
Probabilistic Model Checking
Stefan Pranger

03. 06. 2025

Outline
Recap & Homework

2

Outline
Recap & Homework

Part I: PCTL and Markov Chains

3

Outline
Recap & Homework

Part I: PCTL and Markov Chains

Part II: Markov Decision Processes and Reachability Probabilities

4

Outline
Recap & Homework

Part I: PCTL and Markov Chains

Part II: Markov Decision Processes and Reachability Probabilities

Part III: Probabilistic Shielding

5

Communication Protocol with Faults

6

Communication Protocol with Faults

⋅ x = () → x = ()
⎡

⎣

⎢⎢

1

0

0

−1

1

−
1

2

0

−
1

10

1

⎤

⎦

⎥⎥

0

9

10

0

18

19

18

19

9

19

7

2D RobotGrid Random Walk

8

Part I
PCTL and Markov Chains

9

Recap: Reachability Probabilities
Computing

We have used a linear equation solver to compute the probability of satisfying the reachability
problem.

Pr(M, ⊨ FB)s0

10

Probabilistic Computation Tree Logic
Probabilistic Computation Tree Logic [PCTL] is the probabilistic extension of CTL.

Boolean state representation.

 are replaced by , where
The interpretation for each state :

∀ and ∃ (φ)PrJ J ⊆ [0, 1]
s ∈ S Pr(M, s ⊨ φ) ∈ J

11

PCTL - Syntax
Subdivision into state ()- and path-formulae ():

where and .

Φ φ

Φ ::=

∣

∣

∣

∣

 true

 a

 ∧Φ1 Φ2

 ¬Φ

 (φ)Pr
J

φ ::=

∣

∣

 XΦ

 U Φ1 Φ2

 U Φ1 ≤n Φ2

a ∈ AP J ⊆ [0, 1]

12

PCTL - Satisfaction Relation
For PCTL state formulae, and a PCTL path formula.

For state formulae, we have:

s ∈ S, Φ, Ψ φ

s ⊨ a

s ⊨ ¬Φ

s ⊨ Φ ∧ Ψ

s ⊨ (φ) Pr
J

iff a ∈ L(s),

iff s ⊭ Φ,

iff s ⊨ Φ and s ⊨ Ψ,

iff Pr(s ⊨ φ) ∈ J

13

PCTL - Satisfaction Relation
For PCTL state formulae, and a PCTL path formula.

For state formulae, we have:

For paths , we have:

s ∈ S, Φ, Ψ φ

s ⊨ a

s ⊨ ¬Φ

s ⊨ Φ ∧ Ψ

s ⊨ (φ) Pr
J

iff a ∈ L(s),

iff s ⊭ Φ,

iff s ⊨ Φ and s ⊨ Ψ,

iff Pr(s ⊨ φ) ∈ J

π ∈ M

π ⊨ Xφ

π ⊨ φ U ψ

π ⊨ φ U ψ ≤n

iff π[1] ⊨ φ

iff ∃j ≥ 0. (π[j] ⊨ ψ ∧ (∀0 ≤ k < j. π[k] ⊨ φ)

iff ∃0 ≤ j ≤ n. (π[j] ⊨ ψ ∧ (∀0 ≤ k < j. π[k] ⊨ φ)

14

Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy

How to compute ?Pr(M, ⊨ C U B)s0

15

Constrained Reachability
We are interested in Pr(M, ⊨ C U B)s0

16

Constrained Reachability
We are interested in

Modify Step 1) of our algorithm:

1) Identify three disjoint subsets of :

: The set of states with a probability of 1 to satisfy .

: The set of states with a probability of 0 to satisfy .

: The set of states with a probability to satisfy .

Pr(M, ⊨ C U B)s0

S

S=1 C U B

S=0 C U B

S? ∈ (0, 1) C U B

17

Constrained Reachability
: The set of states with a probability of 0 to satisfy .S=0 C U B

18

Constrained Reachability
: The set of states with a probability of 0 to satisfy .

 iff
S=0 C U B

Pr(M, ⊨ C U B) = 0s0 , ⊭ ∃(C U B)GM s0

19

Constrained Reachability
: The set of states with a probability of 0 to satisfy .

 iff

: The set of states with a probability of 1 to satisfy .

S=0 C U B
Pr(M, ⊨ C U B) = 0s0 , ⊭ ∃(C U B)GM s0

S=1 C U B

20

Constrained Reachability
: The set of states with a probability of 0 to satisfy .

 iff

: The set of states with a probability of 1 to satisfy .
Modify to by making states in absorbing, i.e.

S=0 C U B
Pr(M, ⊨ C U B) = 0s0 , ⊭ ∃(C U B)GM s0

S=1 C U B
M M

′
B ∪ S ∖ (C ∪ B)

(s, t) =P
′

⎧

⎩
⎨

1
0

P(s, t)

s = t and s ∈ B ∪ S ∖ (C ∪ B)
s ≠ t and s ∈ B ∪ S ∖ (C ∪ B)

otherwise.

21

Constrained Reachability
: The set of states with a probability of 0 to satisfy .

 iff

: The set of states with a probability of 1 to satisfy .
Modify to by making states in absorbing, i.e.

Compute
 ... set of states that can reach through a finite path fragment

S=0 C U B
Pr(M, ⊨ C U B) = 0s0 , ⊭ ∃(C U B)GM s0

S=1 C U B
M M

′
B ∪ S ∖ (C ∪ B)

(s, t) =P
′

⎧

⎩
⎨

1
0

P(s, t)

s = t and s ∈ B ∪ S ∖ (C ∪ B)
s ≠ t and s ∈ B ∪ S ∖ (C ∪ B)

otherwise.
= S ∖ Pr (S ∖ Pr (B))S=1 e∗ e∗

Pre ∗ (A) A

22

Constrained Reachability
: The set of states with a probability of 0 to satisfy .

 iff

: The set of states with a probability of 1 to satisfy .
Modify to by making states in absorbing, i.e.

Compute
 ... set of states that can reach through a finite path fragment

: The set of states with a probability to satisfy .

S=0 C U B
Pr(M, ⊨ C U B) = 0s0 , ⊭ ∃(C U B)GM s0

S=1 C U B
M M

′
B ∪ S ∖ (C ∪ B)

(s, t) =P
′

⎧

⎩
⎨

1
0

P(s, t)

s = t and s ∈ B ∪ S ∖ (C ∪ B)
s ≠ t and s ∈ B ∪ S ∖ (C ∪ B)

otherwise.
= S ∖ Pr (S ∖ Pr (B))S=1 e∗ e∗

Pre ∗ (A) A

S? ∈ (0, 1) C U B

23

Constrained Reachability
: The set of states with a probability of 0 to satisfy .

 iff

: The set of states with a probability of 1 to satisfy .
Modify to by making states in absorbing, i.e.

Compute
 ... set of states that can reach through a finite path fragment

: The set of states with a probability to satisfy .
No changes solve the linear equation system ✓

S=0 C U B
Pr(M, ⊨ C U B) = 0s0 , ⊭ ∃(C U B)GM s0

S=1 C U B
M M

′
B ∪ S ∖ (C ∪ B)

(s, t) =P
′

⎧

⎩
⎨

1
0

P(s, t)

s = t and s ∈ B ∪ S ∖ (C ∪ B)
s ≠ t and s ∈ B ∪ S ∖ (C ∪ B)

otherwise.
= S ∖ Pr (S ∖ Pr (B))S=1 e∗ e∗

Pre ∗ (A) A

S? ∈ (0, 1) C U B
→

24

Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy ✓

How to compute ?
We solve a linear equation system. ✓

How to compute ?

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ XB)s0

25

Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy ✓

How to compute ?
We solve a linear equation system. ✓

How to compute ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ XB)s0

26

Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy ✓

How to compute ?
We solve a linear equation system. ✓

How to compute ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

How can we compute bounded reachability: ?

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ XB)s0

Pr(M, ⊨ B)s0 F
<=k

27

Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy ✓

How to compute ?
We solve a linear equation system. ✓

How to compute ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

How can we compute bounded reachability: ?
Compute , with states in absorbing

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ XB)s0

Pr(M, ⊨ B)s0 F
<=k

=M
′

MB B

28

Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy ✓

How to compute ?
We solve a linear equation system. ✓

How to compute ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

How can we compute bounded reachability: ?
Compute , with states in absorbing
Again: Simple Matrix-Vector-Multiplication(s)! ✓

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ XB)s0

Pr(M, ⊨ B)s0 F
<=k

=M
′

MB B

29

Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy ✓

How to compute ?
We solve a linear equation system. ✓

How to compute ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

How can we compute bounded reachability: ?
Compute , with states in absorbing
Again: Simple Matrix-Vector-Multiplication(s)! ✓

How can we compute bounded constrained reachability: ?

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ XB)s0

Pr(M, ⊨ B)s0 F
<=k

=M
′

MB B

Pr(M, ⊨ C U B)s0 <=k

30

Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy ✓

How to compute ?
We solve a linear equation system. ✓

How to compute ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

How can we compute bounded reachability: ?
Compute , with states in absorbing
Again: Simple Matrix-Vector-Multiplication(s)! ✓

How can we compute bounded constrained reachability: ?

Compute , with states in absorbing

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ XB)s0

Pr(M, ⊨ B)s0 F
<=k

=M
′

MB B

Pr(M, ⊨ C U B)s0 <=k

=M
′

MB∪(S∖(C∪B)) B ∪ S ∖ (C ∪ B)

31

Model Checking a PCTL Formula
Checking the propositional part of PCTL is easy ✓

How to compute ?
We solve a linear equation system. ✓

How to compute ?
Also easy: Simple Matrix-Vector-Multiplication! ✓

How can we compute bounded reachability: ?
Compute , with states in absorbing
Again: Simple Matrix-Vector-Multiplication(s)! ✓

How can we compute bounded constrained reachability: ?

Compute , with states in absorbing

Compute bounded reachability in : ✓

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ XB)s0

Pr(M, ⊨ B)s0 F
<=k

=M
′

MB B

Pr(M, ⊨ C U B)s0 <=k

=M
′

MB∪(S∖(C∪B)) B ∪ S ∖ (C ∪ B)

M
′

Pr(, ⊨ B)M
′

s0 F
<=k

32

Model Checking a PCTL Formula
We know how to

check the propositional part ✓
compute ✓
compute ✓

compute bounded constrained reachability: ✓

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ Xa)s0

Pr(M, ⊨ C U B)s0 <=k

33

Model Checking a PCTL Formula
We know how to

check the propositional part ✓
compute ✓
compute ✓

compute bounded constrained reachability: ✓

With that, we can answer :

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ Xa)s0

Pr(M, ⊨ C U B)s0 <=k

Pr(s ⊨ φ) ∈ J

34

Model Checking a PCTL Formula
We know how to

check the propositional part ✓
compute ✓
compute ✓

compute bounded constrained reachability: ✓

With that, we can answer :

To check a PCTL formula we traverse the parse tree

Pr(M, ⊨ C U B)s0

Pr(M, ⊨ Xa)s0

Pr(M, ⊨ C U B)s0 <=k

Pr(s ⊨ φ) ∈ J

Φ

35

Communication Protocol

States where the message has not yet been lost can ensure 0.99 probability of sending the message
within 6 time steps and after the message has been lost, there is a probability of 0.45 of successfully
sending the message within the next try:

(\"lost\" | \"gone\") | P>=0.99 [F<=6 \"delivered\"] & (!\"lost\") | P>=0.45 [F<=2 \"delivered\"]

36

Communication Protocol

States where the message has not yet been lost can ensure 0.99 probability of sending the message
within 6 time steps and after the message has been lost, there is a probability of 0.45 of successfully
sending the message within the next try:

(\"lost\" | \"gone\") | P>=0.99 [F<=6 \"delivered\"] & (!\"lost\") | P>=0.45 [F<=2 \"delivered\"]

If the probability of completely losing the message within 2 time steps is greater or equal to 0.1 then the
probability of eventually delivering the message is smaller than 0.9
!(P>=0.1 [F<=2 \"gone\"]) | P<0.9 [F \"delivered\"]

37

Model Zoo

38

Model Zoo

39

Part II
Markov Decision Processes and Reachability Probabilities

40

Markov Decision Processes

 a set of states and initial state ,

 a set of actions,

, s.t.

 set of atomic states and a labelling function.

Markov Decision Process M = (S, Act,P, , AP , L)s0

S s0

Act

P : S × Act × S → [0, 1]

P(s, a,) = 1 ∀(s, a) ∈ S × Act∑
∈Ss′

s
′

AP L : S → 2AP

41

Markov Decision Processes

 a set of states and initial state ,

 a set of actions,

, s.t.

 set of atomic states and a labelling function.

The decision defines the distribution over the next state.

Markov Decision Process M = (S, Act,P, , AP , L)s0

S s0

Act

P : S × Act × S → [0, 1]

P(s, a,) = 1 ∀(s, a) ∈ S × Act∑
∈Ss′

s
′

AP L : S → 2AP

a

42

Markov Decision Processes in Code and Memory
Commands:
[moveNorth] x<HEIGHT -> 0.9: (x'=x+1) + 0.1: true;
[moveEast] y<WIDTH -> 0.9: (y'=y-1) + 0.1: true;

43

Markov Decision Processes in Code and Memory
Commands:
[moveNorth] x<HEIGHT -> 0.9: (x'=x+1) + 0.1: true;
[moveEast] y<WIDTH -> 0.9: (y'=y-1) + 0.1: true;

Guards do not need to be mutually exclusive anymore!

44

Markov Decision Processes in Code and Memory
Commands:
[moveNorth] x<HEIGHT -> 0.9: (x'=x+1) + 0.1: true;
[moveEast] y<WIDTH -> 0.9: (y'=y-1) + 0.1: true;

Guards do not need to be mutually exclusive anymore!

⎡

⎣

⎢
⎢
⎢
⎢⎢
⎢
⎢⎢

1

0

0

1

10

5

10

0

1

9

10

0

0

0

0

1

10

9

10

5

10

⎤

⎦

⎥
⎥
⎥
⎥⎥
⎥
⎥⎥

45

Coding Example
mdp

...

module controllable_robot

endmodule

46

Paths in an MDP
We extend our definition of a path for an MDP as such:

, s.t.

M

π = … ∈ (S × Acts0a0s1a1s2a2)ω
P(, ,) > 0, ∀i ≥ 0si ai si+1

47

Paths in an MDP
We extend our definition of a path for an MDP as such:

, s.t.

Reasoning about events in an MDP resorts to the resolution of any non-determinism
This is done by the use of schedulers (or: strategies/policies/adversaries).

M

π = … ∈ (S × Acts0a0s1a1s2a2)ω
P(, ,) > 0, ∀i ≥ 0si ai si+1

48

Schedulers
A scheduler is a function that given the history of the current path returns a distribution over
actions to be taken:

σ : × S → Distr(Act)S
∗

49

Schedulers
A scheduler is a function that given the history of the current path returns a distribution over
actions to be taken:

For simple properties such as unbounded reachability so-called memoryless deterministic scheduler
suffice:

σ : × S → Distr(Act)S
∗

σ : S → Act

50

Schedulers
A scheduler is a function that given the history of the current path returns a distribution over
actions to be taken:

For simple properties such as unbounded reachability so-called memoryless deterministic scheduler
suffice:

This means that the scheduler fixes an actions for each state.

σ : × S → Distr(Act)S
∗

σ : S → Act

σ

51

Schedulers
A scheduler is a function that given the history of the current path returns a distribution over
actions to be taken:

For simple properties such as unbounded reachability so-called memoryless deterministic scheduler
suffice:

This means that the scheduler fixes an actions for each state.
We can then define the probability of eventually reaching under sched

σ : × S → Distr(Act)S
∗

σ : S → Act

σ

P (M, s ⊨ FB)r
σ

52

Induced Markov Chain
Consider an MDP and a memoryless deterministic scheduler:M

σ : S → Act

53

Induced Markov Chain
Consider an MDP and a memoryless deterministic scheduler:M

σ : S → Act

s0

s1

s1

↦ β

↦ α

↦ α

⎡

⎣

⎢
⎢
⎢⎢⎢
⎢⎢
⎢

1

0

0

1

10

5

10

0

1

9

10

0

0

0

0

1

10

9

10

5

10

⎤

⎦

⎥
⎥
⎥⎥⎥
⎥⎥
⎥

54

Reachability in MDPs
We have (re-)introduced nondeterminism into probabilistic models

55

Reachability in MDPs
We have (re-)introduced nondeterminism into probabilistic models

Satisfaction of depends on , which can eitherP (M, s ⊨ FB)r
σ

σ

56

Reachability in MDPs
We have (re-)introduced nondeterminism into probabilistic models

Satisfaction of depends on , which can either
maximize or
minimize the probability to satisfy

P (M, s ⊨ FB)r
σ

σ

FB

57

Reachability in MDPs
We have (re-)introduced nondeterminism into probabilistic models

Satisfaction of depends on , which can either
maximize or
minimize the probability to satisfy

We are therefore interested in a worst-case analysis ranging over all schedulers

P (M, s ⊨ FB)r
σ

σ

FB

σ

58

Reachability in MDPs
We have (re-)introduced nondeterminism into probabilistic models

Satisfaction of depends on , which can either
maximize or
minimize the probability to satisfy

We are therefore interested in a worst-case analysis ranging over all schedulers

Formally, we have:
 and

P (M, s ⊨ FB)rσ σ

FB

σ

P (M, s ⊨ FB) = su P (M, s ⊨ FB)rmax pσ rσ

P (M, s ⊨ FB) = in P (M, s ⊨ FB)rmin fσ rσ

59

Example: Maximal Probability of Reaching

Assume we are interested in the probability of staying safe:

B

P (M, s ⊨ G¬B)r
σ

60

Example: Maximal Probability of Reaching

Assume we are interested in the probability of staying safe:

Worst-case analysis: What is the maximum probability of ever reaching ?

B

P (M, s ⊨ G¬B)r
σ

B

61

Example: Maximal Probability of Reaching

Assume we are interested in the probability of staying safe:

Worst-case analysis: What is the maximum probability of ever reaching ?

Compute

B

P (M, s ⊨ G¬B)r
σ

B

P (M, s ⊨ FB)r
max

62

Example: Maximal Probability of Reaching

Assume we are interested in the probability of staying safe:

Worst-case analysis: What is the maximum probability of ever reaching ?

Compute

If then
Regardless of the resolution of nondeterminism, the probability of staying safe is

B

P (M, s ⊨ G¬B)r
σ

B

P (M, s ⊨ FB)r
max

P (M, s ⊨ FB) ≤ εr
max

P (M, s ⊨ G¬B) ≥ 1 − εr
σ

≥ 1 − ε

63

Computing Maximum Reachability Probabilities in MDPs

64

Computing Maximum Reachability Probabilities in MDPs
We want to compute using the following equation system:() = P (M, s ⊨ FB)xs r

max

65

Computing Maximum Reachability Probabilities in MDPs
We want to compute using the following equation system:

If :

() = P (M, s ⊨ FB)xs r
max

s ∈ B = 1xs

66

Computing Maximum Reachability Probabilities in MDPs
We want to compute using the following equation system:

If :

If :

() = P (M, s ⊨ FB)xs r
max

s ∈ B = 1xs

s ⊭ ∃FB = 0xs

67

Computing Maximum Reachability Probabilities in MDPs
We want to compute using the following equation system:

If :

If :

If and

() = P (M, s ⊨ FB)xs rmax

s ∈ B = 1xs

s ⊭ ∃FB = 0xs

s ∉ B s ⊨ ∃FB

= max{ P(s, a,) ⋅ |a ∈ Act(s)}xs ∑ ∈Ss′ s′ xs′

68

Computing Maximum Reachability Probabilities in MDPs
We want to compute using the following equation system:

If :

If :

If and

Such that is minimal.

() = P (M, s ⊨ FB)xs rmax

s ∈ B = 1xs

s ⊭ ∃FB = 0xs

s ∉ B s ⊨ ∃FB

= max{ P(s, a,) ⋅ |a ∈ Act(s)}xs ∑ ∈Ss′ s′ xs′

∑
x∈S

xs

69

Linear Program - Method I
This can be expressed as a linear program:

Minimize , such that:
,

, if ,
, if ,

, for all actions , if and

∑
x∈S

xs

0 ≤ ≤ 1xs

= 1xs s ∈ B

= 0xs s ⊭ ∃FB

≥ P(s, a,) ⋅xs ∑ ∈Ss′ s′ xs′ a ∈ Act(s) s ∉ B s ⊨ ∃FB

70

Value Iteration - Method II
Approximative method:

Compute the probability to reach after steps
Start with and stop after some termination criterion is met

B n

n = 0

71

Value Iteration - Method II
Approximative method:

Compute the probability to reach after steps
Start with and stop after some termination criterion is met

More specifically:

B n

n = 0

x
(0)
s

x
(n)
s

x
(0)
s

x
(n+1)
s

= 1, ∀s ∈ B

= 0, ∀s ∈ S=0

= 0,

= max{ P(s, a,) ⋅ |a ∈ Act(s)},∑
∈Ss′

s
′

x
(n)
s′

 ∀s ∈ S ∖ S=0

 ∀s ∈ S ∖ S=0

72

Value Iteration - Method II
Approximative method:

Compute the probability to reach after steps
Start with and stop after some termination criterion is met

More specifically:

Terminate as soon as

B n

n = 0

x
(0)
s

x
(n)
s

x
(0)
s

x
(n+1)
s

= 1, ∀s ∈ B

= 0, ∀s ∈ S=0

= 0,

= max{ P(s, a,) ⋅ |a ∈ Act(s)},∑
∈Ss′

s
′

x
(n)
s′

 ∀s ∈ S ∖ S=0

 ∀s ∈ S ∖ S=0

| − | < εmax ∈Sxs
x

(n+1)
s x

(n)
s

73

Value Iteration - Method II
Approximative method:

Compute the probability to reach after steps
Start with and stop after some termination criterion is met

More specifically:

Terminate as soon as

More sophisticated methods use other means of checking for convergence

B n

n = 0

x
(0)
s

x
(n)
s

x
(0)
s

x
(n+1)
s

= 1, ∀s ∈ B

= 0, ∀s ∈ S=0

= 0,

= max{ P(s, a,) ⋅ |a ∈ Act(s)},∑
∈Ss′

s
′

x
(n)
s′

 ∀s ∈ S ∖ S=0

 ∀s ∈ S ∖ S=0

| − | < εmax ∈Sxs
x

(n+1)
s x

(n)
s

74

Part III
Probabilistic Shielding

75

Safety in Reinforcement Learning

76

Probabilistic Shielding
We are given an MDP and a set of unsafe states M B

77

Probabilistic Shielding
We are given an MDP and a set of unsafe states

Idea

Limit the probability to reach by disallowing unsafe actions

M B

B

78

Probabilistic Shielding
We are given an MDP and a set of unsafe states

Idea

Limit the probability to reach by disallowing unsafe actions

How to compute?

M B

B

79

Value Iteration
x

(0)
s

x
(n)
s

x
(0)
s

x
(n+1)
s

= 1, ∀s ∈ B

= 0, ∀s ∈ S=0

= 0,

= max{ P(s, a,) ⋅ |a ∈ Act(s)},∑
∈Ss′

s
′

x
(n)
s′

 ∀s ∈ S ∖ S=0

 ∀s ∈ S ∖ S=0

80

Value Iteration
x

(0)
s

x
(n)
s

x
(0)
s

x
(n+1)
s

= 1, ∀s ∈ B

= 0, ∀s ∈ S=0

= 0,

= max{ P(s, a,) ⋅ |a ∈ Act(s)},∑
∈Ss′

s
′

x
(n)
s′

 ∀s ∈ S ∖ S=0

 ∀s ∈ S ∖ S=0

81

Value Iteration

Value iterations computes the probability to satisfy for every state-action
pair

x
(0)
s

x
(n)
s

x
(0)
s

x
(n+1)
s

= 1, ∀s ∈ B

= 0, ∀s ∈ S=0

= 0,

= max{ P(s, a,) ⋅ |a ∈ Act(s)},∑
∈Ss′

s
′

x
(n)
s′

 ∀s ∈ S ∖ S=0

 ∀s ∈ S ∖ S=0

P (M, s ⊨ FB)rmax/min

82

Value Iteration

Value iterations computes the probability to satisfy for every state-action
pair

Use the intermediate computation for

x
(0)
s

x
(n)
s

x
(0)
s

x
(n+1)
s

= 1, ∀s ∈ B

= 0, ∀s ∈ S=0

= 0,

= max{ P(s, a,) ⋅ |a ∈ Act(s)},∑
∈Ss′

s
′

x
(n)
s′

 ∀s ∈ S ∖ S=0

 ∀s ∈ S ∖ S=0

P (M, s ⊨ FB)rmax/min

P (s, a, n) = P(s, a,) ∗rmax Σ ∈Ss′ s′ x
(n−1)
s

83

Probabilistic Shielding
Limit the probability to reach by disallowing unsafe actionsB

84

Probabilistic Shielding
Limit the probability to reach by disallowing unsafe actions

We now have:

For a specified safety threshold disallow actions for which:

B

P (s, a, n) = P(s, a,) ∗rmax Σ ∈Ss′ s′ x
(n−1)
s

γ P (s, a, n) < γrmax

85

Probabilistic Shielding
Limit the probability to reach by disallowing unsafe actions

We now have:

For a specified safety threshold disallow actions for which:

Similary, we can disallow actions for which

B

P (s, a, n) = P(s, a,) ∗rmax Σ ∈Ss′ s′ x
(n−1)
s

γ P (s, a, n) < γrmax

P (s, a, n) > γrmin

86

Probabilistic Shielding - Example
Safety Property: Do not step onto lava within 2 time steps

Disallow if for

Pre-Safety-Shield with absolute comparison (gamma = 0.050000):
 model state: choice(s) [<value>: (<action {action label})>]:
 0: [x=1 & y=1] 0: (0 {})
 1: [x=2 & y=1] 0: (0 {})
 2: [x=3 & y=1] 0: (0 {})
 3: [x=4 & y=1] 0: (0 {})
 4: [x=5 & y=1] 0: (0 {})
 5: [x=2 & y=2] 0.0318: (2 {north})
 6: [x=3 & y=2] 0.0318: (2 {north})
 7: [x=4 & y=2] 0.0318: (2 {north})
 8: [x=5 & y=2] 0.0318: (1 {north})
 9: [x=2 & y=3] 0.0009: (0 {east}); 0.0009: (1 {west}); 0.0009: (2 {north}); 0.0273: (3 {south})
 10: [x=3 & y=3] 0.0009: (0 {east}); 0.0009: (1 {west}); 0.0009: (2 {north}); 0.0273: (3 {south})
 11: [x=4 & y=3] 0.0009: (0 {east}); 0.0009: (1 {west}); 0.0009: (2 {north}); 0.0273: (3 {south})
 12: [x=5 & y=3] 0.0009: (0 {west}); 0.0009: (1 {north}); 0.0273: (2 {south})
 13: [x=2 & y=4] 0: (0 {east}); 0: (1 {west}); 0: (2 {north}); 0: (3 {south})
 14: [x=3 & y=4] 0: (0 {east}); 0: (1 {west}); 0: (2 {north}); 0: (3 {south})
 15: [x=4 & y=4] 0: (0 {east}); 0: (1 {west}); 0: (2 {north}); 0: (3 {south})
 16: [x=5 & y=4] 0: (0 {west}); 0: (1 {north}); 0: (2 {south})
 17: [x=2 & y=5] 0: (0 {east}); 0: (1 {west}); 0: (2 {south})
 18: [x=3 & y=5] 0: (0 {east}); 0: (1 {west}); 0: (2 {south})
 19: [x=4 & y=5] 0: (0 {east}); 0: (1 {west}); 0: (2 {south})
 20: [x=5 & y=5] 0: (0 {west}); 0: (1 {south})
 21: [x=1 & y=2] 0.0318: (1 {north})
 22: [x=1 & y=3] 0.0009: (0 {east}); 0.0009: (1 {north}); 0.0273: (2 {south})
 23: [x=1 & y=4] 0: (0 {east}); 0: (1 {north}); 0: (2 {south})
 24: [x=1 & y=5] 0: (0 {east}); 0: (1 {south})

P (s,a, 2) > 0.05r
min (s,a)

87

