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Communication Protocol with Faults
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2D RobotGrid Random Walk
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Part I
PCTL and Markov Chains
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Recap: Reachability Probabilities
Computing 

We have used a linear equation solver to compute the probability of satisfying the reachability
problem.

Pr(M, ⊨ FB)s0

10



Probabilistic Computation Tree Logic
Probabilistic Computation Tree Logic [PCTL] is the probabilistic extension of CTL.

Boolean state representation.

 are replaced by , where 
The interpretation for each state : 

∀ and ∃ (φ)PrJ J ⊆ [0, 1]
s ∈ S Pr(M, s ⊨ φ) ∈ J
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PCTL - Syntax
Subdivision into state ( )- and path-formulae ( ):

where  and .

Φ φ

Φ ::=

∣

∣

∣

∣

 true

 a

  ∧Φ1 Φ2

 ¬Φ

  (φ)Pr
J

φ ::=

∣

∣

 XΦ

   U Φ1 Φ2

   U  Φ1  ≤n Φ2

a ∈ AP J ⊆ [0, 1]
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PCTL - Satisfaction Relation
For  PCTL state formulae, and  a PCTL path formula.

For state formulae, we have:

s ∈ S, Φ, Ψ φ

s ⊨ a 

s ⊨ ¬Φ 

s ⊨ Φ ∧ Ψ 

s ⊨ (φ) Pr
J

iff a ∈ L(s),

iff s ⊭ Φ,

iff s ⊨ Φ and s ⊨ Ψ,

iff Pr(s ⊨ φ) ∈ J
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PCTL - Satisfaction Relation
For  PCTL state formulae, and  a PCTL path formula.

For state formulae, we have:

For paths  , we have:

s ∈ S, Φ, Ψ φ

s ⊨ a 

s ⊨ ¬Φ 

s ⊨ Φ ∧ Ψ 

s ⊨ (φ) Pr
J

iff a ∈ L(s),

iff s ⊭ Φ,

iff s ⊨ Φ and s ⊨ Ψ,

iff Pr(s ⊨ φ) ∈ J

π ∈ M

π ⊨ Xφ

π ⊨ φ U ψ

π ⊨ φ U ψ ≤n

iff π[1] ⊨ φ

iff ∃j ≥ 0. (π[j] ⊨ ψ ∧ (∀0 ≤ k < j.  π[k] ⊨ φ)

iff ∃0 ≤ j ≤ n.  (π[j] ⊨ ψ ∧ (∀0 ≤ k < j.  π[k] ⊨ φ)
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Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy

How to compute  ?Pr(M, ⊨ C U B)s0
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Constrained Reachability
We are interested in Pr(M, ⊨ C U B)s0
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Constrained Reachability
We are interested in 

Modify Step 1) of our algorithm:

1) Identify three disjoint subsets of :

: The set of states with a probability of 1 to satisfy .

: The set of states with a probability of 0 to satisfy .

: The set of states with a probability  to satisfy .

Pr(M, ⊨ C U B)s0

S

S=1 C U B

S=0 C U B

S? ∈ (0, 1) C U B
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Constrained Reachability
: The set of states with a probability of 0 to satisfy .S=0 C U B
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Constrained Reachability
: The set of states with a probability of 0 to satisfy .

 iff 
S=0 C U B

Pr(M, ⊨ C U B) = 0s0 , ⊭ ∃(C U B)GM s0
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Constrained Reachability
: The set of states with a probability of 0 to satisfy .

 iff 

: The set of states with a probability of 1 to satisfy .

S=0 C U B
Pr(M, ⊨ C U B) = 0s0 , ⊭ ∃(C U B)GM s0

S=1 C U B
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Constrained Reachability
: The set of states with a probability of 0 to satisfy .

 iff 

: The set of states with a probability of 1 to satisfy .
Modify  to  by making states in  absorbing, i.e.

S=0 C U B
Pr(M, ⊨ C U B) = 0s0 , ⊭ ∃(C U B)GM s0

S=1 C U B
M M

′
B ∪ S ∖ (C ∪ B)

(s, t) =P
′

⎧

⎩
⎨

1
0

P(s, t)

s = t and s ∈ B ∪ S ∖ (C ∪ B)
s ≠ t and s ∈ B ∪ S ∖ (C ∪ B)

otherwise.
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Constrained Reachability
: The set of states with a probability of 0 to satisfy .

 iff 

: The set of states with a probability of 1 to satisfy .
Modify  to  by making states in  absorbing, i.e.

Compute 
 ... set of states that can reach  through a finite path fragment

S=0 C U B
Pr(M, ⊨ C U B) = 0s0 , ⊭ ∃(C U B)GM s0

S=1 C U B
M M

′
B ∪ S ∖ (C ∪ B)

(s, t) =P
′

⎧

⎩
⎨

1
0

P(s, t)

s = t and s ∈ B ∪ S ∖ (C ∪ B)
s ≠ t and s ∈ B ∪ S ∖ (C ∪ B)

otherwise.
= S ∖ Pr (S ∖ Pr (B))S=1 e∗ e∗

Pre ∗ (A) A
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Constrained Reachability
: The set of states with a probability of 0 to satisfy .

 iff 

: The set of states with a probability of 1 to satisfy .
Modify  to  by making states in  absorbing, i.e.

Compute 
 ... set of states that can reach  through a finite path fragment

: The set of states with a probability  to satisfy .

S=0 C U B
Pr(M, ⊨ C U B) = 0s0 , ⊭ ∃(C U B)GM s0

S=1 C U B
M M

′
B ∪ S ∖ (C ∪ B)

(s, t) =P
′

⎧

⎩
⎨

1
0

P(s, t)

s = t and s ∈ B ∪ S ∖ (C ∪ B)
s ≠ t and s ∈ B ∪ S ∖ (C ∪ B)

otherwise.
= S ∖ Pr (S ∖ Pr (B))S=1 e∗ e∗

Pre ∗ (A) A

S? ∈ (0, 1) C U B
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Constrained Reachability
: The set of states with a probability of 0 to satisfy .

 iff 

: The set of states with a probability of 1 to satisfy .
Modify  to  by making states in  absorbing, i.e.

Compute 
 ... set of states that can reach  through a finite path fragment

: The set of states with a probability  to satisfy .
No changes  solve the linear equation system ✓

S=0 C U B
Pr(M, ⊨ C U B) = 0s0 , ⊭ ∃(C U B)GM s0

S=1 C U B
M M

′
B ∪ S ∖ (C ∪ B)

(s, t) =P
′

⎧

⎩
⎨

1
0

P(s, t)

s = t and s ∈ B ∪ S ∖ (C ∪ B)
s ≠ t and s ∈ B ∪ S ∖ (C ∪ B)

otherwise.
= S ∖ Pr (S ∖ Pr (B))S=1 e∗ e∗

Pre ∗ (A) A

S? ∈ (0, 1) C U B
→
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Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy ✓

How to compute  ?
We solve a linear equation system. ✓

How to compute  ?

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ XB)s0
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Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy ✓

How to compute  ?
We solve a linear equation system. ✓

How to compute  ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ XB)s0
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Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy ✓

How to compute  ?
We solve a linear equation system. ✓

How to compute  ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

How can we compute bounded reachability:  ?

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ XB)s0

Pr(M, ⊨ B)s0 F
<=k

27



Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy ✓

How to compute  ?
We solve a linear equation system. ✓

How to compute  ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

How can we compute bounded reachability:  ?
Compute , with states in  absorbing

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ XB)s0

Pr(M, ⊨ B)s0 F
<=k

=M
′

MB B

28



Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy ✓

How to compute  ?
We solve a linear equation system. ✓

How to compute  ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

How can we compute bounded reachability:  ?
Compute , with states in  absorbing
Again: Simple Matrix-Vector-Multiplication(s)! ✓

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ XB)s0

Pr(M, ⊨ B)s0 F
<=k

=M
′

MB B
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Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy ✓

How to compute  ?
We solve a linear equation system. ✓

How to compute  ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

How can we compute bounded reachability:  ?
Compute , with states in  absorbing
Again: Simple Matrix-Vector-Multiplication(s)! ✓

How can we compute bounded constrained reachability:  ?

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ XB)s0

Pr(M, ⊨ B)s0 F
<=k

=M
′

MB B

Pr(M, ⊨ C U B)s0  <=k
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Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy ✓

How to compute  ?
We solve a linear equation system. ✓

How to compute  ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

How can we compute bounded reachability:  ?
Compute , with states in  absorbing
Again: Simple Matrix-Vector-Multiplication(s)! ✓

How can we compute bounded constrained reachability:  ?

Compute , with states in  absorbing

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ XB)s0

Pr(M, ⊨ B)s0 F
<=k

=M
′

MB B

Pr(M, ⊨ C U B)s0  <=k

=M
′

MB∪(S∖(C∪B)) B ∪ S ∖ (C ∪ B)
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Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy ✓

How to compute  ?
We solve a linear equation system. ✓

How to compute  ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

How can we compute bounded reachability:  ?
Compute , with states in  absorbing
Again: Simple Matrix-Vector-Multiplication(s)! ✓

How can we compute bounded constrained reachability:  ?

Compute , with states in  absorbing

Compute bounded reachability in :  ✓

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ XB)s0

Pr(M, ⊨ B)s0 F
<=k

=M
′

MB B

Pr(M, ⊨ C U B)s0  <=k

=M
′

MB∪(S∖(C∪B)) B ∪ S ∖ (C ∪ B)

M
′

Pr( , ⊨ B)M
′

s0 F
<=k
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Model Checking a PCTL Formula
We know how to

check the propositional part ✓
compute  ✓
compute  ✓

compute bounded constrained reachability:  ✓

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ Xa)s0

Pr(M, ⊨ C U B)s0  <=k
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Model Checking a PCTL Formula
We know how to

check the propositional part ✓
compute  ✓
compute  ✓

compute bounded constrained reachability:  ✓

With that, we can answer :

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ Xa)s0

Pr(M, ⊨ C U B)s0  <=k

Pr(s ⊨ φ) ∈ J
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Model Checking a PCTL Formula
We know how to

check the propositional part ✓
compute  ✓
compute  ✓

compute bounded constrained reachability:  ✓

With that, we can answer :

To check a PCTL formula  we traverse the parse tree

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ Xa)s0

Pr(M, ⊨ C U B)s0  <=k

Pr(s ⊨ φ) ∈ J

Φ
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Communication Protocol

States where the message has not yet been lost can ensure 0.99 probability of sending the message
within 6 time steps and after the message has been lost, there is a probability of 0.45 of successfully
sending the message within the next try:

(\"lost\" | \"gone\") | P>=0.99 [F<=6 \"delivered\"] & (!\"lost\") | P>=0.45 [ F<=2 \"delivered\"]

36



Communication Protocol

States where the message has not yet been lost can ensure 0.99 probability of sending the message
within 6 time steps and after the message has been lost, there is a probability of 0.45 of successfully
sending the message within the next try:

(\"lost\" | \"gone\") | P>=0.99 [F<=6 \"delivered\"] & (!\"lost\") | P>=0.45 [ F<=2 \"delivered\"]

If the probability of completely losing the message within 2 time steps is greater or equal to 0.1 then the
probability of eventually delivering the message is smaller than 0.9
!(P>=0.1 [F<=2 \"gone\"] ) | P<0.9 [F \"delivered\"]
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Model Zoo
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Model Zoo
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Part II
Markov Decision Processes and Reachability Probabilities
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Markov Decision Processes

 a set of states and initial state ,

 a set of actions,

, s.t.

 set of atomic states and  a labelling function.

Markov Decision Process M = (S, Act,P, , AP , L)s0

S s0

Act

P : S × Act × S → [0, 1]

P(s, a, ) = 1 ∀(s, a) ∈ S × Act∑
∈Ss′

s
′

AP L : S → 2AP

41



Markov Decision Processes

 a set of states and initial state ,

 a set of actions,

, s.t.

 set of atomic states and  a labelling function.

The decision  defines the distribution over the next state.

Markov Decision Process M = (S, Act,P, , AP , L)s0

S s0

Act

P : S × Act × S → [0, 1]

P(s, a, ) = 1 ∀(s, a) ∈ S × Act∑
∈Ss′

s
′

AP L : S → 2AP

a

42



Markov Decision Processes in Code and Memory
Commands:
[moveNorth] x<HEIGHT -> 0.9: (x'=x+1) + 0.1: true;
[moveEast]  y<WIDTH  -> 0.9: (y'=y-1) + 0.1: true;
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Markov Decision Processes in Code and Memory
Commands:
[moveNorth] x<HEIGHT -> 0.9: (x'=x+1) + 0.1: true;
[moveEast]  y<WIDTH  -> 0.9: (y'=y-1) + 0.1: true;

Guards do not need to be mutually exclusive anymore!
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Markov Decision Processes in Code and Memory
Commands:
[moveNorth] x<HEIGHT -> 0.9: (x'=x+1) + 0.1: true;
[moveEast]  y<WIDTH  -> 0.9: (y'=y-1) + 0.1: true;

Guards do not need to be mutually exclusive anymore!

⎡

⎣

⎢
⎢
⎢
⎢⎢
⎢
⎢⎢

1

0

0

1

10

5

10

0

1

9

10

0

0

0

0

1

10

9

10

5

10

⎤

⎦

⎥
⎥
⎥
⎥⎥
⎥
⎥⎥

45



Coding Example
mdp

...

module controllable_robot

endmodule
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Paths in an MDP
We extend our definition of a path for an MDP  as such:

, s.t. 

M

π = … ∈ (S × Acts0a0s1a1s2a2 )ω
P( , , ) > 0, ∀i ≥ 0si ai si+1
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Paths in an MDP
We extend our definition of a path for an MDP  as such:

, s.t. 

Reasoning about events in an MDP resorts to the resolution of any non-determinism
This is done by the use of schedulers (or: strategies/policies/adversaries).

M

π = … ∈ (S × Acts0a0s1a1s2a2 )ω
P( , , ) > 0, ∀i ≥ 0si ai si+1
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Schedulers
A scheduler is a function that given the history of the current path returns a distribution over
actions to be taken:

σ : × S → Distr(Act)S
∗
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Schedulers
A scheduler is a function that given the history of the current path returns a distribution over
actions to be taken:

For simple properties such as unbounded reachability so-called memoryless deterministic scheduler
suffice:

σ : × S → Distr(Act)S
∗

σ : S → Act
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Schedulers
A scheduler is a function that given the history of the current path returns a distribution over
actions to be taken:

For simple properties such as unbounded reachability so-called memoryless deterministic scheduler
suffice:

This means that the scheduler  fixes an actions for each state.

σ : × S → Distr(Act)S
∗

σ : S → Act

σ
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Schedulers
A scheduler is a function that given the history of the current path returns a distribution over
actions to be taken:

For simple properties such as unbounded reachability so-called memoryless deterministic scheduler
suffice:

This means that the scheduler  fixes an actions for each state.
We can then define the probability of eventually reaching under sched

σ : × S → Distr(Act)S
∗

σ : S → Act

σ

P (M, s ⊨ FB)r
σ
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Induced Markov Chain
Consider an MDP  and a memoryless deterministic scheduler:M

σ : S → Act
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Induced Markov Chain
Consider an MDP  and a memoryless deterministic scheduler:M

σ : S → Act

s0

s1

s1

↦  β

↦  α

↦  α

⎡

⎣

⎢
⎢
⎢⎢⎢
⎢⎢
⎢

1

0

0

1

10

5

10

0

1

9

10

0

0

0

0

1

10

9

10

5

10

⎤

⎦

⎥
⎥
⎥⎥⎥
⎥⎥
⎥
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Reachability in MDPs
We have (re-)introduced nondeterminism into probabilistic models
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Reachability in MDPs
We have (re-)introduced nondeterminism into probabilistic models

Satisfaction of  depends on , which can eitherP (M, s ⊨ FB)r
σ

σ
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Reachability in MDPs
We have (re-)introduced nondeterminism into probabilistic models

Satisfaction of  depends on , which can either
maximize or
minimize the probability to satisfy 

P (M, s ⊨ FB)r
σ

σ

FB
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Reachability in MDPs
We have (re-)introduced nondeterminism into probabilistic models

Satisfaction of  depends on , which can either
maximize or
minimize the probability to satisfy 

We are therefore interested in a worst-case analysis ranging over all schedulers 

P (M, s ⊨ FB)r
σ

σ

FB

σ
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Reachability in MDPs
We have (re-)introduced nondeterminism into probabilistic models

Satisfaction of  depends on , which can either
maximize or
minimize the probability to satisfy 

We are therefore interested in a worst-case analysis ranging over all schedulers 

Formally, we have:
 and

P (M, s ⊨ FB)rσ σ

FB

σ

P (M, s ⊨ FB) = su P (M, s ⊨ FB)rmax pσ rσ

P (M, s ⊨ FB) = in P (M, s ⊨ FB)rmin fσ rσ
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Example: Maximal Probability of Reaching 

Assume we are interested in the probability of staying safe:

B

P (M, s ⊨ G¬B)r
σ
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Example: Maximal Probability of Reaching 

Assume we are interested in the probability of staying safe:

Worst-case analysis: What is the maximum probability of ever reaching ?

B

P (M, s ⊨ G¬B)r
σ

B
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Example: Maximal Probability of Reaching 

Assume we are interested in the probability of staying safe:

Worst-case analysis: What is the maximum probability of ever reaching ?

Compute 

B

P (M, s ⊨ G¬B)r
σ

B

P (M, s ⊨ FB)r
max
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Example: Maximal Probability of Reaching 

Assume we are interested in the probability of staying safe:

Worst-case analysis: What is the maximum probability of ever reaching ?

Compute 

If  then 
Regardless of the resolution of nondeterminism, the probability of staying safe is 

B

P (M, s ⊨ G¬B)r
σ

B

P (M, s ⊨ FB)r
max

P (M, s ⊨ FB) ≤ εr
max

P (M, s ⊨ G¬B) ≥ 1 − εr
σ

≥ 1 − ε

63



Computing Maximum Reachability Probabilities in MDPs
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Computing Maximum Reachability Probabilities in MDPs
We want to compute  using the following equation system:( ) = P (M, s ⊨ FB)xs r

max
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Computing Maximum Reachability Probabilities in MDPs
We want to compute  using the following equation system:

If : 

( ) = P (M, s ⊨ FB)xs r
max

s ∈ B = 1xs
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Computing Maximum Reachability Probabilities in MDPs
We want to compute  using the following equation system:

If : 

If : 

( ) = P (M, s ⊨ FB)xs r
max

s ∈ B = 1xs

s ⊭ ∃FB = 0xs
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Computing Maximum Reachability Probabilities in MDPs
We want to compute  using the following equation system:

If : 

If : 

If  and 

( ) = P (M, s ⊨ FB)xs rmax

s ∈ B = 1xs

s ⊭ ∃FB = 0xs

s ∉ B s ⊨ ∃FB

= max{ P(s, a, ) ⋅ |a ∈ Act(s)}xs ∑ ∈Ss′ s′ xs′

68



Computing Maximum Reachability Probabilities in MDPs
We want to compute  using the following equation system:

If : 

If : 

If  and 

Such that  is minimal.

( ) = P (M, s ⊨ FB)xs rmax

s ∈ B = 1xs

s ⊭ ∃FB = 0xs

s ∉ B s ⊨ ∃FB

= max{ P(s, a, ) ⋅ |a ∈ Act(s)}xs ∑ ∈Ss′ s′ xs′

∑
x∈S

xs
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Linear Program - Method I
This can be expressed as a linear program:

Minimize , such that:
,

, if ,
, if ,

, for all actions , if  and 

∑
x∈S

xs

0 ≤ ≤ 1xs

= 1xs s ∈ B

= 0xs s ⊭ ∃FB

≥ P(s, a, ) ⋅xs ∑ ∈Ss′ s′ xs′ a ∈ Act(s) s ∉ B s ⊨ ∃FB
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Value Iteration - Method II
Approximative method:

Compute the probability to reach  after  steps
Start with  and stop after some termination criterion is met

B n

n = 0
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Value Iteration - Method II
Approximative method:

Compute the probability to reach  after  steps
Start with  and stop after some termination criterion is met

More specifically:

B n

n = 0

x
(0)
s

x
(n)
s

x
(0)
s

x
(n+1)
s

=  1, ∀s ∈ B

=  0, ∀s ∈ S=0

=  0,

=   max{ P(s, a, ) ⋅ |a ∈ Act(s)},∑
∈Ss′

s
′

x
(n)
s′

 ∀s ∈ S ∖ S=0

 ∀s ∈ S ∖ S=0
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Value Iteration - Method II
Approximative method:

Compute the probability to reach  after  steps
Start with  and stop after some termination criterion is met

More specifically:

Terminate as soon as 

B n

n = 0

x
(0)
s

x
(n)
s

x
(0)
s

x
(n+1)
s

=  1, ∀s ∈ B

=  0, ∀s ∈ S=0

=  0,

=   max{ P(s, a, ) ⋅ |a ∈ Act(s)},∑
∈Ss′

s
′

x
(n)
s′

 ∀s ∈ S ∖ S=0

 ∀s ∈ S ∖ S=0

| − | < εmax ∈Sxs
x

(n+1)
s x

(n)
s
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Value Iteration - Method II
Approximative method:

Compute the probability to reach  after  steps
Start with  and stop after some termination criterion is met

More specifically:

Terminate as soon as 

More sophisticated methods use other means of checking for convergence

B n

n = 0

x
(0)
s

x
(n)
s

x
(0)
s

x
(n+1)
s

=  1, ∀s ∈ B

=  0, ∀s ∈ S=0

=  0,

=   max{ P(s, a, ) ⋅ |a ∈ Act(s)},∑
∈Ss′

s
′

x
(n)
s′

 ∀s ∈ S ∖ S=0
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Part III
Probabilistic Shielding
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Safety in Reinforcement Learning
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Probabilistic Shielding
We are given an MDP  and a set of unsafe states M B
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Probabilistic Shielding
We are given an MDP  and a set of unsafe states 

Idea

Limit the probability to reach  by disallowing unsafe actions

M B

B
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Probabilistic Shielding
We are given an MDP  and a set of unsafe states 

Idea

Limit the probability to reach  by disallowing unsafe actions

How to compute?

M B

B
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Value Iteration
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Value Iteration
x

(0)
s

x
(n)
s

x
(0)
s

x
(n+1)
s

=  1, ∀s ∈ B

=  0, ∀s ∈ S=0

=  0,

=   max{ P(s, a, ) ⋅ |a ∈ Act(s)},∑
∈Ss′

s
′

x
(n)
s′

 ∀s ∈ S ∖ S=0

 ∀s ∈ S ∖ S=0

81



Value Iteration

Value iterations computes the probability to satisfy  for every state-action
pair
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Value Iteration

Value iterations computes the probability to satisfy  for every state-action
pair

Use the intermediate computation for

x
(0)
s

x
(n)
s

x
(0)
s

x
(n+1)
s

=  1, ∀s ∈ B

=  0, ∀s ∈ S=0

=  0,

=   max{ P(s, a, ) ⋅ |a ∈ Act(s)},∑
∈Ss′

s
′

x
(n)
s′

 ∀s ∈ S ∖ S=0

 ∀s ∈ S ∖ S=0

P (M, s ⊨ FB)rmax/min

P (s, a, n) = P(s, a, ) ∗rmax Σ ∈Ss′ s′ x
(n−1)
s

83



Probabilistic Shielding
Limit the probability to reach  by disallowing unsafe actionsB

84



Probabilistic Shielding
Limit the probability to reach  by disallowing unsafe actions

We now have:

For a specified safety threshold  disallow actions for which: 

B
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s

γ P (s, a, n) < γrmax
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Probabilistic Shielding
Limit the probability to reach  by disallowing unsafe actions

We now have:

For a specified safety threshold  disallow actions for which: 

Similary, we can disallow actions for which 

B

P (s, a, n) = P(s, a, ) ∗rmax Σ ∈Ss′ s′ x
(n−1)
s

γ P (s, a, n) < γrmax

P (s, a, n) > γrmin
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Probabilistic Shielding - Example
Safety Property: Do not step onto lava within 2 time steps

Disallow if  for 

Pre-Safety-Shield with absolute comparison (gamma = 0.050000):
      model state:    choice(s) [<value>: (<action {action label})>]:
    0: [x=1    & y=1]    0: (0 {})
    1: [x=2    & y=1]    0: (0 {})
    2: [x=3    & y=1]    0: (0 {})
    3: [x=4    & y=1]    0: (0 {})
    4: [x=5    & y=1]    0: (0 {})
    5: [x=2    & y=2]    0.0318: (2 {north})
    6: [x=3    & y=2]    0.0318: (2 {north})
    7: [x=4    & y=2]    0.0318: (2 {north})
    8: [x=5    & y=2]    0.0318: (1 {north})
    9: [x=2    & y=3]    0.0009: (0 {east});    0.0009: (1 {west});    0.0009: (2 {north});    0.0273: (3 {south})
   10: [x=3    & y=3]    0.0009: (0 {east});    0.0009: (1 {west});    0.0009: (2 {north});    0.0273: (3 {south})
   11: [x=4    & y=3]    0.0009: (0 {east});    0.0009: (1 {west});    0.0009: (2 {north});    0.0273: (3 {south})
   12: [x=5    & y=3]    0.0009: (0 {west});    0.0009: (1 {north});    0.0273: (2 {south})
   13: [x=2    & y=4]    0: (0 {east});    0: (1 {west});    0: (2 {north});    0: (3 {south})
   14: [x=3    & y=4]    0: (0 {east});    0: (1 {west});    0: (2 {north});    0: (3 {south})
   15: [x=4    & y=4]    0: (0 {east});    0: (1 {west});    0: (2 {north});    0: (3 {south})
   16: [x=5    & y=4]    0: (0 {west});    0: (1 {north});    0: (2 {south})
   17: [x=2    & y=5]    0: (0 {east});    0: (1 {west});    0: (2 {south})
   18: [x=3    & y=5]    0: (0 {east});    0: (1 {west});    0: (2 {south})
   19: [x=4    & y=5]    0: (0 {east});    0: (1 {west});    0: (2 {south})
   20: [x=5    & y=5]    0: (0 {west});    0: (1 {south})
   21: [x=1    & y=2]    0.0318: (1 {north})
   22: [x=1    & y=3]    0.0009: (0 {east});    0.0009: (1 {north});    0.0273: (2 {south})
   23: [x=1    & y=4]    0: (0 {east});    0: (1 {north});    0: (2 {south})
   24: [x=1    & y=5]    0: (0 {east});    0: (1 {south})

P (s,a, 2) > 0.05r
min (s,a)
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