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Principles of Model Checking
We are switching to the second book!
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Communication Protocol
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Communication Protocol

But  ?

or  ?

M, start ⊨ ∃G ¬delivered

M, start ⊨ ∀F delivered
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Communication Protocol

But  ?

or  ?

Does not capture probabilities!  We need new descriptions for properties 

 and new models!

M, start ⊨ ∃G ¬delivered

M, start ⊨ ∀F delivered

→ …

…
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Markov Chains

 a set of states and initial state ,

Markov Chain M = (S,P, , AP , L)s0

S s0
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Markov Chains

 a set of states and initial state ,

, s.t.

Markov Chain M = (S,P, , AP , L)s0

S s0

P : S × S → [0, 1]

P(s, ) = 1 ∀s ∈ S∑
∈Ss′

s
′
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Markov Chains

 a set of states and initial state ,

, s.t.

 set of atomic propositions and  a labelling function.

Markov Chain M = (S,P, , AP , L)s0

S s0

P : S × S → [0, 1]

P(s, ) = 1 ∀s ∈ S∑
∈Ss′

s
′

AP L : S → 2AP
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What properties are we interested in?
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What properties are we interested in?
Is the probability of eventually sending the message larger than ?0.99
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What properties are we interested in?
Is the probability of eventually sending the message larger than ?
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What is the probability to reach the destination without every running into an unsafe area?

0.99
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What properties are we interested in?
Is the probability of eventually sending the message larger than ?

What is the probability to eventually send the message?

What is the probability to reach the destination without every running into an unsafe area?

What is the probability to send  messages successfully and only failing a maximum amount of 
times?

0.99

6 15
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Part I
How do we describe models?
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The  Modelling Language
Describe states through variables:

PRISM

x ∈ [0, 20], y ∈ [0, 20], velocity ∈ [20, 30], . . .
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processor_one_idle, processor_two_idle, . . .
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The  Modelling Language
Describe states through variables:

For each possible state we describe the possible variable updates:

PRISM
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The  Modelling Language
Describe states through variables:

For each possible state we describe the possible variable updates:
If  then the agent moves to one of its adjacent
cells each with a probability of .

PRISM

x ∈ [0, 20], y ∈ [0, 20], velocity ∈ [20, 30], . . .
processor_one_idle, processor_two_idle, . . .
agent_is_on_slippery, . . .

x > 10 & y < 10 & agent_is_on_slippery
1/4
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The  Modelling Language
Describe states through variables:

For each possible state we describe the possible variable updates:
If  then the agent moves to one of its adjacent
cells each with a probability of .
If  then the process will be processed by
processor one or two.

PRISM

x ∈ [0, 20], y ∈ [0, 20], velocity ∈ [20, 30], . . .
processor_one_idle, processor_two_idle, . . .
agent_is_on_slippery, . . .

x > 10 & y < 10 & agent_is_on_slippery
1/4

processor_one_idle & processor_two_idle
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The  Modelling Language
Describe states through variables:

For each possible state we describe the possible variable updates:
If  then the agent moves to one of its adjacent
cells each with a probability of .
If  then the process will be processed by
processor one or two.
If  then we can decide to use processor one or
two.

PRISM

x ∈ [0, 20], y ∈ [0, 20], velocity ∈ [20, 30], . . .
processor_one_idle, processor_two_idle, . . .
agent_is_on_slippery, . . .

x > 10 & y < 10 & agent_is_on_slippery
1/4

processor_one_idle & processor_two_idle

processor_one_idle & processor_two_idle
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The  Modelling Language
Modules
module ego_car ... endmodule
module front_car ... endmodule

PRISM
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The  Modelling Language
Modules
module ego_car ... endmodule
module front_car ... endmodule

Variables and Constants
global temperature : [0..100] init 32;
const double pi = 3.14; // Constants may be double!
const double success = 0.95; // Constants may be double!
module foo
x : [0..2] init 0;
b : bool init false;
...
endmodule

PRISM

26



The  Modelling Language
Modules
module ego_car ... endmodule
module front_car ... endmodule

Variables and Constants
global temperature : [0..100] init 32;
const double pi = 3.14; // Constants may be double!
const double success = 0.95; // Constants may be double!
module foo
x : [0..2] init 0;
b : bool init false;
...
endmodule

Updating variables of a module is restricted to each module!

PRISM
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The  Modelling Language
Modules
module ego_car ... endmodule
module front_car ... endmodule

Variables and Constants
global temperature : [0..100] init 32;
const double pi = 3.14; // Constants may be double!
const double success = 0.95; // Constants may be double!
module foo
x : [0..2] init 0;
b : bool init false;
...
endmodule

Updating variables of a module is restricted to each module!

Commands
[] x=0 -> 0.8:(x'=0) + 0.2:(x'=1);
[moveNorth] x<WIDTH -> success: (x'=x+1) + 1-success: true;

PRISM
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The  Modelling Language
Modules
module ego_car ... endmodule
module front_car ... endmodule

Variables and Constants
global temperature : [0..100] init 32;
const double pi = 3.14; // Constants may be double!
const double success = 0.95; // Constants may be double!
module foo
x : [0..2] init 0;
b : bool init false;
...
endmodule

Updating variables of a module is restricted to each module!

Commands
[] x=0 -> 0.8:(x'=0) + 0.2:(x'=1);
[moveNorth] x<WIDTH -> success: (x'=x+1) + 1-success: true;

We use it to describe the set of possible states and transitions between them.

PRISM

29



The  Modelling Language
Formulas and Labels
formula num_tokens = q1+q2+q3+q+q5;
formula on_lava = x=WIDTH & y=HEIGHT;
formula crash = x1=x2 & y1=y2;
label "crashed" = crash;
label "violated" = crash | on_lava;
//[moveNorth] !crash & y<HEIGHT & ... -> ...;

PRISM
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The  Modelling Language
Formulas and Labels
formula num_tokens = q1+q2+q3+q+q5;
formula on_lava = x=WIDTH & y=HEIGHT;
formula crash = x1=x2 & y1=y2;
label "crashed" = crash;
label "violated" = crash | on_lava;
//[moveNorth] !crash & y<HEIGHT & ... -> ...;

Initial States
init
10 < x & x < 20
endinit
// or
init
true
endinit

PRISM
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Communication Protocol

dtmc

...
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Communication Protocol

dtmc

...

Live Coding!
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Random Walk on a (Mini)Grid

* Orange means lava!
* Squiggly lines are cliffs which cannot be climbed
* Blue is slippery

dtmc

...

module 1D_robot

endmodule

Live Coding!
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The  Modelling Language
Modelling language allows to design models in a code-like style

Legible models via formulas and labels

PRISM
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The  Modelling Language
Modelling language allows to design models in a code-like style

Legible models via formulas and labels

Other language concepts

Module Renaming
module front_car_2 = front_car [ lane2=lane1, ... ] endmodule

PRISM
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The  Modelling Language
Modelling language allows to design models in a code-like style

Legible models via formulas and labels

Other language concepts

Module Renaming
module front_car_2 = front_car [ lane2=lane1, ... ] endmodule

Synchronization between modules

Partially Observable Models

PRISM
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The  Modelling Language
Modelling language allows to design models in a code-like style

Legible models via formulas and labels

Other language concepts

Module Renaming
module front_car_2 = front_car [ lane2=lane1, ... ] endmodule

Synchronization between modules

Partially Observable Models

Continuous-time Models

PRISM
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The  Modelling Language
Modelling language allows to design models in a code-like style

Legible models via formulas and labels

Other language concepts

Module Renaming
module front_car_2 = front_car [ lane2=lane1, ... ] endmodule

Synchronization between modules

Partially Observable Models

Continuous-time Models

Rewards

etc.

PRISM
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Part II
Reachability Probabilities

41



Probabilistic Reachability
We start with objectives similar to the ones discussed at the beginning of the semester:

What is the probability that our system reaches its goal state?
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Before we talk about Algorithms...
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Before we talk about Algorithms...
How can we represent a MC in code/memory?
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Before we talk about Algorithms...
How can we represent a MC in code/memory?

45



Before we talk about Algorithms...
How can we represent a MC in code/memory?

⟼ A =

⎡

⎣

⎢⎢⎢⎢

0

0

0

1

1

0

1

0

0

1

10

0

0

0

9

10

0

0

⎤

⎦

⎥⎥⎥⎥
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Model Checking with Markov Chains
Explicit CTL model checking allows qualitative model checking.

 ?M, s ⊨ ∃G ¬delivered
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Model Checking with Markov Chains
Explicit CTL model checking allows qualitative model checking.

 ?

We want to do quantitative model checking.
How likely is the system to fail?

M, s ⊨ ∃G ¬delivered

Pr(M, s ⊨ F  )serror
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Model Checking with Markov Chains
Explicit CTL model checking allows qualitative model checking.

 ?

We want to do quantitative model checking.
How likely is the system to fail?

What is the probability of my message to arrive after infinitely many tries?

M, s ⊨ ∃G ¬delivered

Pr(M, s ⊨ F  )serror

Pr(M, s ⊨ F delivered)
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Paths
A path , s.t. 

 is the set of all paths in  and

 is the set of all finite path fragments in .

π = … ∈s0s1s2 Sω
P( , ) > 0, ∀i ≥ 0si si+1

Paths(M) M

Path (M)sfin M
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Events and Paths
In order to talk about probabilities of certain paths we need to briefly touch probability spaces.
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Events and Paths
In order to talk about probabilities of certain paths we need to briefly touch probability spaces.

Let's conduct the experiment of tossing a coin twice:
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Events and Paths
In order to talk about probabilities of certain paths we need to briefly touch probability spaces.

Let's conduct the experiment of tossing a coin twice:

Outcomes = {HH,HT ,TH,TT}
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Events and Paths
In order to talk about probabilities of certain paths we need to briefly touch probability spaces.

Let's conduct the experiment of tossing a coin twice:

Outcomes = 

Events are subsets of 

{HH, HT , TH, TT}

2Outcomes
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Events and Paths
In order to talk about probabilities of certain paths we need to briefly touch probability spaces.

Let's conduct the experiment of tossing a coin twice:

Outcomes = 

Events are subsets of 

An interesting event:  is thrown on the second throw = .

{HH, HT , TH, TT}

2Outcomes

H {TH, HH}
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Events and Paths
In order to talk about probabilities of certain paths we need to briefly touch probability spaces.

Let's conduct the experiment of tossing a coin twice:

Outcomes = 

Events are subsets of 

An interesting event:  is thrown on the second throw = .

What is a possible outcome in a specific Markov Chain ?

{HH, HT , TH, TT}

2Outcomes

H {TH, HH}

M
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Events and Paths
What is a possible outcome in a specific Markov Chain ?M
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Events and Paths
What is a possible outcome in a specific Markov Chain ?

 an infinite path !

M

→ π ∈ Paths(M)
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Events and Paths
What is a possible outcome in a specific Markov Chain ?

 an infinite path !

Outcomes = 

M

→ π ∈ Paths(M)

Paths(M)
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Events and Paths
What is a possible outcome in a specific Markov Chain ?

 an infinite path !

Outcomes = 

Events of interest are  that satisfy our property

M

→ π ∈ Paths(M)

Paths(M)

, , … ∈ Path (M)π̂1 π̂2 sfin
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Events and Paths
What is a possible outcome in a specific Markov Chain ?

 an infinite path !

Outcomes = 

Events of interest are  that satisfy our property

We capture such events via the cylinder set:

M

→ π ∈ Paths(M)

Paths(M)

, , … ∈ Path (M)π̂1 π̂2 sfin

Cyl( ) = {π ∈ Paths(M) ∣ ∈ pref(π)}π̂i π̂i
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Reachability Probabilities
Let  be a set of states. We are interested inB ⊆ S

Pr(M, ⊨ FB).s0
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Reachability Probabilities
Let  be a set of states. We are interested in

We can characterize all path fragments  that satisfy  with the set

B ⊆ S

Pr(M, ⊨ FB).s0

π FB

= Path (M) ∩ (S ∖ B BΠFB sfin )∗

63



Reachability Probabilities
Let  be a set of states. We are interested in

We can characterize all path fragments  that satisfy  with the set

All  are pairwise disjoint, therefore:

B ⊆ S

Pr(M, ⊨ FB).s0

π FB

= Path (M) ∩ (S ∖ B BΠFB sfin )∗

∈π̂ ΠFB

Pr(M, ⊨ FB) = Pr(Cyl( ))s0 ∑ ∈π̂ ΠFB
π̂
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Computing Pr(M, ⊨ FB)s0
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Computing 

2-step algorithm:

1) Identify three disjoint subsets of :
: The set of states with a probability of 1 to

reach .

: The set of states with a probability of 0 to
reach .

: The set of states with a probability 
to reach .

Pr(M, ⊨ FB)s0

S

S=1
B

S=0
B

S? ∈ (0, 1)
B
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Computing 

2-step algorithm:

1) Identify three disjoint subsets of :
: The set of states with a probability of 1 to

reach .

: The set of states with a probability of 0 to
reach .

: The set of states with a probability 
to reach .

2) Compute the probabilities for all .

Pr(M, ⊨ FB)s0

S

S=1
B

S=0
B

S? ∈ (0, 1)
B

s ∈ S?
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Computing  and 
We can use graph-based analysis to compute these sets:

S=1 S=0
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Computing  and 
We can use graph-based analysis to compute these sets:

S=1 S=0
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Computing 
We are left with computing the probabilities for 

S?

s ∈ S?
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Computing 
We are left with computing the probabilities for 

We compute the probability  of state  via:

The probability to reach  in one step:

and the probability to reach  via a path
fragment : 

Together

S?

s ∈ S?

xs s

S=1
P(s,u)∑

u∈S=1

S=1
(s t …  u) P(s, t) ⋅∑

t∈S?
xt

= P(s, t) ⋅ + P(s,u)xs ∑
t∈S?

xt ∑
u∈S=1
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Computing 
Let us rewrite this into matrix notation:

S?

= (P(s, t)A? )s,t∈S?

x = (xs)s∈S?

b = ( P(s,u)∑
u∈S=1

)s∈S?
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Computing 
Let us rewrite this into matrix notation:

S?

= (P(s, t)A? )s,t∈S?

x = (xs)s∈S?

b = ( P(s,u)∑
u∈S=1

)s∈S?

= P(s, t) ⋅ + P(s,u) ⇝ x = ⋅ x + b = (I − ) ⋅ x = bxs ∑
t∈S?

xt ∑
u∈S=1

A? A?
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Communication Protocol
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Communication Protocol

For this example we will not apply the graph-based analysis, i.e. we let  and
.

= ∅S=0
= {delivered}S=1

= ,b =A?

⎡

⎣
⎢

0

0

0

1

0

1

0
1
10

0

⎤

⎦
⎥

⎡

⎣
⎢

0
9
10

0

⎤

⎦
⎥ ⋅ x = ( ) → x = ( )

⎡

⎣
⎢

1

0

0

−1

1

−1

0

− 1
10

1

⎤

⎦
⎥

0
9
10

0

1

1

1
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Done
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Transient State Probabilities
We will consider a slightly different algorithm:

contains the probability to be in state  after  steps in entry .

We call

the transient state probability for state .

= A ⋅ A ⋅ A ⋅ A ⋅ ⋯ ⋅ AA
n

t n (s, t)A
n

(t) = (s, t)ΘM
n ∑

s∈S

A
n

t
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Transient State Probabilities
Let's consider , the vector of transient state probabilities for the th step.

We can compute  in a modified Markov chain:

where:

 if 

 if 

 if 

i.e. all  become sinks and  cannot be left anymore.

( (t)ΘM
n )s∈S n

Pr(M, ⊨ B)s0 F
≤n

= (S, , , AP , L)MB s0 PB

(s, t) = P(s, t)PB s ∉ B

(s, s) = 1PB s ∈ B

(s, t) = 0PB s ∈ B and t ∉ B

s ∈ B B
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Transient State Probabilities
 if 

 if 

 if 

i.e. all  become sinks and  cannot be left anymore.

We then have

and therefore

(s, t) = P(s, t)PB s ∉ B

(s, s) = 1PB s ∈ B

(s, t) = 0PB s ∈ B and t ∉ B

s ∈ B B

Pr(M, s ⊨ B) = Pr( , s ⊨ B)F
≤n

MB F
=n

Pr(M, s ⊨ B) = (t)F
≤n ∑

t∈B

ΘMB

n
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Computing  via Transient State
Probabilities
We have the following algorithm to compute :

, i.e. the unit vector with  at the th position and  else.

For  

Pr(M, s ⊨ B)F
≤n

Pr(M, s ⊨ B)F
≤n

(t) =ΘM

0 ei 1 i 0

k = 0 up to n − 1 : (t) = A ⋅ (t)ΘM

k+1 ΘM

k

Pr(M, s ⊨ B) = (t)F
≤n ∑

t∈B
ΘMB

n
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