TU

Grazm

Probabilistic Model ChecRing

Stefan Pranger

03. 06. 2025

TU

Grazm

Outline

e Recap & Homework

TU

Grazm

Outline

e Recap & Homework

e Partl: PCTL and Markov Chains

TU

Grazm

Outline

e Recap & Homework
e Partl: PCTL and Markov Chains

o PartII: Markov Decision Processes and Reachability Probabilities

TU

Grazm

Outline

Recap & Homework

PartI: PCTL and Markov Chains

Part II: Markov Decision Processes and Reachability Probabilities

Part III: Probabilistic Shielding

TU

Grazm

Communication Protocol with Faults

TU

Grazm

Communication Protocol with Faults

2D RobotGrid Random Walk

TU

Grazm

Part |

PCTL and Markov Chains

10

Recap: Reachability Probabilities

« Computing Pr(M, sy = FB)

 We have used a linear equation solver to compute the probability of satisfying the reachability
problem.

TU

Grazm

11

Probabilistic Computation Tree Logic

Probabilistic Computation Tree Logic [PCTL] is the probabilistic extension of CTL.

» Boolean state representation.

« V and 3 are replaced by Pr; (), where J C [0, 1]
o The interpretation for each state s € S: Pr(M,s =) € J

TU

Grazm

12

PCTL - Syntax

Subdivision into state (®)- and path-formulae (¢):

P ::=true

a

¢, A Py
—P

Pr(y)

wherea € APand J C [0, 1].

= Xo

&, U @,
&, U =" @,

TU

Grazm

13 TU

Grazm

PCTL - Satisfaction Relation

For s € S, ®, ¥ PCTL state formulae, and ¢ a PCTL path formula.

For state formulae, we have:

= a iff a € L(s),

- iff s # P,

= AV iff s = ®and s = ¥,
= Pr(p) iff Pr(s =) € J

»w »w »w »

14

PCTL - Satisfaction Relation

For s € S, ®, ¥ PCTL state formulae, and ¢ a PCTL path formula.

For state formulae, we have:

sEa iffa € L(s),

s = ® iff s # P,
SE®AY iff s = ®and s = ¥,
s = Pr(yp) iff Pr(s =) €J

For paths m € M , we have:

T = X iff w[l] = ¢
T=eUY iff 35> 0.(n[j] EyY A (V0O < k< nlk] = @)
T U=y iff 30<j<n. (7jl EvAN<k<j nlk] E)

TU

Grazm

15

Model ChecRing a PCTL Formula

e Checking the propositional part of PCTL is easy
« How to compute Pr(M,sy = C U B) ?

TU

Grazm

16

Constrained Reachability

We are interested in Pr(M, sy = C U B)

TU

Grazm

17

Constrained Reachability

We are interested in Pr(M, sy = C U B)

Modify Step 1) of our algorithm:
1) Identify three disjoint subsets of S
« S_1:The set of states with a probability of 1 to satisfy C U B.
« S_y: The set of states with a probability of 0 to satisfy C U B.
« S7: The set of states with a probability € (0, 1) to satisfy C' U B.

TU

Grazm

18

Constrained Reachability

» S_g: The set of states with a probability of 0 to satisfy C U B.

TU

Grazm

19

Constrained Reachability

» S_g: The set of states with a probability of 0 to satisfy C U B.
o P’I‘(M,SO)I CcuU B) = OiffGM,SO ¥ El(CUB)

TU

Grazm

20

Constrained Reachability

» S_g: The set of states with a probability of 0 to satisfy C U B.
o P’I‘(M,SO)I CcuU B) = OiffGM,SO ¥ El(CUB)

« S_1:The set of states with a probability of 1 to satisfy C U B.

TU

Grazm

21 TU

Grazm

Constrained Reachability

» S_g: The set of states with a probability of 0 to satisfy C U B.
o P’I‘(M,SO)I CcuU B) = OiffGM,SO ¥ El(CUB)

« S_1:The set of states with a probability of 1 to satisfy C U B.
o Modify M to M’ by making statesin BU S \ (C U B) absorbing, i.e.

1 s=tands € BUS\ (CUB)
P'(s,t) =< 0 s#tands € BUS\ (CUB)
| P(s,t) otherwise.

22

Constrained Reachability

» S_g: The set of states with a probability of 0 to satisfy C U B.
o P’I’(M,SO)I CcuU B) = OiffGM,SO ¥ H(CUB)

« S_1:The set of states with a probability of 1 to satisfy C U B.
o Modify M to M’ by making statesin BU S \ (C U B) absorbing, i.e.

1 s=tands € BUS\ (CUB)
P'(s,t) =< 0 s#tands € BUS\ (CUB)
| P(s,t) otherwise.
o Compute S_; = S\ Pre*(S\ Pre*(B))
o Prex (A) ... setof states that can reach A through a finite path fragment

TU

Grazm

23

Constrained Reachability

» S_g: The set of states with a probability of 0 to satisfy C U B.
o P’I’(M,SO)I CcuU B) = OiffGM,SO ¥ H(CUB)

« S_1:The set of states with a probability of 1 to satisfy C U B.
o Modify M to M’ by making statesin BU S \ (C U B) absorbing, i.e.

1 s=tands € BUS\ (CUB)
P'(s,t) =< 0 s#tands € BUS\ (CUB)
| P(s,t) otherwise.
o Compute S_; = S\ Pre*(S\ Pre*(B))
o Prex (A) ... setof states that can reach A through a finite path fragment

« S7: The set of states with a probability € (0, 1) to satisfy C U B.

TU

Grazm

24

Constrained Reachability

» S_g: The set of states with a probability of 0 to satisfy C U B.
o P’I’(M,SO)I CcuU B) = OiffGM,SO ¥ H(CUB)

« S_1:The set of states with a probability of 1 to satisfy C U B.
o Modify M to M’ by making statesin BU S \ (C U B) absorbing, i.e.

1 s=tands € BUS\ (CUB)
P'(s,t) =< 0 s#tands € BUS\ (CUB)
| P(s,t) otherwise.
o Compute S_; = S\ Pre*(S\ Pre*(B))
o Prex (A) ... setof states that can reach A through a finite path fragment

« S7: The set of states with a probability € (0, 1) to satisfy C U B.
o No changes — solve the linear equation system v

TU

Grazm

25

Model ChecRing a PCTL Formula

o Checking the propositional part of PCTL is easy v
« How to compute Pr(M,sy = C U B) ?

o We solve a linear equation system. v

 How to compute Pr(M, sy = XB) ?

TU

Grazm

26

Model ChecRing a PCTL Formula

o Checking the propositional part of PCTL is easy v
« How to compute Pr(M,sy = C U B) ?

o We solve a linear equation system. v

 How to compute Pr(M, sy = XB) ?
o Also easy: Simple Matrix-Vector-Multiplication! v

TU

Grazm

27 TU

Grazm

Model ChecRing a PCTL Formula

Checking the propositional part of PCTL is easy v
How to compute Pr(M, sy = C U B)?

o We solve a linear equation system. v

How to compute Pr(M, sy = XB)?
o Also easy: Simple Matrix-Vector-Multiplication! v

How can we compute bounded reachability: Pr(M, sy = F<:kB) ?

28

Model ChecRing a PCTL Formula

Checking the propositional part of PCTL is easy v
How to compute Pr(M, sy = C U B)?

o We solve a linear equation system. v

How to compute Pr(M, sy = XB)?
o Also easy: Simple Matrix-Vector-Multiplication! v

How can we compute bounded reachability: Pr(M, sy = F<:kB) ?
o Compute M’ = M g, with states in B absorbing

TU

Grazm

29

Model ChecRing a PCTL Formula

Checking the propositional part of PCTL is easy v
How to compute Pr(M, sy = C U B)?

o We solve a linear equation system. v

How to compute Pr(M, sy = XB)?
o Also easy: Simple Matrix-Vector-Multiplication! v

How can we compute bounded reachability: Pr(M, sy = F<:kB) ?

o Compute M’ = M g, with states in B absorbing
o Again: Simple Matrix-Vector-Multiplication(s)! v

TU

Grazm

30 TU

Grazm

Model ChecRing a PCTL Formula

Checking the propositional part of PCTL is easy v
How to compute Pr(M, sy = C U B)?

o We solve a linear equation system. v

How to compute Pr(M, sy = XB)?
o Also easy: Simple Matrix-Vector-Multiplication! v

How can we compute bounded reachability: Pr(M, sy = F<:kB) ?

o Compute M’ = M g, with states in B absorbing
o Again: Simple Matrix-Vector-Multiplication(s)! v

How can we compute bounded constrained reachability: Pr(M, sq = C U <=*B) ?

31

Model ChecRing a PCTL Formula

Checking the propositional part of PCTL is easy v
How to compute Pr(M, sy = C U B)?

o We solve a linear equation system. v

How to compute Pr(M, sy = XB)?
o Also easy: Simple Matrix-Vector-Multiplication! v

How can we compute bounded reachability: Pr(M, sy = F<:kB) ?

o Compute M’ = M g, with states in B absorbing
o Again: Simple Matrix-Vector-Multiplication(s)! v

How can we compute bounded constrained reachability: Pr(M, sq = C U <=*B) ?
o Compute M’ = Mp s (cup)), With states in BU S\ (C U B) absorbing

TU

Grazm

32

Model ChecRing a PCTL Formula

Checking the propositional part of PCTL is easy v
How to compute Pr(M, sy = C U B)?

o We solve a linear equation system. v

How to compute Pr(M, sy = XB)?
o Also easy: Simple Matrix-Vector-Multiplication! v

How can we compute bounded reachability: Pr(M, sy = F<:kB) ?

o Compute M’ = M g, with states in B absorbing
o Again: Simple Matrix-Vector-Multiplication(s)! v

How can we compute bounded constrained reachability: Pr(M, sq = C U <=*B) ?
o Compute M’ = Mp s (cup)), With states in BU S\ (C U B) absorbing

o Compute bounded reachability in M': Pr(M', sy = F<=*B) v

TU

Grazm

33

Model ChecRing a PCTL Formula

e We know how to

(¢]

o
(¢]
(¢]

check the propositional part v

compute Pr(M,sy = C U B) v

compute Pr(M, sy = Xa) v

compute bounded constrained reachability: Pr(M, sy = C U <=*B) v

TU

Grazm

34

Model ChecRing a PCTL Formula

« We know how to
o check the propositional part v

o compute Pr(M,sy =C U B) v
o compute Pr(M, sy = Xa) v
o compute bounded constrained reachability: Pr(M, sy = C U <=*B) v

« With that, we can answer Pr(s = ¢) € J:

TU

Grazm

35

Model ChecRing a PCTL Formula

« We know how to
o check the propositional part v

o compute Pr(M,sy =C U B) v
o compute Pr(M, sy = Xa) v
o compute bounded constrained reachability: Pr(M, sy = C U <=*B) v

« With that, we can answer Pr(s = ¢) € J:

« To check a PCTL formula ® we traverse the parse tree

TU

Grazm

36 TU

Grazm

Communication Protocol

delivered

» States where the message has not yet been lost can ensure 0.99 probability of sending the message
within 6 time steps and after the message has been lost, there is a probability of 0.45 of successfully
sending the message within the next try:

(\"lost\" | \"gone\") | P>=0.99 [F<=6 \"delivered\"] & (!\"lost\") | P>=0.45 [F<=2 \"delivered\"]

37 TU

Grazm

Communication Protocol

start l

delivered

ba|—

» States where the message has not yet been lost can ensure 0.99 probability of sending the message
within 6 time steps and after the message has been lost, there is a probability of 0.45 of successfully
sending the message within the next try:

(\"lost\" | \"gone\") | P>=0.99 [F<=6 \"delivered\"] & (!\"lost\") | P>=0.45 [F<=2 \"delivered\"]

 Ifthe probability of completely losing the message within 2 time steps is greater or equal to 0.1 then the
probability of eventually delivering the message is smaller than 0.9

1(P>=0.1 [F<=2 \"gone\"]) | P<0.9 [F \"delivered\"]

38

Model Zoo

39

Model Zoo

POSG

/

Stochastic games
POPTA

o\
T AR

CTMC DTMC

Markov Automaton

P

\

Hidden
Markov
Models

TU

Grazm

40

Part i

Markov Decision Processes and Reachability Probabilities

TU

Grazm

41

Markov Decision Processes

Markov Decision Process M = (S, Act,P, sy, AP, L)

« S a set of states and initial state s,
o Act a set of actions,

e P: S x Act x § — [0,1], s.t.

ZS’ES P(s,a,s') =1V(s,a) € S x Act

2AP

o AP setofatomicstatesand L : S — a labelling function.

TU

Grazm

42

Markov Decision Processes

Markov Decision Process M = (S, Act,P, sy, AP, L)

« S a set of states and initial state s,
o Act a set of actions,

e P: S x Act x § — [0,1], s.t.

ZS’ES P(s,a,s') =1V(s,a) € § x Act

o AP set of atomic states and L : S — 247 alabelling function.

The decision a defines the distribution over the next state.

TU

Grazm

43

Markov Decision Processes in Code and Memory

e Commands:

[moveNorth] Xx<HEIGHT -> 0.9: (x'=x+1) + 0.1:
[moveEast] y<WIDTH -> 0.9: (y'=y-1) + 0.1:

TU

Grazm

44

Markov Decision Processes in Code and Memory

e Commands:

[moveNorth] X<HEIGHT -> 0.9: (x'=x+1) + 0.1:
[moveEast] y<WIDTH 0.9: (y'=y-1) + 0.1:

o Guards do not need to be mutually exclusive anymore!

TU

Grazm

45

Markov Decision Processes in Code and Memory

e Commands:

[moveNorth] Xx<HEIGHT -> 0.9: (x'=x+1) + 0.1:
[moveEast] y<WIDTH -> 0.9: (y'=y-1) + 0.1:

o Guards do not need to be mutually exclusive anymore!

«,0.9

o o |g8el~ o

Sl gl oo +

= = =
o|°’1 c:|“D o|'—‘ o O

TU

Grazm

46

TU

Grazm

Coding Example

module

controllable_robot

endmodule

47

Paths in an MDP

« We extend our definition of a path for an MDP M as such:

« T = 800051018203 ... € (S x Act)¥,s.t.P(s;,0a;,8;,1) > 0,Vi > 0

TU

Grazm

48

Paths in an MDP

« We extend our definition of a path for an MDP M as such:
« T = 800051018203 ... € (S x Act)¥,s.t.P(s;,0a;,8;,1) > 0,Vi > 0

« Reasoning about events in an MDP resorts to the resolution of any non-determinism
o This is done by the use of schedulers (or: strategies/policies/adversaries).

TU

Grazm

49

Schedulers

e A scheduler is a function that given the history of the current path returns a distribution over
actions to be taken:

o: 8" xS — Distr(Act)

TU

Grazm

50

Schedulers

e A scheduler is a function that given the history of the current path returns a distribution over
actions to be taken:

o: 8" xS — Distr(Act)

» For simple properties such as unbounded reachability so-called memoryless deterministic scheduler
suffice:

o:8S — Act

TU

Grazm

51

Schedulers

e A scheduler is a function that given the history of the current path returns a distribution over
actions to be taken:

o: 8" xS — Distr(Act)

» For simple properties such as unbounded reachability so-called memoryless deterministic scheduler
suffice:

o:8S — Act

o This means that the scheduler o fixes an actions for each state.

TU

Grazm

52

Schedulers

e A scheduler is a function that given the history of the current path returns a distribution over
actions to be taken:

o: 8" xS — Distr(Act)

» For simple properties such as unbounded reachability so-called memoryless deterministic scheduler
suffice:

o:8S — Act

o This means that the scheduler o fixes an actions for each state.
o We can then define the probability of eventually reaching under sched

Pr(M,s = FB)

TU

Grazm

53

Induced Markov Chain

Consider an MDP M and a memoryless deterministic scheduler:

o:S — Act

TU

Grazm

54

Induced Markov Chain

Consider an MDP M and a memoryless deterministic scheduler:

o:S — Act

S0 — B v, (.9
S1 — «

N 0
o v, (.1
° 0. 0.9

Sl gkl o|lo -

o o |8le|l= o

— = =
O‘U‘ o|© ol’_‘ o O

TU

Grazm

55

Reachability in MDPs

« We have (re-)introduced nondeterminism into probabilistic models

TU

Grazm

56

Reachability in MDPs

« We have (re-)introduced nondeterminism into probabilistic models

« Satisfaction of Pr°(M, s = F B) depends on ¢, which can either

TU

Grazm

57

Reachability in MDPs

« We have (re-)introduced nondeterminism into probabilistic models

« Satisfaction of Pr°(M, s = F B) depends on ¢, which can either
o maximize or
o minimize the probability to satisfy F B

TU

Grazm

58

Reachability in MDPs

« We have (re-)introduced nondeterminism into probabilistic models

« Satisfaction of Pr°(M, s = F B) depends on ¢, which can either
o maximize or
o minimize the probability to satisfy F B

« We are therefore interested in a worst-case analysis ranging over all schedulers o

TU

Grazm

59

Reachability in MDPs

We have (re-)introduced nondeterminism into probabilistic models

Satisfaction of Pr?(M, s = F B) depends on ¢, which can either

o maximize or
o minimize the probability to satisfy F B

We are therefore interested in a worst-case analysis ranging over all schedulers o

Formally, we have:
o Prmar(M,s = FB) = sup,Pr°(M,s = FB) and
o Prm(M,s &= FB) = inf,Pr°(M,s &= FB)

TU

Grazm

60

Example: Maximal Probability of Reaching B

Assume we are interested in the probability of staying safe:

Pro(M,s = G-B)

TU

Grazm

61

Example: Maximal Probability of Reaching B

Assume we are interested in the probability of staying safe:

Pro(M,s = G-B)

« Worst-case analysis: What is the maximum probability of ever reaching B?

TU

Grazm

62

Example: Maximal Probability of Reaching B

Assume we are interested in the probability of staying safe:

Pro(M,s = G-B)

« Worst-case analysis: What is the maximum probability of ever reaching B?

 Compute Pr"**(M,s = FB)

TU

Grazm

63

Example: Maximal Probability of Reaching B

Assume we are interested in the probability of staying safe:

Pro(M,s = G-B)

« Worst-case analysis: What is the maximum probability of ever reaching B?
 Compute Pr"**(M,s = FB)

e f Pr"*(M,s =FB) < ethen Pr'(M,s =G—-B)>1—¢
o Regardless of the resolution of nondeterminism, the probability of staying safeis > 1 — ¢

TU

Grazm

64

Ty,
Computing Maximum Reachability Probabilities in MDPs

65

Computing Maximum Reachability Probabilities in MDPs

We want to compute () = Pr"** (M, s = F B) using the following equation system:

TU

Grazm

66

Computing Maximum Reachability Probabilities in MDPs

We want to compute () = Pr"** (M, s = F B) using the following equation system:

e Ifse B:x, =1

TU

Grazm

67

Computing Maximum Reachability Probabilities in MDPs

We want to compute () = Pr"** (M, s = F B) using the following equation system:

e Ifse B:x, =1
e Ifs¥ JFB:x, = 0

TU

Grazm

68

Computing Maximum Reachability Probabilities in MDPs

We want to compute () = Pr"** (M, s = F B) using the following equation system:
e Ifse B:x, =1
e Ifs¥ JFB:x, = 0

« Ifs¢ Bands = JFB
o £y = max{) .gP(s,a,5") xy]a € Act(s)}

TU

Grazm

69

Computing Maximum Reachability Probabilities in MDPs

We want to compute () = Pr"** (M, s = F B) using the following equation system:
e Ifse B:x, =1
e Ifs¥ JFB:x, = 0

« Ifs¢ Bands = JFB
o £y = max{) .gP(s,a,5") xy]a € Act(s)}

e Suchthat) | ¢, is minimal.

TU

Grazm

70

Linear Program - Method |

This can be expressed as a linear program:

» Minimize) ,_ <5 Ts, such that:

0 <z <1,

zs = 1,if s € B,

zs = 0,if s # dF B,

s > > . .sP(s,a,8") - xy, forallactionsa € Act(s),ifs ¢ Band s |= JFB

(¢]

O O O

TU

Grazm

71

Value Iteration - Method I

« Approximative method:
o Compute the probability to reach B after n steps
o Start with n = (0 and stop after some termination criterion is met

TU

Grazm

72

Value Iteration - Method I

« Approximative method:
o Compute the probability to reach B after n steps
o Start with n = (0 and stop after some termination criterion is met

More specifically:

2V = 1,vsc B

a:ﬁ") = 0,Vs € S

20 = 0, Vs € S\ S
2" = max(}" _ P(s,a,5') 2l |a € Act(s)},Vs € S\ S

TU

Grazm

73

Value Iteration - Method I

« Approximative method:
o Compute the probability to reach B after n steps
o Start with n = (0 and stop after some termination criterion is met

More specifically:

2V = 1,vsc B

a:ﬁ") = 0,Vs € S

20 = 0, Vs € S\ S
2 = max{zsles P(s,a,s’) -asg,l)|a € Act(s)},Vs € §\ S—g

. +1
e Terminate as soon as MaX; cs |:13§n) azgn)| <E€

TU

Grazm

74

Value Iteration - Method I

« Approximative method:
o Compute the probability to reach B after n steps
o Start with n = (0 and stop after some termination criterion is met

More specifically:

29 = 1.vsc B
a:ﬁ") = 0,Vs € S

2" = 0, Vs € S\ S
2" = max{zsles P(s,a,s") -azg,l)|a € Act(s)}, Vs € S\ S-
« Terminate as soon as maX cs |a;§"“> — azgn)| <E€

» More sophisticated methods use other means of checking for convergence

TU

Grazm

79

Part lll

Probabilistic Shielding

TU

Grazm

76

TU

Grazm

Safety in Reinforcement Learning

77

Probabilistic Shielding

We are given an MDP M and a set of unsafe states B

TU

Grazm

78

Probabilistic Shielding

We are given an MDP M and a set of unsafe states B
Idea

 Limit the probability to reach B by disallowing unsafe actions

TU

Grazm

79

Probabilistic Shielding

We are given an MDP M and a set of unsafe states B
Idea

 Limit the probability to reach B by disallowing unsafe actions

o How to compute?

TU

Grazm

80

Value Iteration

a:go) = 1,Vs e B
mgn) = 0,Vs € 5_g

ng) = 0,

VSES\S:()

) = max{zsles P(s,a,s") -zcg,z)\a € Act(s)},Vs € S\ S—g

TU

Grazm

81

Value Iteration

azgo) = 1,Vs e B
ZBgn) = 0,Vs € 5_g

ng) = 0,

VSES\S:()

2P — max{zsles P(s,a,s') - :1327,1)\& c Act(s)}, Vs € S\ S—

TU

Grazm

82

Value Iteration

a:go) = 1,Vs e B

W = 0,Vs € S

29 = 0, Vs e S\ S,
gt = max{zs'es P(s,a,s') - a:é?)\a € Act(s)},Vs € S\ S

. Value iterations computes the probability to satisfy Pymaz/min (M, s = F B) for every state-action
pair

TU

Grazm

83

Value Iteration

a:go) = 1,Vs e B
mgn) = 0,Vs € 5_g
wgo) — O, Vs € S\S:()
) = max{zsles P(s,a,s') - a:é?)\a € Act(s)},Vs € S\ S_
. Value iterations computes the probability to satisfy Pymaz/min (M, s = F B) for every state-action
pair

e Use the intermediate computation for
o Prmi(s a,m) = LycsP(s,a,s) * 2"V

TU

Grazm

84

Probabilistic Shielding

 Limit the probability to reach B by disallowing unsafe actions

TU

Grazm

85

Probabilistic Shielding

 Limit the probability to reach B by disallowing unsafe actions

« We now have:
o Prmaz (g a,n) = YycsP(s,a,s") * xﬁ“‘”
o For a specified safety threshold -~y disallow actions for which: Pr™%* (s, a,n) < =y

TU

Grazm

86

Probabilistic Shielding

 Limit the probability to reach B by disallowing unsafe actions

e We now have:
o Prmaz (g a,n) = YycsP(s,a,s") * xﬁ“‘”
o For a specified safety threshold -~y disallow actions for which: Pr™%* (s, a,n) < =y
o Similary, we can disallow actions for which Prmin (s, a, n) > 7y

TU

Grazm

87

TU

Grazm

Probabilistic Shielding - Example

« Safety Property: Do not step onto lava within 2 time steps

- Disallow if Pr™"(s,a,2) > 0.05 for (s,a)

VCoOoO~NOTULhAWNREO

m

¢ [x=3
: [x=4
: [x=5
: [x=2
3 |eEB
: [x=4
¢ [x=5
: [x=2
: [x=3
: [x=4
2 |ES
: [x=1
: [x=1
2 |l
¢ [x=1

odel state:
[x=1
[x=2
[x=3
[x=4
[x=5
[x=2
[x=3
[x=4
[x=5
[x=2

0 o

0 0 Q0 20 Q0 Q0 Q0 Q0 Q0 Q0 Q0 QO QO QO Q0 QO QO QO Q0 QO QO QO QO
T KK Kk ks ks kit k<
L Lt V1 e 1 {1 {1 et 1 1 V1 [1]

UVBhAWNULULNUUULBEAEBRBRRWWWWNNNNRRRERPRPRPRE
S I S M S | |

Pre-Safety-Shield with absolute comparison (gamma = 0.050000):

choice(s) [<value>: (<action {action label})>]:

(o]

: (0 {}
: (0 {}
: (0 {}
: (0 {}
: (0 {}
.0318:
.0318:
.0318:
.0318:
.0009:
.0009:
.0009:
.0009:

)
)
)
)
)
(2 {north})
(2 {north})
(2 {north})
(1 {north})
(0 {east});
(0 {east});
(0 {east});
(0 {west});

0
0
0
0
0
0
0
0
0
0
0
0
0:
0
0
0
0
0
0
0
0
0
0
0

(0 ieast});

: (0 {east});
: (0 {east});
: (0 {west});
: (0 {east});
: (0 {east});
: (0 {east});
: (0 {west});
.0318: (1 {north}
.0009: (0 {east})

(0 {east});
(0 {east});

[cNoRTRESdoNoNoNoNoNoNoNo]

0.0009: (1 {west});
0.0009: (1 {west});
0.0009: (1 {west});
0.0009: (1 {north});

(1 {west});
(1 {west});
(1 {west});
(1 {north});
(1 {west});
(1 {west});
(1 {west});
(1 {south})

0.0009: (1 {north});

(1 {north});

: (1 {south})

0.0009: (2 {north});
0.0009: (2 {north});
0.0009: (2 {north});
0.0273: (2 {south})

0: (2 {north}); 0: (3 {south})
0: (2 {north}); 0: (3 {south})
0: (2 {north}); 0: (3 {south})
0: (2 {south})

0: (2 {south})

0: (2 {south})

0: (2 {south})

0.0273: (2 {south})
0: (2 {south})

0.0273: (3 {south})
0.0273: (3 {south})
0.0273: (3 {south})

