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Recap: Reachability Probabilities

« Computing Pr(M, sy = FB)

 We have used a linear equation solver to compute the probability of satisfying the reachability
problem.
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Probabilistic Computation Tree Logic

Probabilistic Computation Tree Logic [PCTL] is the probabilistic extension of CTL.

» Boolean state representation.

« V and 3 are replaced by Pr; (), where J C [0, 1]
o The interpretation for each state s € S: Pr(M,s = ) € J
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PCTL - Syntax

Subdivision into state (®)- and path-formulae (¢):

P ::=true

a

¢, A Py
—P

Pr(y)

wherea € APand J C [0, 1].

= Xo

&, U @,
&, U =" @,
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PCTL - Satisfaction Relation

For s € S, ®, ¥ PCTL state formulae, and ¢ a PCTL path formula.

For state formulae, we have:

= a iff a € L(s),

- iff s # P,

= AV iff s = ®and s = ¥,
= Pr(p) iff Pr(s =) € J

»w »w »w »
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PCTL - Satisfaction Relation

For s € S, ®, ¥ PCTL state formulae, and ¢ a PCTL path formula.

For state formulae, we have:

sEa iffa € L(s),

s = ® iff s # P,
SE®AY iff s = ®and s = ¥,
s = Pr(yp) iff Pr(s =) €J

For paths m € M , we have:

T = X iff w[l] = ¢
T=eUY iff 35> 0.(n[j] EyY A (V0O < k< nlk] = @)
T U=y iff 30<j<n. (7jl EvAN<k<j nlk] E )
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Model ChecRing a PCTL Formula

e Checking the propositional part of PCTL is easy
« How to compute Pr(M,sy = C U B) ?
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Constrained Reachability

We are interested in Pr(M, sy = C U B)
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Constrained Reachability

We are interested in Pr(M, sy = C U B)

Modify Step 1) of our algorithm:
1) Identify three disjoint subsets of S
« S_1:The set of states with a probability of 1 to satisfy C U B.
« S_y: The set of states with a probability of 0 to satisfy C U B.
« S7: The set of states with a probability € (0, 1) to satisfy C' U B.
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Constrained Reachability

» S_g: The set of states with a probability of 0 to satisfy C U B.
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Constrained Reachability

» S_g: The set of states with a probability of 0 to satisfy C U B.
o P’I‘(M,SO )I CcuU B) = OiffGM,SO ¥ El(CUB)
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Constrained Reachability

» S_g: The set of states with a probability of 0 to satisfy C U B.
o P’I‘(M,SO )I CcuU B) = OiffGM,SO ¥ El(CUB)

« S_1:The set of states with a probability of 1 to satisfy C U B.
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Constrained Reachability

» S_g: The set of states with a probability of 0 to satisfy C U B.
o P’I‘(M,SO )I CcuU B) = OiffGM,SO ¥ El(CUB)

« S_1:The set of states with a probability of 1 to satisfy C U B.
o Modify M to M’ by making statesin BU S \ (C U B) absorbing, i.e.

1 s=tands € BUS\ (CUB)
P'(s,t) =< 0 s#tands € BUS\ (CUB)
| P(s,t) otherwise.
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Constrained Reachability

» S_g: The set of states with a probability of 0 to satisfy C U B.
o P’I’(M,SO )I CcuU B) = OiffGM,SO ¥ H(CUB)

« S_1:The set of states with a probability of 1 to satisfy C U B.
o Modify M to M’ by making statesin BU S \ (C U B) absorbing, i.e.

1 s=tands € BUS\ (CUB)
P'(s,t) =< 0 s#tands € BUS\ (CUB)
| P(s,t) otherwise.
o Compute S_; = S\ Pre*(S\ Pre*(B))
o Prex (A) ... setof states that can reach A through a finite path fragment

TU

Grazm



23

Constrained Reachability

» S_g: The set of states with a probability of 0 to satisfy C U B.
o P’I’(M,SO )I CcuU B) = OiffGM,SO ¥ H(CUB)

« S_1:The set of states with a probability of 1 to satisfy C U B.
o Modify M to M’ by making statesin BU S \ (C U B) absorbing, i.e.

1 s=tands € BUS\ (CUB)
P'(s,t) =< 0 s#tands € BUS\ (CUB)
| P(s,t) otherwise.
o Compute S_; = S\ Pre*(S\ Pre*(B))
o Prex (A) ... setof states that can reach A through a finite path fragment

« S7: The set of states with a probability € (0, 1) to satisfy C U B.

TU

Grazm



24

Constrained Reachability

» S_g: The set of states with a probability of 0 to satisfy C U B.
o P’I’(M,SO )I CcuU B) = OiffGM,SO ¥ H(CUB)

« S_1:The set of states with a probability of 1 to satisfy C U B.
o Modify M to M’ by making statesin BU S \ (C U B) absorbing, i.e.

1 s=tands € BUS\ (CUB)
P'(s,t) =< 0 s#tands € BUS\ (CUB)
| P(s,t) otherwise.
o Compute S_; = S\ Pre*(S\ Pre*(B))
o Prex (A) ... setof states that can reach A through a finite path fragment

« S7: The set of states with a probability € (0, 1) to satisfy C U B.
o No changes — solve the linear equation system v
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Model ChecRing a PCTL Formula

o Checking the propositional part of PCTL is easy v
« How to compute Pr(M,sy = C U B) ?

o We solve a linear equation system. v

 How to compute Pr(M, sy = XB) ?
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Model ChecRing a PCTL Formula

o Checking the propositional part of PCTL is easy v
« How to compute Pr(M,sy = C U B) ?

o We solve a linear equation system. v

 How to compute Pr(M, sy = XB) ?
o Also easy: Simple Matrix-Vector-Multiplication! v
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Model ChecRing a PCTL Formula

Checking the propositional part of PCTL is easy v
How to compute Pr(M, sy = C U B)?

o We solve a linear equation system. v

How to compute Pr(M, sy = XB)?
o Also easy: Simple Matrix-Vector-Multiplication! v

How can we compute bounded reachability: Pr(M, sy = F<:kB) ?
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Model ChecRing a PCTL Formula

Checking the propositional part of PCTL is easy v
How to compute Pr(M, sy = C U B)?

o We solve a linear equation system. v

How to compute Pr(M, sy = XB)?
o Also easy: Simple Matrix-Vector-Multiplication! v

How can we compute bounded reachability: Pr(M, sy = F<:kB) ?
o Compute M’ = M g, with states in B absorbing
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Model ChecRing a PCTL Formula

Checking the propositional part of PCTL is easy v
How to compute Pr(M, sy = C U B)?

o We solve a linear equation system. v

How to compute Pr(M, sy = XB)?
o Also easy: Simple Matrix-Vector-Multiplication! v

How can we compute bounded reachability: Pr(M, sy = F<:kB) ?

o Compute M’ = M g, with states in B absorbing
o Again: Simple Matrix-Vector-Multiplication(s)! v
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Model ChecRing a PCTL Formula

Checking the propositional part of PCTL is easy v
How to compute Pr(M, sy = C U B)?

o We solve a linear equation system. v

How to compute Pr(M, sy = XB)?
o Also easy: Simple Matrix-Vector-Multiplication! v

How can we compute bounded reachability: Pr(M, sy = F<:kB) ?

o Compute M’ = M g, with states in B absorbing
o Again: Simple Matrix-Vector-Multiplication(s)! v

How can we compute bounded constrained reachability: Pr(M, sq = C U <=*B) ?
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Model ChecRing a PCTL Formula

Checking the propositional part of PCTL is easy v
How to compute Pr(M, sy = C U B)?

o We solve a linear equation system. v

How to compute Pr(M, sy = XB)?
o Also easy: Simple Matrix-Vector-Multiplication! v

How can we compute bounded reachability: Pr(M, sy = F<:kB) ?

o Compute M’ = M g, with states in B absorbing
o Again: Simple Matrix-Vector-Multiplication(s)! v

How can we compute bounded constrained reachability: Pr(M, sq = C U <=*B) ?
o Compute M’ = Mp s (cup)), With states in BU S\ (C U B) absorbing
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Model ChecRing a PCTL Formula

Checking the propositional part of PCTL is easy v
How to compute Pr(M, sy = C U B)?

o We solve a linear equation system. v

How to compute Pr(M, sy = XB)?
o Also easy: Simple Matrix-Vector-Multiplication! v

How can we compute bounded reachability: Pr(M, sy = F<:kB) ?

o Compute M’ = M g, with states in B absorbing
o Again: Simple Matrix-Vector-Multiplication(s)! v

How can we compute bounded constrained reachability: Pr(M, sq = C U <=*B) ?
o Compute M’ = Mp s (cup)), With states in BU S\ (C U B) absorbing

o Compute bounded reachability in M': Pr(M', sy = F<=*B) v
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Model ChecRing a PCTL Formula

e We know how to

(¢]

o
(¢]
(¢]

check the propositional part v

compute Pr(M,sy = C U B) v

compute Pr(M, sy = Xa) v

compute bounded constrained reachability: Pr(M, sy = C U <=*B) v

TU
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Model ChecRing a PCTL Formula

« We know how to
o check the propositional part v

o compute Pr(M,sy =C U B) v
o compute Pr(M, sy = Xa) v
o compute bounded constrained reachability: Pr(M, sy = C U <=*B) v

« With that, we can answer Pr(s = ¢) € J:
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Model ChecRing a PCTL Formula

« We know how to
o check the propositional part v

o compute Pr(M,sy =C U B) v
o compute Pr(M, sy = Xa) v
o compute bounded constrained reachability: Pr(M, sy = C U <=*B) v

« With that, we can answer Pr(s = ¢) € J:

« To check a PCTL formula ® we traverse the parse tree
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Communication Protocol

delivered

» States where the message has not yet been lost can ensure 0.99 probability of sending the message
within 6 time steps and after the message has been lost, there is a probability of 0.45 of successfully
sending the message within the next try:

(\"lost\" | \"gone\") | P>=0.99 [F<=6 \"delivered\"] & (!\"lost\") | P>=0.45 [ F<=2 \"delivered\"]
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Communication Protocol

start l

delivered

ba|—

» States where the message has not yet been lost can ensure 0.99 probability of sending the message
within 6 time steps and after the message has been lost, there is a probability of 0.45 of successfully
sending the message within the next try:

(\"lost\" | \"gone\") | P>=0.99 [F<=6 \"delivered\"] & (!\"lost\") | P>=0.45 [ F<=2 \"delivered\"]

 Ifthe probability of completely losing the message within 2 time steps is greater or equal to 0.1 then the
probability of eventually delivering the message is smaller than 0.9

1(P>=0.1 [F<=2 \"gone\"] ) | P<0.9 [F \"delivered\"]
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Model Zoo
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Model Zoo

POSG

/

Stochastic games
POPTA

o\
T AR

CTMC DTMC

Markov Automaton

P

\

Hidden
Markov
Models
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Part i

Markov Decision Processes and Reachability Probabilities
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Markov Decision Processes

Markov Decision Process M = (S, Act,P, sy, AP, L)

« S a set of states and initial state s,
o Act a set of actions,

e P: S x Act x § — [0,1], s.t.

ZS’ES P(s,a,s') =1V(s,a) € S x Act

2AP

o AP setofatomicstatesand L : S — a labelling function.
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Markov Decision Processes

Markov Decision Process M = (S, Act,P, sy, AP, L)

« S a set of states and initial state s,
o Act a set of actions,

e P: S x Act x § — [0,1], s.t.

ZS’ES P(s,a,s') =1V(s,a) € § x Act

o AP set of atomic states and L : S — 247 alabelling function.

The decision a defines the distribution over the next state.
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Markov Decision Processes in Code and Memory

e Commands:

[moveNorth] Xx<HEIGHT -> 0.9: (x'=x+1) + 0.1:
[moveEast] y<WIDTH -> 0.9: (y'=y-1) + 0.1:
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Markov Decision Processes in Code and Memory

e Commands:

[moveNorth] X<HEIGHT -> 0.9: (x'=x+1) + 0.1:
[moveEast] y<WIDTH 0.9: (y'=y-1) + 0.1:

o Guards do not need to be mutually exclusive anymore!
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Markov Decision Processes in Code and Memory

e Commands:

[moveNorth] Xx<HEIGHT -> 0.9: (x'=x+1) + 0.1:
[moveEast] y<WIDTH -> 0.9: (y'=y-1) + 0.1:

o Guards do not need to be mutually exclusive anymore!

«,0.9

o o |g8el~ o

Sl gl oo +

= = =
o|°’1 c:|“D o|'—‘ o O
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Coding Example

module

controllable_robot

endmodule
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Paths in an MDP

« We extend our definition of a path for an MDP M as such:

« T = 800051018203 ... € (S x Act)¥,s.t.P(s;,0a;,8;,1) > 0,Vi > 0
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Paths in an MDP

« We extend our definition of a path for an MDP M as such:
« T = 800051018203 ... € (S x Act)¥,s.t.P(s;,0a;,8;,1) > 0,Vi > 0

« Reasoning about events in an MDP resorts to the resolution of any non-determinism
o This is done by the use of schedulers (or: strategies/policies/adversaries).
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Schedulers

e A scheduler is a function that given the history of the current path returns a distribution over
actions to be taken:

o: 8" xS — Distr(Act)
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Schedulers

e A scheduler is a function that given the history of the current path returns a distribution over
actions to be taken:

o: 8" xS — Distr(Act)

» For simple properties such as unbounded reachability so-called memoryless deterministic scheduler
suffice:

o:8S — Act
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Schedulers

e A scheduler is a function that given the history of the current path returns a distribution over
actions to be taken:

o: 8" xS — Distr(Act)

» For simple properties such as unbounded reachability so-called memoryless deterministic scheduler
suffice:

o:8S — Act

o This means that the scheduler o fixes an actions for each state.
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Schedulers

e A scheduler is a function that given the history of the current path returns a distribution over
actions to be taken:

o: 8" xS — Distr(Act)

» For simple properties such as unbounded reachability so-called memoryless deterministic scheduler
suffice:

o:8S — Act

o This means that the scheduler o fixes an actions for each state.
o We can then define the probability of eventually reaching under sched

Pr(M,s = FB)
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Induced Markov Chain

Consider an MDP M and a memoryless deterministic scheduler:

o:S — Act
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Induced Markov Chain

Consider an MDP M and a memoryless deterministic scheduler:

o:S — Act

S0 — B v, (.9
S1 — «

N 0
o v, (.1
° 0. 0.9

Sl gkl o|lo -

o o |8le|l= o

— = =
O‘U‘ o|© ol’_‘ o O
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Reachability in MDPs

« We have (re-)introduced nondeterminism into probabilistic models
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Reachability in MDPs

« We have (re-)introduced nondeterminism into probabilistic models

« Satisfaction of Pr°(M, s = F B) depends on ¢, which can either
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Reachability in MDPs

« We have (re-)introduced nondeterminism into probabilistic models

« Satisfaction of Pr°(M, s = F B) depends on ¢, which can either
o maximize or
o minimize the probability to satisfy F B
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Reachability in MDPs

« We have (re-)introduced nondeterminism into probabilistic models

« Satisfaction of Pr°(M, s = F B) depends on ¢, which can either
o maximize or
o minimize the probability to satisfy F B

« We are therefore interested in a worst-case analysis ranging over all schedulers o
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Reachability in MDPs

We have (re-)introduced nondeterminism into probabilistic models

Satisfaction of Pr?(M, s = F B) depends on ¢, which can either

o maximize or
o minimize the probability to satisfy F B

We are therefore interested in a worst-case analysis ranging over all schedulers o

Formally, we have:
o Prmar(M,s = FB) = sup,Pr°(M,s = FB) and
o Prm(M,s &= FB) = inf,Pr°(M,s &= FB)
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Example: Maximal Probability of Reaching B

Assume we are interested in the probability of staying safe:

Pro(M,s = G-B)
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Example: Maximal Probability of Reaching B

Assume we are interested in the probability of staying safe:

Pro(M,s = G-B)

« Worst-case analysis: What is the maximum probability of ever reaching B?
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Example: Maximal Probability of Reaching B

Assume we are interested in the probability of staying safe:

Pro(M,s = G-B)

« Worst-case analysis: What is the maximum probability of ever reaching B?

 Compute Pr"**(M,s = FB)
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Example: Maximal Probability of Reaching B

Assume we are interested in the probability of staying safe:

Pro(M,s = G-B)

« Worst-case analysis: What is the maximum probability of ever reaching B?
 Compute Pr"**(M,s = FB)

e f Pr"*(M,s =FB) < ethen Pr'(M,s =G—-B)>1—¢
o Regardless of the resolution of nondeterminism, the probability of staying safeis > 1 — ¢
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Ty,
Computing Maximum Reachability Probabilities in MDPs
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Computing Maximum Reachability Probabilities in MDPs

We want to compute () = Pr"** (M, s = F B) using the following equation system:
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Computing Maximum Reachability Probabilities in MDPs

We want to compute () = Pr"** (M, s = F B) using the following equation system:

e Ifse B:x, =1
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Computing Maximum Reachability Probabilities in MDPs

We want to compute () = Pr"** (M, s = F B) using the following equation system:

e Ifse B:x, =1
e Ifs¥ JFB:x, = 0
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Computing Maximum Reachability Probabilities in MDPs

We want to compute () = Pr"** (M, s = F B) using the following equation system:
e Ifse B:x, =1
e Ifs¥ JFB:x, = 0

« Ifs¢ Bands = JFB
o £y = max{)  .gP(s,a,5") xy]a € Act(s)}
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Computing Maximum Reachability Probabilities in MDPs

We want to compute () = Pr"** (M, s = F B) using the following equation system:
e Ifse B:x, =1
e Ifs¥ JFB:x, = 0

« Ifs¢ Bands = JFB
o £y = max{)  .gP(s,a,5") xy]a € Act(s)}

e Suchthat ) | ¢, is minimal.
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Linear Program - Method |

This can be expressed as a linear program:

» Minimize ) ,_ <5 Ts, such that:

0 <z <1,

zs = 1,if s € B,

zs = 0,if s # dF B,

s > > . .sP(s,a,8") - xy, forallactionsa € Act(s),ifs ¢ Band s |= JFB

(¢]

O O O
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Value Iteration - Method I

« Approximative method:
o Compute the probability to reach B after n steps
o Start with n = (0 and stop after some termination criterion is met
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Value Iteration - Method I

« Approximative method:
o Compute the probability to reach B after n steps
o Start with n = (0 and stop after some termination criterion is met

More specifically:

2V = 1,vsc B

a:ﬁ") = 0,Vs € S

20 = 0, Vs € S\ S
2" = max(}" _ P(s,a,5') 2l |a € Act(s)},Vs € S\ S

TU

Grazm



73

Value Iteration - Method I

« Approximative method:
o Compute the probability to reach B after n steps
o Start with n = (0 and stop after some termination criterion is met

More specifically:

2V = 1,vsc B

a:ﬁ") = 0,Vs € S

20 = 0, Vs € S\ S
2 = max{zsles P(s,a,s’) -asg,l)|a € Act(s)},Vs € §\ S—g

. +1
e Terminate as soon as MaX; cs |:13§n ) azgn)| <E€
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Value Iteration - Method I

« Approximative method:
o Compute the probability to reach B after n steps
o Start with n = (0 and stop after some termination criterion is met

More specifically:

29 = 1.vsc B
a:ﬁ") = 0,Vs € S

2" = 0, Vs € S\ S
2" = max{zsles P(s,a,s") -azg,l)|a € Act(s)}, Vs € S\ S-
« Terminate as soon as maX cs |a;§"“> — azgn)| <E€

» More sophisticated methods use other means of checking for convergence
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Part lll

Probabilistic Shielding
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Safety in Reinforcement Learning
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Probabilistic Shielding

We are given an MDP M and a set of unsafe states B
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Probabilistic Shielding

We are given an MDP M and a set of unsafe states B
Idea

 Limit the probability to reach B by disallowing unsafe actions
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Probabilistic Shielding

We are given an MDP M and a set of unsafe states B
Idea

 Limit the probability to reach B by disallowing unsafe actions

o How to compute?

TU
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Value Iteration

a:go) = 1,Vs e B
mgn) = 0,Vs € 5_g

ng) = 0,

VSES\S:()

) = max{zsles P(s,a,s") -zcg,z)\a € Act(s)},Vs € S\ S—g
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Value Iteration

azgo) = 1,Vs e B
ZBgn) = 0,Vs € 5_g

ng) = 0,

VSES\S:()

2P — max{zsles P(s,a,s') - :1327,1)\& c Act(s)}, Vs € S\ S—

TU
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Value Iteration

a:go) = 1,Vs e B

W = 0,Vs € S

29 = 0, Vs e S\ S,
gt = max{zs'es P(s,a,s') - a:é?)\a € Act(s)},Vs € S\ S

. Value iterations computes the probability to satisfy Pymaz/min (M, s = F B) for every state-action
pair

TU
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Value Iteration

a:go) = 1,Vs e B
mgn) = 0,Vs € 5_g
wgo) — O, Vs € S\S:()
) = max{zsles P(s,a,s') - a:é?)\a € Act(s)},Vs € S\ S_
. Value iterations computes the probability to satisfy Pymaz/min (M, s = F B) for every state-action
pair

e Use the intermediate computation for
o Prmi(s a,m) = LycsP(s,a,s) * 2"V
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Probabilistic Shielding

 Limit the probability to reach B by disallowing unsafe actions
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Probabilistic Shielding

 Limit the probability to reach B by disallowing unsafe actions

« We now have:
o Prmaz (g a,n) = YycsP(s,a,s") * xﬁ“‘”
o For a specified safety threshold -~y disallow actions for which: Pr™%* (s, a,n) < =y
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Probabilistic Shielding

 Limit the probability to reach B by disallowing unsafe actions

e We now have:
o Prmaz (g a,n) = YycsP(s,a,s") * xﬁ“‘”
o For a specified safety threshold -~y disallow actions for which: Pr™%* (s, a,n) < =y
o Similary, we can disallow actions for which Prmin (s, a, n) > 7y
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Probabilistic Shielding - Example

« Safety Property: Do not step onto lava within 2 time steps

- Disallow if Pr™"(s,a,2) > 0.05 for (s,a)

VCoOoO~NOTULhAWNREO

m

¢ [x=3
: [x=4
: [x=5
: [x=2
3 |eEB
: [x=4
¢ [x=5
: [x=2
: [x=3
: [x=4
2 |ES
: [x=1
: [x=1
2 |l
¢ [x=1

odel state:
[x=1
[x=2
[x=3
[x=4
[x=5
[x=2
[x=3
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Pre-Safety-Shield with absolute comparison (gamma = 0.050000):

choice(s) [<value>: (<action {action label})>]:
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: (0 {}
: (0 {}
: (0 {}
: (0 {}
: (0 {}
.0318:
.0318:
.0318:
.0318:
.0009:
.0009:
.0009:
.0009:

)
)
)
)
)
(2 {north})
(2 {north})
(2 {north})
(1 {north})
(0 {east});
(0 {east});
(0 {east});
(0 {west});
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(0 ieast});

: (0 {east});
: (0 {east});
: (0 {west});
: (0 {east});
: (0 {east});
: (0 {east});
: (0 {west});
.0318: (1 {north}
.0009: (0 {east})

(0 {east});
(0 {east});

[cNoRTRESdoNoNoNoNoNoNoNo]

0.0009: (1 {west});
0.0009: (1 {west});
0.0009: (1 {west});
0.0009: (1 {north});

(1 {west});
(1 {west});
(1 {west});
(1 {north});
(1 {west});
(1 {west});
(1 {west});
(1 {south})

0.0009: (1 {north});

(1 {north});

: (1 {south})

0.0009: (2 {north});
0.0009: (2 {north});
0.0009: (2 {north});
0.0273: (2 {south})

0: (2 {north}); 0: (3 {south})
0: (2 {north}); 0: (3 {south})
0: (2 {north}); 0: (3 {south})
0: (2 {south})

0: (2 {south})

0: (2 {south})

0: (2 {south})

0.0273: (2 {south})
0: (2 {south})

0.0273: (3 {south})
0.0273: (3 {south})
0.0273: (3 {south})



