
Secure Application Design
Authentication

Summer 2025

Jakob Heher, www.isec.tugraz.at
he/his

2

3

“id
” b

y G
rego

r C
resn

ar, “p
erso

n
” b

y iren
e

h
o

ffm
an

,
fro

m
 th

e N
o

u
n

 P
ro

ject (th
en

o
u

n
p

ro
ject.co

m
), ico

n
s u

sed
 u

n
d

er C
C

 B
Y

Registration Phase Authentication Phase

“Traditional” Password Registration

• User sends username u and password p to Server

• Server generates random salt su and calculates du as H(p, su)

• Server stores su and du indexed by u

4

“Traditional” Password Authentication

• User sends username u and password p to Server

• Server retrieves stored salt su and digest du based on u

• Server calculates H(p, su) and checks H(p, su) == du

• Problem: password is transmitted to the server!
• User has to trust server to handle it properly

• Server has to worry about it being logged, leaked, etc.

5

Password Authentication – Issues

• Phishing sites might trick users
• This is essentially a MitM attack (online or offline)

• Passwords are routinely re-used
• No, you are not the typical user

• Cleartext passwords are sent to the server
• You need to trust the server to handle them responsibly

• The server has to worry about accidental logging, in-memory compromise, …

• Compromised credentials are valid forever
• Password expiration is not a great solution

6

Authentication Factors
(Cryptographic)

Password-Authenticated Key Exchange (PAKE)

7

Password Authenticated Key Exchange

• Idea: prove we know the password without showing the password

• Server doesn’t need to worry about handling the password

• Client doesn’t need to trust the server implementation

• Complications:
• We don’t want to store any key material on the client!

• We still want to be able to throttle brute-force attempts

8

(Asymmetric)

Password Authenticated Key Exchange

• Idea: prove we know the password without showing the password

• Oblivious Pseudo-Random Function
• Client has input x

• Server has secret key k

• … magic happens …

• Client obtains f(x, k), but no information about k

• Server obtains no information about either x or f(x, k)

9

See th
e R

FC
: h

ttp
s://d

atatracker.ietf.o
rg/d

o
c/d

raft-irtf-cfrg-vo
p

rf/

(Asymmetric)

https://datatracker.ietf.org/doc/draft-irtf-cfrg-voprf/

Elliptic-Curve Operations

• Curve Points (𝑈ppercase) and scalars (𝑙owercase)

• Point addition: 𝐴 + 𝐵 = 𝐶

• Scalar multiplication: 𝑠 ⋅ 𝑃 = 𝑃 + 𝑃 + 𝑃 +⋯+ 𝑃 = 𝑄
• 𝑠 ⋅ 𝑃 is similar to 𝑟𝑠 in modulo arithmetic

• Given 𝑃 and 𝑠 ⋅ 𝑃, it is hard to find 𝑠!

• Multiplicative inverse: 𝑠−1 ⋅ 𝑄 = 𝑠−1 ⋅ 𝑠 ⋅ 𝑃 = 𝑃
• Given 𝑠, it is easy to find 𝑠−1!

10

See th
e R

FC
: h

ttp
s://d

atatracker.ietf.o
rg/d

o
c/d

raft-irtf-cfrg-vo
p

rf/

(A Quick Recap of)

https://datatracker.ietf.org/doc/draft-irtf-cfrg-voprf/

• Client has secret input 𝑝

• Client learns 𝐹(𝑝, 𝑘), but nothing about 𝑘

• Server has secret key 𝑘

• Server learns nothing about 𝑝, 𝐹(𝑝, 𝑘)

Oblivious Pseudo-Random Function

11

(An example of an)

𝑝

𝐻()𝑝

𝐻()𝑟 ⋅ 𝑝𝐻()𝑟 ⋅ 𝑝

𝑘

random

• Client has secret input 𝑝

• Client learns 𝐹(𝑝, 𝑘), but nothing about 𝑘

• Server has secret key 𝑘

• Server learns nothing about 𝑝, 𝐹(𝑝, 𝑘)

Oblivious Pseudo-Random Function

12

(An example of an)

𝑝

𝐻()𝑝

𝐻()𝑟 ⋅ 𝑝
𝐻()𝑟 ⋅ 𝑝

𝐻()𝑘 ⋅ 𝑟 ⋅ 𝑝

𝑘

𝐻()𝑘 ⋅ 𝑟 ⋅ 𝑝

• Client has secret input 𝑝

• Client learns 𝐹(𝑝, 𝑘), but nothing about 𝑘

• Server has secret key 𝑘

• Server learns nothing about 𝑝, 𝐹(𝑝, 𝑘)

Oblivious Pseudo-Random Function

13

(An example of an)

𝑝

𝐻()𝑝

𝐻()𝑟 ⋅ 𝑝

𝐻()𝑘 ⋅ 𝑟 ⋅ 𝑝

𝐻()𝑘 ⋅𝑟−1 ⋅ 𝑟 ⋅ 𝑝

𝐻()𝑟 ⋅ 𝑝

𝐻()𝑘 ⋅ 𝑟 ⋅ 𝑝

• Client has secret input 𝑝

• Client learns 𝐹(𝑝, 𝑘), but nothing about 𝑘

• Server has secret key 𝑘

• Server learns nothing about 𝑝, 𝐹(𝑝, 𝑘)

Oblivious Pseudo-Random Function

14

(An example of an)

𝑝

𝐻()𝑝

𝐻()𝑟 ⋅ 𝑝

𝐻()𝑘 ⋅ 𝑟 ⋅ 𝑝

𝐻()𝑘 ⋅ 𝑝

𝐻()𝑟 ⋅ 𝑝

𝐻()𝑘 ⋅ 𝑟 ⋅ 𝑝

𝐹 𝑝, 𝑘 ≔

15

See also:

705.054 Privacy-Enhancing Technologies

The OPAQUE Protocol – Registration

• Idea: prove we know the password without showing the password

• Client generates asymmetric key pair (Kpub, Kpriv)

• Client sends Kpub to the server

• Server generates a random user-specific OPRF secret key Lu

• Client & Server perform OPRF protocol
• Client input = password p; Server key = Lu

• Client learns derived key f(p, Lu)

• Client encrypts Kpriv with key f(p, Lu) and sends it to the server

16

Fo
r all th

e go
ry d

etails, read
 th

e R
FC

 d
raft: h

ttp
s://w

w
w

.ietf.o
rg/arch

ive/id
/d

raft-irtf-cfrg-o
p

aq
u

e-0
2

.h
tm

l

(A conceptual overview of)

https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html

The OPAQUE Protocol – Authentication

• Idea: prove we know the password without showing the password

• Server retrieves Lu, Kpub, and the encrypted Kpriv

• Server sends the encrypted Kpriv to the user

• Client & Server perform OPRF protocol
• Client input = password p; Server key = Lu

• Client learns derived key f(p, Lu)

• Client uses f(p, Lu) to decrypt Kpriv and authenticate

17

Fo
r all th

e go
ry d

etails, read
 th

e R
FC

 d
raft: h

ttp
s://w

w
w

.ietf.o
rg/arch

ive/id
/d

raft-irtf-cfrg-o
p

aq
u

e-0
2

.h
tm

l

(A conceptual overview of)

https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-02.html

The Web Context Dilemma

• Who supplies your client code?
• The server!

• If an attacker controls the server, will they run your cryptography?
• No, they’ll just send the password input in plain text…

• What attack scenario are you defending against?

18

Authentication Factors
(Cryptographic)

Time-Based One-Time Password (TOTP)

19

Multi-Factor Authentication

• Idea: we want a safeguard against password compromise

• Authentication factor categories:
• Proving knowledge of some information

• Proving possession of some device

• Proving inherence of some property

20

Something you know

Something you are

Something you have

otpauth://totp/git.teaching.iaik.tu

graz.at:git.teaching.iaik.tugraz.at

_jakob.heher%40iaik.tugraz.at?secre

t=4OWR2BWMIZFMG7WYHMIFTNQAKLHV43N6&

issuer=git.teaching.iaik.tugraz.at

21

base32 decode

e3 ad 1d 06 cc 46 4a c3 7e d8

3b 10 59 b6 00 52 cf 5e 6d be

HMAC_SHA1

key

message

22

modulo 106treat as big-endian integer

extract 4 bytes

represent as 8 bytes, big-endian

Unix timestamp
base32 decode

e3 ad 1d 06 cc 46 4a c3 7e d8

3b 10 59 b6 00 52 cf 5e 6d be

1667902402

55596746

divide by 30s

00 00 00 00 03 50 56 caHMAC_SHA1

33 33 ac ec 5e d8 27 15 ca ee

7d f0 27 41 9a 4f 80 2c b5 a6

27 15 ca ee 655739630 739630

key

message

digest

Least significant half-byte = 0x6
⇒ Take 4 bytes starting at index 0x6

23

modulo 106treat as big-endian integer

extract 4 bytes

represent as 8 bytes, big-endian

Unix timestamp
base32 decode

e3 ad 1d 06 cc 46 4a c3 7e d8

3b 10 59 b6 00 52 cf 5e 6d be

1667902402

55596746

divide by 30s

00 00 00 00 03 50 56 caHMAC_SHA1

33 33 ac ec 5e d8 27 15 ca ee

7d f0 27 41 9a 4f 80 2c b5 a6

27 15 ca ee 655739630 739630

key

message

digest

Parameters (in theory)

(but: implementation support lacking)

24

modulo 106treat as big-endian integer

extract 4 bytes

represent as 8 bytes, big-endian

Unix timestamp
base32 decode

e3 ad 1d 06 cc 46 4a c3 7e d8

3b 10 59 b6 00 52 cf 5e 6d be

1667902402

55596746

divide by 30s

00 00 00 00 03 50 56 caHMAC_SHA1

33 33 ac ec 5e d8 27 15 ca ee

7d f0 27 41 9a 4f 80 2c b5 a6

27 15 ca ee 655739630 739630

key

message

digest

Device lost?
(Just backup the key!)

25

modulo 106treat as big-endian integer

extract 4 bytes

represent as 8 bytes, big-endian

Unix timestamp
base32 decode

e3 ad 1d 06 cc 46 4a c3 7e d8

3b 10 59 b6 00 52 cf 5e 6d be

1667902402

55596746

divide by 30s

00 00 00 00 03 50 56 caHMAC_SHA1

33 33 ac ec 5e d8 27 15 ca ee

7d f0 27 41 9a 4f 80 2c b5 a6

27 15 ca ee 655739630 739630

key

message

digest

Clock Synchronization
(common: try n intervals before/after)

26

modulo 106treat as big-endian integer

extract 4 bytes

represent as 8 bytes, big-endian

Unix timestamp
base32 decode

e3 ad 1d 06 cc 46 4a c3 7e d8

3b 10 59 b6 00 52 cf 5e 6d be

1667902402

55596746

divide by 30s

00 00 00 00 03 50 56 caHMAC_SHA1

33 33 ac ec 5e d8 27 15 ca ee

7d f0 27 41 9a 4f 80 2c b5 a6

27 15 ca ee 655739630 739630

key

message

digest

Only 6 characters
(Lockout/delay for failed attempts)

27

Time-Based One-Time Password (TOTP)

• Shared secret key + current timestamp ⇒ six-digit passcode

✓ Random secret
• Users cannot reuse passcode between websites

✓ Passcode changes every 30 seconds
• Phished credentials quickly become stale

28

Time-Based One-Time Password (TOTP)

• Shared secret key + current timestamp ⇒ six-digit passcode

× Server can still impersonate user
• Authentication is based on a symmetric, shared secret

× Secure storage is still paramount
• … and more difficult, since you can’t hash a secret key

× Real-time phishing still works

29

Time-Based One-Time Password (TOTP)

• Shared secret key + current timestamp ⇒ six-digit passcode

• Authentication factor categories:
• Proving knowledge of some information

• Proving possession of some device

• Proving inherence of some property

• What category does TOTP fit into?
• Possession of your mobile phone?

• Knowledge of the shared secret?

30

Something you know

Something you are

Something you have

Authentication Factors
(Cryptographic)

Web Authentication (WebAuthn)

31

32

“h
an

d
 cu

rso
r” b

y B
aku

n
etsu

K
aito

,
fro

m
 th

e N
o

u
n

 P
ro

ject (th
en

o
u

n
p

ro
ject.co

m
), ico

n
 u

sed
 u

n
d

er C
C

 B
Y

33

34

35

36

• OK, what just happened?

37

Challenge value

Verify
User

Presence

Signature

Private Key

Public KeyVerify
Signature

Access granted
38

“Sm
artp

h
o

n
e” b

y M
o

u
rad

 M
o

kran
e, th

en
o

u
n

p
ro

ject.co
m

, u
sed

 u
n

d
er C

C
 B

Y

Relying Party Client Authenticator

39

Design Goals

• Public-Key Authentication
• Keys stored in secure hardware ⇒ true possession factor

• Prevent MitM by Phishing Websites
• Support HTTPS only & tie authentication to a specific web origin

• Prevent Replay Attacks

• Provide (Optional) Device Attestation
• Provides guarantees about security of key storage & operation of device

40

WebAuthn – Outline

• RP JavaScript passes information from RP server to client

• Client adds some information & passes it to authenticator

• Authenticator signs the entire data
• Gets user confirmation/verification first if required

• Signature gets passed back to client → JS → RP server

• Remaining question:
• What data do we need to sign? Who do we trust to supply it?

41

D
o

 yo
u

 w
an

t to
 su

p
p

o
rt W

eb
A

u
th

n
o

n
 yo

u
r w

eb
site? h

ttp
s://w

eb
au

th
n

.gu
id

e/

https://webauthn.guide/

Attack Scenario – Phishing/MitM

• Relying Party server is genuine

• JavaScript is not genuine
• Phishing server supplies fake page

• Client is trustworthy

• Authenticator is trustworthy

• Page looks genuine, but is not at a byte-for-byte identical origin
• E.g., https://google.com -> https://gooogle.com/

42

https://google.com/
https://gooogle.com/

WebAuthn – Registration

• Client requests credential creation for origin O

• Authenticator generates key pair (Kpub, Kpriv)

• Authenticator picks credential ID C and stores (O, Kpriv) indexed by C

• Authenticator sends (C, Kpub) to client, which forwards it to RP

43

W
an

t to
 im

p
lem

en
t th

is? See h
ttp

s://w
3

c.gith
u

b
.io

/w
eb

au
th

n
/#sctn

-rp
-o

p
eratio

n
s!

https://w3c.github.io/webauthn/#sctn-rp-operations

Challenge:

Origin:

Flags:

Counter:

WebAuthn – Authentication

44

“server” b
y ico

n
 5

4
, fro

m
 th

e N
o

u
n

 P
ro

ject (th
en

o
u

n
p

ro
ject.co

m
), ico

n
s u

sed
 u

n
d

er C
C

 B
Y

Th
e M

o
zilla Firefo

x lo
go

 b
y th

e M
o

zilla Fo
u

n
d

atio
n

 (m
o

zilla.o
rg), u

sed
 u

n
d

er C
C

 B
Y

-SA
 3

.0

Challenge: 0x1873e8ff

0x55a473c21bc49…

Origin:

Flags:

Credential:

Challenge: 0x1873e8ff

0x55a473c21bc49…

Origin: https://github.com

Flags:

Credential:

Challenge: 0x1873e8ff

0x55a473c21bc49…

Origin: https://github.com

Flags: UP: yes, UV: no

Credential:

Signature: 0xafed86a40e57d864…

• Get public key based on credential ID
• Verify challenge integrity
• Verify origin
• Verify flags
• Verify signature

UP and UV?

• User Presence: a user needs to be physically present to authorize
• usually: requiring you to push a button on the authenticator

• User Verification: additional user authentication is performed
• PIN prompt or on-device biometric sensor

• This authentication is done by the authenticator!
• Even a compromised client cannot bypass this requirement

45

Device Attestation & Certification

• Devices come with a burnt-in attestation key pair
• The manufacturer signs the attestation public key

• The attestation private key signs the created credential

• This lets us be confident in the credential’s origin and storage!

• Built on top of attestation: device certification
• Delegation of trust in individual device models

• e.g.: FIDO2 certification levels
• ID Austria supports WebAuthn, but only with FIDO2 Level 2 certified authenticators

46

Non-Discoverable Credential Storage

• Bonus: we can “store” infinite credentials

• Credential ID is a opaque byte string that is returned by the server
• We can use it for storage!

• Authenticator only has a single master device key
• Generated securely in the device at start-up

• This key encrypts the private key → credential ID!

47

Client-Side Discoverable Credentials

• Standard authentication flow:
• Client sends username

• Server looks up credential ID(s) & sends them to client

• Idea: we want to get rid of this extra round trip
• Save user identifier alongside credential on authenticator

• Find & offer credentials using only target origin

• Problem: storage limits on authenticators!

48

Web Authentication (WebAuthn)

• Public key cryptography using hardware tokens

✓ No secure server storage necessary
• Public keys are not sensitive information

✓ Phishing impossible
• The browser embeds the current origin into the signed data

49

Web Authentication (WebAuthn)

• Public key cryptography using hardware tokens

× Users might lose hardware tokens or devices
• Your system is only as secure as the recovery factor…

50

What if we don’t tie each
credential to a single device?

What if we don’t tie each
credential to a single device?

Authentication Factors
(Cryptographic)

Synchronized WebAuthn Credentials

51

Synchronized WebAuthn Credentials

• Public key cryptography with automated key synchronization

✓ No secure server storage necessary
• Public keys are not sensitive information

✓ Phishing impossible
• The browser embeds the current origin into the signed data

✓Credentials survive device failure or loss
• Synchronized via “sync providers” (Microsoft, Apple, Google)

52

Synchronized WebAuthn Credentials

• Public key cryptography with automated key synchronization

× Sync providers’ implementation is a huge point of failure
• A vulnerability would expose billions of single-factor credentials

× Dependency on sync platforms leads to customer lock-in
• Switching loses every single credential you use to log in, everywhere

× Lack of interoperability reinforces existing cross-sector monopolies
• Want to use a phone OS, made by Google, to log in?

• Only if you’re using a specific browser that’s made by Google!

53

Synchronized WebAuthn Credentials

• Public key cryptography with automated key synchronization

✓ Definitely more secure than “standard” password usage

? Difficult to compare with password manager usage

× Less secure than hardware token usage
? But more usable

54

