-and-usage 19
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How can I build my own?

• https://pkg.go.dev/crypto/tls
• Pretty much 1:1 https://eli.thegreenplace.net/2021/

go-https-servers-with-tls/
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Extensions



Zero-Roundtrip Time Resumption

• One round can take a long time
• idea: if we have authenticated a

server before, we can trust
them the next time

• Use a Session Ticket, including
a preshared key issued by the
server to the client

• derive shared secret from the
last session: resumption main
secret

0 100 200 300 400
London

Netherlands

Tokio

Santiago

SouthCarolina

Sydney

Delhi

LosAngeles

TelAviv

Ping (ms)

Figure 2: Ping between London and
other cities, on Debian 11 using the
simplest Google Cloud instance, 2023.
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0-RTT Replay attacks2

• Use the ticket for several instances in different zones
• spec says not to handle requests that modify data until after replay

window is up (handshake is finished)
• solved on application level (or with fancy cryptography)

2https://eprint.iacr.org/2017/082.pdf
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mTLS

• mutual TLS
• Client needs a certificate and prove their identity as well!
• e.g. internal services or sign-on
• follows paradigm: public key crypto > passwords
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Post-Quantum TLS



Moving to Post-Quantum

• TLS needs:
Check Symmetric ciphers
◦ Key agreement protocols

harvest now, decrypt later more urgent, KEMS are being rolled out
◦ Signatures

less urgent, less performant than KEMs
• IETF Post-Quantum Guidance for TLS3

3. Start using hybrid KEMs: once practical, do not use non-hybrid
groups

4. Do nothing for now on signatures

3https://www.ietf.org/archive/id/draft-farrell-tls-pqg-00.html
24



Adoption Rate: PQ TLS

Figure 3: Post-Quantum cryptography on the Internet
https://radar.cloudflare.com/adoption-and-usage
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KEM-TLS



KEM-TLS

• authentication in a post-quantum setting:
◦ PQ-KEM (Key Encapsulation Mechanism) for encryption main

difference: result is used to decrypt (decapsulate) a (session) key
◦ PQ-Signature? quite big and slow compared to KEMs

• idea: to authenticate, we encapsulate a secret with the public key
• authentication works if the party we want to authenticate can

decapsulte the secret
→ prove knowledge of key!
the secret is used to derive a key and then MAC-checked

• https://kemtls.org/
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Challenges for KEMTLS

• do you see the problem?
• TLS 1.3: single roundtrip to finish handshake!
• solution: use implicit authentication

The client encapsulates to the long-term public key but does not
wait for the MAC: just starts sending using the derived key.
(unfortunate if mac check fails)

• works for 0-RTT! also may work with predistributed KEM public
keys, but: statefulness may cause problems
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What you should know

• ...how a TLS handshake works
• ...that TLS 1.3 is the current version
• ...what types of records exist in TLS 1.3
• ...why TLS 1.3 has forward secrecy
• ...that there are extensions, and you should be able to name some
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Join Losfuzzy’s Spritzerstand and win a free drink by helping
Edona and I!
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Demo: TLS 1.3 in Golang



References i

• illustrated TLS 1.3 connection: https://tls13.xargs.org/

• https://eli.thegreenplace.net/2021/
go-https-servers-with-tls/

• again, David Wong’s book Real-World Cryptography
• RFC!
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Bonus



Encrypted Client Hello

• Server Name Indication (SNI) is transmitted in plaintext!
• predecessor: ESNI, used DNS to get server public key and encrypt

SNI
• irrelevant for self-hosted, but not if you use CDN!
• ...but that leaks the server name via the DNS query
• idea: SNI is only decryptable by client or client-facing server
• realized by using details in HTTPS record
• no more adavantage in idenifiying the server than guessing (in set of

possible servers)
• also other extensions, e.g. the protocol to decide which application

layer protocol should be used (ALPN) are protected
• e.g. firefox deactivates it in child protection mode
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