
Probabilistic Model Checking
Stefan Pranger

27. 05. 2025

Outline
Motivation: New Models and New Properties

2

Outline
Motivation: New Models and New Properties

Part I: Modelling Formalism: The PRISM Language

3

Outline
Motivation: New Models and New Properties

Part I: Modelling Formalism: The PRISM Language

Part II: Reachability Probabilities

4

Principles of Model Checking
We are switching to the second book!

5

Communication Protocol

6

Communication Protocol

But ?

or ?

M, start ⊨ ∃G ¬delivered

M, start ⊨ ∀F delivered

7

Communication Protocol

But ?

or ?

Does not capture probabilities! We need new descriptions for properties

 and new models!

M, start ⊨ ∃G ¬delivered

M, start ⊨ ∀F delivered

→ …

…

8

Markov Chains

 a set of states and initial state ,

Markov Chain M = (S,P, , AP , L)s0

S s0

9

Markov Chains

 a set of states and initial state ,

, s.t.

Markov Chain M = (S,P, , AP , L)s0

S s0

P : S × S → [0, 1]

P(s,) = 1 ∀s ∈ S∑
∈Ss′

s
′

10

Markov Chains

 a set of states and initial state ,

, s.t.

 set of atomic propositions and a labelling function.

Markov Chain M = (S,P, , AP , L)s0

S s0

P : S × S → [0, 1]

P(s,) = 1 ∀s ∈ S∑
∈Ss′

s
′

AP L : S → 2AP

11

What properties are we interested in?

12

What properties are we interested in?
Is the probability of eventually sending the message larger than ?0.99

13

What properties are we interested in?
Is the probability of eventually sending the message larger than ?

What is the probability to eventually send the message?

0.99

14

What properties are we interested in?
Is the probability of eventually sending the message larger than ?

What is the probability to eventually send the message?

What is the probability to reach the destination without every running into an unsafe area?

0.99

15

What properties are we interested in?
Is the probability of eventually sending the message larger than ?

What is the probability to eventually send the message?

What is the probability to reach the destination without every running into an unsafe area?

What is the probability to send messages successfully and only failing a maximum amount of
times?

0.99

6 15

16

Part I
How do we describe models?

17

The Modelling Language
Describe states through variables:

PRISM

x ∈ [0, 20], y ∈ [0, 20], velocity ∈ [20, 30], . . .

18

The Modelling Language
Describe states through variables:

PRISM

x ∈ [0, 20], y ∈ [0, 20], velocity ∈ [20, 30], . . .
processor_one_idle, processor_two_idle, . . .

19

The Modelling Language
Describe states through variables:

PRISM

x ∈ [0, 20], y ∈ [0, 20], velocity ∈ [20, 30], . . .
processor_one_idle, processor_two_idle, . . .
agent_is_on_slippery, . . .

20

The Modelling Language
Describe states through variables:

For each possible state we describe the possible variable updates:

PRISM

x ∈ [0, 20], y ∈ [0, 20], velocity ∈ [20, 30], . . .
processor_one_idle, processor_two_idle, . . .
agent_is_on_slippery, . . .

21

The Modelling Language
Describe states through variables:

For each possible state we describe the possible variable updates:
If then the agent moves to one of its adjacent
cells each with a probability of .

PRISM

x ∈ [0, 20], y ∈ [0, 20], velocity ∈ [20, 30], . . .
processor_one_idle, processor_two_idle, . . .
agent_is_on_slippery, . . .

x > 10 & y < 10 & agent_is_on_slippery
1/4

22

The Modelling Language
Describe states through variables:

For each possible state we describe the possible variable updates:
If then the agent moves to one of its adjacent
cells each with a probability of .
If then the process will be processed by
processor one or two.

PRISM

x ∈ [0, 20], y ∈ [0, 20], velocity ∈ [20, 30], . . .
processor_one_idle, processor_two_idle, . . .
agent_is_on_slippery, . . .

x > 10 & y < 10 & agent_is_on_slippery
1/4

processor_one_idle & processor_two_idle

23

The Modelling Language
Describe states through variables:

For each possible state we describe the possible variable updates:
If then the agent moves to one of its adjacent
cells each with a probability of .
If then the process will be processed by
processor one or two.
If then we can decide to use processor one or
two.

PRISM

x ∈ [0, 20], y ∈ [0, 20], velocity ∈ [20, 30], . . .
processor_one_idle, processor_two_idle, . . .
agent_is_on_slippery, . . .

x > 10 & y < 10 & agent_is_on_slippery
1/4

processor_one_idle & processor_two_idle

processor_one_idle & processor_two_idle

24

The Modelling Language
Modules
module ego_car ... endmodule
module front_car ... endmodule

PRISM

25

The Modelling Language
Modules
module ego_car ... endmodule
module front_car ... endmodule

Variables and Constants
global temperature : [0..100] init 32;
const double pi = 3.14; // Constants may be double!
const double success = 0.95; // Constants may be double!
module foo
x : [0..2] init 0;
b : bool init false;
...
endmodule

PRISM

26

The Modelling Language
Modules
module ego_car ... endmodule
module front_car ... endmodule

Variables and Constants
global temperature : [0..100] init 32;
const double pi = 3.14; // Constants may be double!
const double success = 0.95; // Constants may be double!
module foo
x : [0..2] init 0;
b : bool init false;
...
endmodule

Updating variables of a module is restricted to each module!

PRISM

27

The Modelling Language
Modules
module ego_car ... endmodule
module front_car ... endmodule

Variables and Constants
global temperature : [0..100] init 32;
const double pi = 3.14; // Constants may be double!
const double success = 0.95; // Constants may be double!
module foo
x : [0..2] init 0;
b : bool init false;
...
endmodule

Updating variables of a module is restricted to each module!

Commands
[] x=0 -> 0.8:(x'=0) + 0.2:(x'=1);
[moveNorth] x<WIDTH -> success: (x'=x+1) + 1-success: true;

PRISM

28

The Modelling Language
Modules
module ego_car ... endmodule
module front_car ... endmodule

Variables and Constants
global temperature : [0..100] init 32;
const double pi = 3.14; // Constants may be double!
const double success = 0.95; // Constants may be double!
module foo
x : [0..2] init 0;
b : bool init false;
...
endmodule

Updating variables of a module is restricted to each module!

Commands
[] x=0 -> 0.8:(x'=0) + 0.2:(x'=1);
[moveNorth] x<WIDTH -> success: (x'=x+1) + 1-success: true;

We use it to describe the set of possible states and transitions between them.

PRISM

29

The Modelling Language
Formulas and Labels
formula num_tokens = q1+q2+q3+q+q5;
formula on_lava = x=WIDTH & y=HEIGHT;
formula crash = x1=x2 & y1=y2;
label "crashed" = crash;
label "violated" = crash | on_lava;
//[moveNorth] !crash & y<HEIGHT & ... -> ...;

PRISM

30

The Modelling Language
Formulas and Labels
formula num_tokens = q1+q2+q3+q+q5;
formula on_lava = x=WIDTH & y=HEIGHT;
formula crash = x1=x2 & y1=y2;
label "crashed" = crash;
label "violated" = crash | on_lava;
//[moveNorth] !crash & y<HEIGHT & ... -> ...;

Initial States
init
10 < x & x < 20
endinit
// or
init
true
endinit

PRISM

31

Communication Protocol

dtmc

...

32

Communication Protocol

dtmc

...

Live Coding!

33

Random Walk on a (Mini)Grid

* Orange means lava!
* Squiggly lines are cliffs which cannot be climbed
* Blue is slippery

dtmc

...

module 1D_robot

endmodule

Live Coding!

34

The Modelling Language
Modelling language allows to design models in a code-like style

Legible models via formulas and labels

PRISM

35

The Modelling Language
Modelling language allows to design models in a code-like style

Legible models via formulas and labels

Other language concepts

Module Renaming
module front_car_2 = front_car [lane2=lane1, ...] endmodule

PRISM

36

The Modelling Language
Modelling language allows to design models in a code-like style

Legible models via formulas and labels

Other language concepts

Module Renaming
module front_car_2 = front_car [lane2=lane1, ...] endmodule

Synchronization between modules

PRISM

37

The Modelling Language
Modelling language allows to design models in a code-like style

Legible models via formulas and labels

Other language concepts

Module Renaming
module front_car_2 = front_car [lane2=lane1, ...] endmodule

Synchronization between modules

Partially Observable Models

PRISM

38

The Modelling Language
Modelling language allows to design models in a code-like style

Legible models via formulas and labels

Other language concepts

Module Renaming
module front_car_2 = front_car [lane2=lane1, ...] endmodule

Synchronization between modules

Partially Observable Models

Continuous-time Models

PRISM

39

The Modelling Language
Modelling language allows to design models in a code-like style

Legible models via formulas and labels

Other language concepts

Module Renaming
module front_car_2 = front_car [lane2=lane1, ...] endmodule

Synchronization between modules

Partially Observable Models

Continuous-time Models

Rewards

etc.

PRISM

40

Part II
Reachability Probabilities

41

Probabilistic Reachability
We start with objectives similar to the ones discussed at the beginning of the semester:

What is the probability that our system reaches its goal state?

42

Before we talk about Algorithms...

43

Before we talk about Algorithms...
How can we represent a MC in code/memory?

44

Before we talk about Algorithms...
How can we represent a MC in code/memory?

45

Before we talk about Algorithms...
How can we represent a MC in code/memory?

⟼ A =

⎡

⎣

⎢⎢⎢⎢

0

0

0

1

1

0

1

0

0

1

10

0

0

0

9

10

0

0

⎤

⎦

⎥⎥⎥⎥

46

Model Checking with Markov Chains
Explicit CTL model checking allows qualitative model checking.

 ?M, s ⊨ ∃G ¬delivered

47

Model Checking with Markov Chains
Explicit CTL model checking allows qualitative model checking.

 ?

We want to do quantitative model checking.
How likely is the system to fail?

M, s ⊨ ∃G ¬delivered

Pr(M, s ⊨ F)serror

48

Model Checking with Markov Chains
Explicit CTL model checking allows qualitative model checking.

 ?

We want to do quantitative model checking.
How likely is the system to fail?

What is the probability of my message to arrive after infinitely many tries?

M, s ⊨ ∃G ¬delivered

Pr(M, s ⊨ F)serror

Pr(M, s ⊨ F delivered)

49

Paths
A path , s.t.

 is the set of all paths in and

 is the set of all finite path fragments in .

π = … ∈s0s1s2 Sω
P(,) > 0, ∀i ≥ 0si si+1

Paths(M) M

Path (M)sfin M

50

Events and Paths
In order to talk about probabilities of certain paths we need to briefly touch probability spaces.

51

Events and Paths
In order to talk about probabilities of certain paths we need to briefly touch probability spaces.

Let's conduct the experiment of tossing a coin twice:

52

Events and Paths
In order to talk about probabilities of certain paths we need to briefly touch probability spaces.

Let's conduct the experiment of tossing a coin twice:

Outcomes = {HH,HT ,TH,TT}

53

Events and Paths
In order to talk about probabilities of certain paths we need to briefly touch probability spaces.

Let's conduct the experiment of tossing a coin twice:

Outcomes =

Events are subsets of

{HH, HT , TH, TT}

2Outcomes

54

Events and Paths
In order to talk about probabilities of certain paths we need to briefly touch probability spaces.

Let's conduct the experiment of tossing a coin twice:

Outcomes =

Events are subsets of

An interesting event: is thrown on the second throw = .

{HH, HT , TH, TT}

2Outcomes

H {TH, HH}

55

Events and Paths
In order to talk about probabilities of certain paths we need to briefly touch probability spaces.

Let's conduct the experiment of tossing a coin twice:

Outcomes =

Events are subsets of

An interesting event: is thrown on the second throw = .

What is a possible outcome in a specific Markov Chain ?

{HH, HT , TH, TT}

2Outcomes

H {TH, HH}

M

56

Events and Paths
What is a possible outcome in a specific Markov Chain ?M

57

Events and Paths
What is a possible outcome in a specific Markov Chain ?

 an infinite path !

M

→ π ∈ Paths(M)

58

Events and Paths
What is a possible outcome in a specific Markov Chain ?

 an infinite path !

Outcomes =

M

→ π ∈ Paths(M)

Paths(M)

59

Events and Paths
What is a possible outcome in a specific Markov Chain ?

 an infinite path !

Outcomes =

Events of interest are that satisfy our property

M

→ π ∈ Paths(M)

Paths(M)

, , … ∈ Path (M)π̂1 π̂2 sfin

60

Events and Paths
What is a possible outcome in a specific Markov Chain ?

 an infinite path !

Outcomes =

Events of interest are that satisfy our property

We capture such events via the cylinder set:

M

→ π ∈ Paths(M)

Paths(M)

, , … ∈ Path (M)π̂1 π̂2 sfin

Cyl() = {π ∈ Paths(M) ∣ ∈ pref(π)}π̂i π̂i

61

Reachability Probabilities
Let be a set of states. We are interested inB ⊆ S

Pr(M, ⊨ FB).s0

62

Reachability Probabilities
Let be a set of states. We are interested in

We can characterize all path fragments that satisfy with the set

B ⊆ S

Pr(M, ⊨ FB).s0

π FB

= Path (M) ∩ (S ∖ B BΠFB sfin)∗

63

Reachability Probabilities
Let be a set of states. We are interested in

We can characterize all path fragments that satisfy with the set

All are pairwise disjoint, therefore:

B ⊆ S

Pr(M, ⊨ FB).s0

π FB

= Path (M) ∩ (S ∖ B BΠFB sfin)∗

∈π̂ ΠFB

Pr(M, ⊨ FB) = Pr(Cyl())s0 ∑ ∈π̂ ΠFB
π̂

64

Computing Pr(M, ⊨ FB)s0

65

Computing

2-step algorithm:

1) Identify three disjoint subsets of :
: The set of states with a probability of 1 to

reach .

: The set of states with a probability of 0 to
reach .

: The set of states with a probability
to reach .

Pr(M, ⊨ FB)s0

S

S=1
B

S=0
B

S? ∈ (0, 1)
B

66

Computing

2-step algorithm:

1) Identify three disjoint subsets of :
: The set of states with a probability of 1 to

reach .

: The set of states with a probability of 0 to
reach .

: The set of states with a probability
to reach .

2) Compute the probabilities for all .

Pr(M, ⊨ FB)s0

S

S=1
B

S=0
B

S? ∈ (0, 1)
B

s ∈ S?

67

Computing and
We can use graph-based analysis to compute these sets:

S=1 S=0

68

Computing and
We can use graph-based analysis to compute these sets:

S=1 S=0

69

Computing
We are left with computing the probabilities for

S?

s ∈ S?

70

Computing
We are left with computing the probabilities for

We compute the probability of state via:

The probability to reach in one step:

and the probability to reach via a path
fragment :

Together

S?

s ∈ S?

xs s

S=1
P(s,u)∑

u∈S=1

S=1
(s t … u) P(s, t) ⋅∑

t∈S?
xt

= P(s, t) ⋅ + P(s,u)xs ∑
t∈S?

xt ∑
u∈S=1

71

Computing
Let us rewrite this into matrix notation:

S?

= (P(s, t)A?)s,t∈S?

x = (xs)s∈S?

b = (P(s,u)∑
u∈S=1

)s∈S?

72

Computing
Let us rewrite this into matrix notation:

S?

= (P(s, t)A?)s,t∈S?

x = (xs)s∈S?

b = (P(s,u)∑
u∈S=1

)s∈S?

= P(s, t) ⋅ + P(s,u) ⇝ x = ⋅ x + b = (I −) ⋅ x = bxs ∑
t∈S?

xt ∑
u∈S=1

A? A?

73

Communication Protocol

74

Communication Protocol

For this example we will not apply the graph-based analysis, i.e. we let and
.

= ∅S=0
= {delivered}S=1

= ,b =A?

⎡

⎣
⎢

0

0

0

1

0

1

0
1
10

0

⎤

⎦
⎥

⎡

⎣
⎢

0
9
10

0

⎤

⎦
⎥ ⋅ x = () → x = ()

⎡

⎣
⎢

1

0

0

−1

1

−1

0

− 1
10

1

⎤

⎦
⎥

0
9
10

0

1

1

1

75

Done

76

Transient State Probabilities
We will consider a slightly different algorithm:

contains the probability to be in state after steps in entry .

We call

the transient state probability for state .

= A ⋅ A ⋅ A ⋅ A ⋅ ⋯ ⋅ AA
n

t n (s, t)A
n

(t) = (s, t)ΘM
n ∑

s∈S

A
n

t

77

Transient State Probabilities
Let's consider , the vector of transient state probabilities for the th step.

We can compute in a modified Markov chain:

where:

 if

 if

 if

i.e. all become sinks and cannot be left anymore.

((t)ΘM
n)s∈S n

Pr(M, ⊨ B)s0 F
≤n

= (S, , , AP , L)MB s0 PB

(s, t) = P(s, t)PB s ∉ B

(s, s) = 1PB s ∈ B

(s, t) = 0PB s ∈ B and t ∉ B

s ∈ B B

78

Transient State Probabilities
 if

 if

 if

i.e. all become sinks and cannot be left anymore.

We then have

and therefore

(s, t) = P(s, t)PB s ∉ B

(s, s) = 1PB s ∈ B

(s, t) = 0PB s ∈ B and t ∉ B

s ∈ B B

Pr(M, s ⊨ B) = Pr(, s ⊨ B)F
≤n

MB F
=n

Pr(M, s ⊨ B) = (t)F
≤n ∑

t∈B

ΘMB

n

79

Computing via Transient State
Probabilities
We have the following algorithm to compute :

, i.e. the unit vector with at the th position and else.

For

Pr(M, s ⊨ B)F
≤n

Pr(M, s ⊨ B)F
≤n

(t) =ΘM

0 ei 1 i 0

k = 0 up to n − 1 : (t) = A ⋅ (t)ΘM

k+1 ΘM

k

Pr(M, s ⊨ B) = (t)F
≤n ∑

t∈B
ΘMB

n

80

