Secure Application Design

Authentication

GitLab Community Edition

Username or email

‘ jakab.heher@iaik.tugraz.at ‘

Password

O Remember me Forgot your password?

IAIK: Teaching related repository management.

By signing in you accept the Terms of Use and acknowledge the Privacy
Policy and Cookie Policy.

“id” by Gregor Cresnar, “person” by irene hoffman,
from the Noun Project (thenounproject.com), icons used under CC BY

Q
(%p]
(q0)
e
(a R
o
0
e
(1]
i
)
o
Q
i -
)
=
<

n Phase

istratio

Re

|II

“Traditional” Password Registration

* User sends username u and password p to Server
* Server generates random salt s, and calculates d, as H(p, s)
* Server stores s, and d, indexed by u

|II

“Traditional” Password Authentication

* User sends username u and password p to Server
* Server retrieves stored salt s, and digest d, based on u
* Server calculates H(p, s,) and checks H(p, s,) ==d,

* Problem: password is transmitted to the server!

* User has to trust server to handle it properly
e Server has to worry about it being logged, leaked, etc.

Password Authentication — Issues

* Phishing sites might trick users
* This is essentially a MitM attack (online or offline)

e Passwords are routinely re-used
* No, you are not the typical user

* Cleartext passwords are sent to the server
* You need to trust the server to handle them responsibly
* The server has to worry about accidental logging, in-memory compromise, ...

 Compromised credentials are valid forever
* Password expiration is not a great solution

Authentication Factors

Password-Authenticated Key Exchange (PAKE)

(Asymmetric)

Password Authenticated Key Exchange

* |dea: prove we know the password without showing the password

* Server doesn’t need to worry about handling the password
* Client doesn’t need to trust the server implementation

* Complications:
* We don’t want to store any key material on the client!
* We still want to be able to throttle brute-force attempts

(Asymmetric)

Password Authenticated Key Exchange

* |dea: prove we know the password without showing the password

e Oblivious Pseudo-Random Function

* Client hasinput x

 Server has secret key k

* ... magic happens ...
Client obtains f(x, k), but no information about k
Server obtains no information about either x or f(x, k)

1ep//:501 104y Y3 23S

-81)2-J11-Jeap/oop /a0 asrriaydene

/1idoA

https://datatracker.ietf.org/doc/draft-irtf-cfrg-voprf/

(A Qu.ick Rgcap of) .
Elliptic-Curve Operations

* Curve Points (Uppercase) and scalars (lowercase)

e Point addition: A+ B =C

e Scalar multiplication:s-P=P+P+ P+ -+ P =(
s+ Pissimilarto 5 in modulo arithmetic
e Given Pand s : P, itis hard to find s!

 Multiplicative inverse:s 1 -Q =s"1.s-P=P

* Given s, it is easy to find s 1!

1ep//:501 104y Y3 23S

-81)2-J11-Jeap/oop /a0 asrriaydene

/1idoA

https://datatracker.ietf.org/doc/draft-irtf-cfrg-voprf/

(An example of an)

Oblivious Pseudo-Random Function

* Client has secret input p

p
H(p)

w... r- H(p)

* Client learns F(p, k), but nothing about k

* Server has secret key k

k

* Server learns nothing about p, F(p, k)

11

(An example of an)

Oblivious Pseudo-Random Function

* Client has secret input p * Server has secret key k
D k
H (p)
r- H(p) r H)
k-r-H(p

* Client learns F(p, k), but nothing about k * Server learns nothing about p, F(p, k)

(An example of an)

Oblivious Pseudo-Random Function

* Client has secret input p * Server has secret key k
p
H (p)
r- H(p)
r- H(p)
k-r-H()
k-r-H(p)

r~1-k-r-H(p)

* Client learns F(p, k), but nothing about k * Server learns nothing about p, F(p, k)

(An example of an)

Oblivious Pseudo-Random Function

* Client has secret input p * Server has secret key k
p
H (p)
r- H(p)
r- H(p)
k-r-H()
k-r-H(p)

F(p, k) =k -H(p)

* Client learns F(p, k), but nothing about k * Server learns nothing about p, F(p, k)

See also:

705.054 Privacy-Enhancing Technologies

(A conceptual overview of)

The OPAQUE Protocol — Registration

* |dea: prove we know the password without showing the password

* Client generates asymmetric key pair (K, K i4)
* Client sends K, to the server
* Server generates a random user-specific OPRF secret key L,

* Client & Server perform OPRF protocol
* Client input = password p; Server key = L,
* Client learns derived key f(p, L)

* Client encrypts K, ;, with key f(p, L,) and sends it to the server

riv

Jo-JHI-BIP/PI/aAIYDIE /310 3o MMM //-SA11Y 1edp D4y Y3 pead ‘s|ielap A1oS ayi |je Jo4

Z0-onbedo-3u

w3y

https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html

(A conceptual overview of)

The OPAQUE Protocol — Authentication

* |dea: prove we know the password without showing the password

* Server retrieves Ly, K, ;,, and the encrypted K5,

e Server sends the encrypted Kp to the user

riv
* Client & Server perform OPRF protocol
* Client input = password p; Server key = L

* Client learns derived key f(p, L)
* Client uses f(p, L,) to decrypt K, and authenticate

Jo-JHI-BIP/PI/aAIYDIE /310 3o MMM //-SA11Y 1edp D4y Y3 pead ‘s|ielap A1oS ayi |je Jo4

Z0-onbedo-3u

w3y

https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html

The Web Context Dilemma

* Who supplies your client code?
* The server!

* If an attacker controls the server, will they run your cryptography?
* No, they’ll just send the password input in plain text...

* What attack scenario are you defending against?

Authentication Factors

Time-Based One-Time Password (TOTP)

Multi-Factor Authentication

* |dea: we want a safeguard against password compromise

* Authentication factor categories:
* Proving knowledge of some information —
* Proving possession of some device ==l Something you have

* Proving inherence of some property —
omething you are

Something you know

20

v =
@ User Settings

8* Account

« Collapse sidebar

User Settings » Account > Two-Factor Authentication

Register Two-Factor
Authenticator
Use a one-time password authenticator on your

mobile device or computer to enable two-factor
authentication (2FA).

We recommend using cloud-based authenticator applications that can restore access if you lose your
hardware device. What are some examples?

otpauth://totp/git.teaching.iaik.tu

Can't scan the code?

To add the entry manually, provide the following de
the application on your phone.

Account:
git.teachina iaik tuaraz at-iakob heher@iaik tuaraz at

Ke : 40WR 2BWM TZFM G7WY HMIF TNQA KLHV 43N6& <
Time basea: res

Pin code

Current password

Your current password is required to register a two-factor authenticator app.

Register with two-factor app

21

KE}’Z A0WR. 2BWM IZFM G7WY HMIF TNQA KLHV 43N6

0 [310%

The RFC 4648 Base 32 alphabet . S

Value Symbol Value Symbol Value Symbol Value Symbol GO gleAUthentlcator :
0 A 8 I 16 Q 24 Y
1 B 9 J 17 R 25 z

O Q Q 2 c 0 K 18 s % 2 git.teaching.iaik.tugraz.at (jakob.heher...
3 D 11 L 19 T 27 3 739 630 a

4 E 12 M 20 u 28 4
e3 ad 1d 06 cc 46 4a c3 7e d8 J | G ® | © 4l v 2 |
3b 10 59 b6 00 52 cf 5e 6d be sl o gulog=2| W RO 6
7 H 15 P 23 X 31 7

\
key

message

HMAC_SHA1

22

L] L]
KE}’Z A0WR. 2BWM IZFM G7WY HMIF TNQA KLHV 43N6 ,I 1 # ,I 3 '22

0 9 [§10%

Tuesday, 8 November 2022

‘ Unix timestamp

Google Authenticator

base32 decode

gitteaching.iaik.tugraz.at (jakob.heher...

1667902402 739 630 “

divide by 30s]

e3 ad 1d 06 cc 46 4a c3 7e d8
3b 10 59 bo 00 52 cf 5e od be

ﬂ 55596746
key

represent as 8 bytes, big-endian]

§

q

message
HMAC SHA1 <]| 00 00 00 00 03 50 56 ca |
digest
33 33 ac ec 5e d8 27 15 ca ee Least significant half-byte = 0x6
7d £0 27 41 9a 4f 80 2c b5 a6 = Take 4 bytes starting at index 0x6

extract 4 bytes

27 15 ca ee 655739630 739630

treat as big-endian integer modulo 108

23

KE}’Z A0WR. 2BWM IZFM G7WY HMIF TNQA KLHV 43N6

base32 decode

e3 ad 1d 06 cc 46 4a c3 7e d8
3b 10 59 bo 00 52 cf 5e od be

ﬂ key

| message I

(= 22

Tuesday, 8 November 2022

‘ Unix timestamp

1667902402

0 9 [§10%

Go gle Authenticator

d

% divide bl

30s

55596746 |

HMAC |SHA1 4\
Parameters (in

(but: implementation support lacking)

digest

33 33 ac ec 5e d8 27 15 ca ee
7d £0 27 41 9a 4f 80 2c b5 a6

extract 4 bytes

27 15 ca ee

treat as big-endian integer

655739630 739630

moduld 108

24

KE}’Z A0WR. 2BWM IZFM G7WY HMIF TNQA KLHV 43N6

Device lost?
(Just backup the key!) dej

e3 ad 1d 06 cc 46 4a c3 7e d8
3b 10 59 bo 00 52 cf 5e od be

ﬂ key
message

Tla 22

Tuesday, 8 November 2022

I B omineom |
1667902402

divide by 30s]

§

55596746

represent as 8 bytes, big-endian]

q

] § 00 00 00 00 03 50 56 ca |

HMAC_SHA1 <

digest

33 33 ac ec 5e d8 27 15 ca ee
7d £0 27 41 9a 4f 80 2c b5 a6

extract 4 bytes

27 15 ca ee

treat as big-endian integer

655739630 739630

modulo 108

0 9 [§10%

Google Authenticator

gitteaching.iaik.tugraz.at (jakob.heher...

739 630 “

25

KE}’Z A0WR. 2BWM IZFM G7WY HMIF TNQA KLHV 43N6

base32 decode

e3 ad 1d 06 cc 46 4a c3 7e d8
3b 10 59 bo 00 52 cf 5e od be

ﬂ key
message

Tla 22

Tuesday, 8 November 2022

Clock Synchronization

(common: try n intervals before/after)

% divide by 30s]

55596746

& represent as 8 bytes, big-endian]

] § 00 00 00 00 03 50 56 ca |

HMAC_SHA1 <

digest

33 33 ac ec 5e d8 27 15 ca ee
7d £0 27 41 9a 4f 80 2c b5 a6

extract 4 bytes

27 15 ca ee

treat as big-endian integer

655739630 739630

modulo 108

0 9 [§10%

Google Authenticator

gitteaching.iaik.tugraz.at (jakob.heher...

739 630 “

26

KE}’Z A0WR. 2BWM IZFM G7WY HMIF TNQA KLHV 43N6

base32 decode

e3 ad 1d 06 cc 46 4a c3 7e d8
3b 10 59 bo 00 52 cf 5e od be

ﬂ key
message

Tla 22

0 9 [§10%
Tuesday, 8 November 2022

‘ gitteaching.iaik.tugraz.at (jakob.heher...
1667902402 739 630 “

divide by 30s]

Google Authenticator

§

55596746

represent as 8 bytes, big-endian]

q

] § 00 00 00 00 03 50 56 ca |

HMAC_SHA1 <

digest

33 33 ac ec 5e d8 27 15 ca ee
7d £0 27 41 9a 4f 80 2c b5 a6

extract 4 bytes

27 15 ca ee

treat as big-endian integer

655739630 739630

modul

Only 6 characters
(Lockout/delay for failed attempts)

27

Time-Based One-Time Password (TOTP)

* Shared secret key + current timestamp = six-digit passcode

v Random secret

* Users cannot reuse passcode between websites

v’ Passcode changes every 30 seconds
* Phished credentials quickly become stale

28

Time-Based One-Time Password (TOTP)

* Shared secret key + current timestamp = six-digit passcode

x Server can still impersonate user
* Authentication is based on a symmetric, shared secret

x Secure storage is still paramount
* ... and more difficult, since you can’t hash a secret key

x Real-time phishing still works

29

Time-Based One-Time Password (TOTP)

* Shared secret key + current timestamp = six-digit passcode

* Authentication factor categories:

.) i Something you know
* Proving knowledge of some information — ——

* Proving possession of some device SEEEE, S ething you have

* Proving inherence of some property —
omething you are

* What category does TOTP fit into?
* Possession of your mobile phone?
* Knowledge of the shared secret?

30

Authentication Factors

Web Authentication (WebAuthn)

“hand cursor” by Bakunetsu Kaito,
m the Noun Project (thenounproject.com), icon used under CC BY

et
%]
=
©
(7]
(%]

github.com

O

Sign in to GitHub

Username or email address

iaik-jheher

Password

.

New to GitHub? Create an account.

in

34

O

Two-factor authentication

O,

Security key

When you are ready to authenticate, press
the button below.

Use sei&ir'rty key

[J Use this method for future logins

35

Windows Security

Making sure it's you
Please sign in to github.com.

This request comes from Firefox, published by Mozilla
Corporation.

0

Touch your security key.

Cancel

36

O GitHub ©@ Private browsing

= C https://github.com

O Search or jump to... Pull requests Issues Codespaces Marketplace Explore

@ iaik-jheher ~ Following Foryou Latest changes

* OK, what just happened?

37

O

Two-factor authentication
Challenge value

Security key

Verify

User
Presence

When you are ready to authenticate, press
the button below.

Private Key

Use security key

Signature

Verify Public Key

Sienature Unable to verify with your security key?

Access granted

38

Relying Party

O

Two-factor authentication

©

Security key

When you are ready to authenticate, press
the button below.

Use security key

[J Use this method for future log

Unable to verify with your security key?

Client

Windows Security X
Making sure it's you
Please sign in to github.com.

This request comes from Firefox, published by Mozilla
Corporation.

Tap your security key on the reader or
insert it into the USB port.

Cancel

Authenticator

39

A€ DD Japun pasn ‘wod-13foidunouayy ‘suejol\ peinoln Aq suoyduews,

Design Goals

* Public-Key Authentication
* Keys stored in secure hardware = true possession factor

* Prevent MitM by Phishing Websites
* Support HTTPS only & tie authentication to a specific web origin

* Prevent Replay Attacks

* Provide (Optional) Device Attestation
* Provides guarantees about security of key storage & operation of device

WebAuthn — Qutline

* RP JavaScript passes information from RP server to client
* Client adds some information & passes it to authenticator

* Authenticator signs the entire data
* Gets user confirmation/verification first if required

 Signature gets passed back to client - JS - RP server

* Remaining question:
 What data do we need to sigh? Who do we trust to supply it?

uyinygam Hoddns o3 1u

7opINS UYINEqaM//:SA11Y ¢31Sqam JnoA uo

https://webauthn.guide/

Attack Scenario — Phishing/MitM

* Relying Party server is genuine

* JavaScript is not genuine
* Phishing server supplies fake page

* Client is trustworthy
e Authenticator is trustworthy

* Page looks genuine, but is not at a byte-for-byte identical origin
e E.g., https://google.com -> https://gooogle.com/

https://google.com/
https://gooogle.com/

We

bAuthn — Registration

* Client requests credential creation for origin O

* Aut
* Aut
 Aut

henticator generates key pair (K, Kii,)
nenticator picks credential ID C and stores (0, K, ;) indexed by C

nenticator sends (G, K,,;)) to client, which forwards it to RP

wem

~UI0S#/UGINEGaM /O qNUHE 0EM//:Sa13Y 995 ¢SIy3 Juawa|dwi 0}

https://w3c.github.io/webauthn/#sctn-rp-operations

WebAuthn — Authentication

- e

=

G
Ch%iie | e: ﬂx?g';geEEE Enaiiéuée: 0x1873e8ff Challenge:
« Verity challenge integrity

Origitify origin Origin: https://github. c¢ Origin:
Flayerify flags Flags: Flags:
* Verif

Credent¥a5||:grgcc%r§a473c21b‘ Credential: 0x55a473c21bc49... Credential:

0x1873e8ff
https://github.com
UP: yes, UV: no
0x55a473c21bc49..

Oxafed86a40e57d864...

44

o1 Aq d9nIs

9y3) 193[04d UNON 3y} WOJ} ‘4G uo

0°€ VS-Ag DD J4apun pasn ‘(810°e|j1zow) uonepunod e|1izo\ ayl Aq 080| xojauld4 €||1zOoN YL
21 ‘(wo3393oudunou

A€ DD Japun pasn suo:

UP and UV?

* User Presence: a user needs to be physically present to authorize
 usually: requiring you to push a button on the authenticator

* User Verification: additional user authentication is performed
* PIN prompt or on-device biometric sensor

* This authentication is done by the authenticator!
* Even a compromised client cannot bypass this requirement

Device Attestation & Certification

* Devices come with a burnt-in attestation key pair
 The manufacturer signs the attestation public key
* The attestation private key signs the created credential

* This lets us be confident in the credential’s origin and storage!

* Built on top of attestation: device certification
* Delegation of trust in individual device models

e e.g.: FIDO2 certification levels
e |D Austria supports WebAuthn, but only with FIDO2 Level 2 certified authenticators

Non-Discoverable Credential Storage

* Bonus: we can “store” infinite credentials

* Credential ID is a opaque byte string that is returned by the server
* We can use it for storage!

e Authenticator only has a single master device key
* Generated securely in the device at start-up
* This key encrypts the private key - credential ID!

Client-Side Discoverable Credentials

e Standard authentication flow:

* Client sends username
» Server looks up credential ID(s) & sends them to client

* |[dea: we want to get rid of this extra round trip
* Save user identifier alongside credential on authenticator
* Find & offer credentials using only target origin

* Problem: storage limits on authenticators!

Web Authentication (WebAuthn)

* Public key cryptography using hardware tokens

v No secure server storage necessary
* Public keys are not sensitive information
v’ Phishing impossible
* The browser embeds the current origin into the signed data

49

Web Authentication (WebAuthn)

* Public key cryptography using hardware tokens

x Users might lose hardware tokens or devices
* Your system is only as secure as the recovery acter.,.
What if we don’t tie each
credential to a single device?

50

Authentication Factors

Synchronized WebAuthn Credentials

Synchronized WebAuthn Credentials

* Public key cryptography with automated key synchronization

v No secure server storage necessary
* Public keys are not sensitive information
v’ Phishing impossible
* The browser embeds the current origin into the signed data

v'Credentials survive device failure or loss
* Synchronized via “sync providers” (Microsoft, Apple, Google)

52

Synchronized WebAuthn Credentials

* Public key cryptography with automated key synchronization

x Sync providers’ implementation is a huge point of failure
* A vulnerability would expose billions of single-factor credentials

x Dependency on sync platforms leads to customer lock-in
* Switching loses every single credential you use to log in, everywhere

x Lack of interoperability reinforces existing cross-sector monopolies
* Want to use a phone OS, made by Google, to log in?
* Only if you’re using a specific browser that’s made by Google!

53

Synchronized WebAuthn Credentials

* Public key cryptography with automated key synchronization

v’ Definitely more secure than “standard” password usage
? Difficult to compare with password manager usage

X Less secure than hardware token usage
? But more usable

54

