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Plan for Today isec.tugraz.at M

= Presentation of Homework

= Part1-LTL Model Checking

= Generalized Buichi Automata
= Translation of LTL to Blichi Automata

= Part 2 - Shielded Reinforcement Learning




Algorithm: Intersection of Biichi Automata (last week) ~ isectugrazat =

= B=(X,Q,A,Q°%F)s.t. L(B) = L(B,) N L(B,) is defined as follows:

- 10,1, 2}
- {0}
o {2} Intuition:

x=0 ... waiting for s € F,
x=1...waiting fors € F,

" ((91,02:%), 3, (9°,9"X) €A <
1. (q1,a>q,1) < Al and (qz,a,q,z) S A2 and
2. Ifx=0and q’;€ F, then x’=1
Ifx=1and q’,€ F, then x’=2
If x=2 then x’=0
Else, x’=x

If some s with x=2 is visited inf often,
then states from F, and states from F,

have been visited inf often.

= Homework: Define the transition relation for B using x € {0, 1}



Algorithm: Intersection of Biichi Automata (last week) ~ isectugrazat =

= B=(X,Q,A,Q°%F)s.t. L(B) = L(B,) N L(B,) is defined as follows:

- {0, 1}
" {0}
o {2} Intuition:

x=0 ... waiting for s € F,
x=1...waiting fors € F,

» F=F,xQ, x{0}

If some s with x=2 is visited inf often,

= (( ), a, (q'1,0%,x)) € A then states from F, and states from F,
9092%), 4, 9,4 ,X)) € & < have been visited inf often.

1. (94,a,9’y) € A, and (g,,a,q’,) € A, and
2. Ifx=0and q’,e F; then x’=1

If x=1and q’,€ F, then x’=

Else, x’=x
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2b) 1. Construct -2

2 = A[F ((y =2) AX(x =3))]
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2b) 2. Construct Buchi automaton $-¢

(already given)




isec.tugraz.at H

2b) 3. Translate M to an automaton A

Reminder

e Move labels to incoming transitions
e Allstates are accepting

_ O
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2b) 3. Translate M to an automaton A

_ O
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2b) 4. Construct automaton B with L(B ) N L(S-¢)

y & 2
y =2
> t1 {X O
}
X # 2

s1.t1.1
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{

0,
0

}
}

X
y

{ 1,
2

X
y

s1.t1.1

If £L(B) =0 = M [ ¢,

e L(B)=10is evident, as Fgz =10
e Thus, M = ¢, holds.
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2a) 1. Construct -

@1 =[F ((x=1) A(y=3))]
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2a) 2. Construct Buchi automaton S-

(already given)

x#1 vy=#3
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2a) 4. Construct automaton B with L(B) = L(A) N L(S-)
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A counterexample v - w® € L(B) exists

e A counter example for ¢; is
{r=0,y=0}-{z=1Ly=2}-{z=2,y=3} - {z =0,y =1}~

e Thus, M [~ ¢.




Plan for Today isec.tugraz.at M

= Presentation of Homework

= Part1-LTL Model Checking

= Generalized Buichi Automata
= Translation of LTL to Blichi Automata

= Part 2 - Shielded Reinforcement Learning




Model Checking of LTL isec.tugraz.at

= Given a Kripke structure M and a LTL formula ¢: Does M = ¢?

= Automata-based Algorithm

Construct ¢ ’ Today!
Construct a Biichi automaton §_,

Translate M to an automaton A.

Construct the automaton B with L(B) = L(A) N L(S_,)
fLB)=0=>MEq@

It L(B) 0 =M ¥ @.
Aword v -w® € L(B)is acounterexample Runs satisfying A
—> atrace in M that does not satisfy ¢

Runs satisfying §
Bettina Konighofer

Counterexample

\

o> oA W N e




Blichi Automata isec.tugraz.at W

" B=(X,Q,4,Q°F)

= Anrun pis accepting & p visits an accepting state infinitely often.

a
H Q L(B) = {words with infinitely many a}
\/
a b b




Generalized Biichi Automata isec.tugraz.at W

= Have several sets of accepting states
" B=(2,Q,A4,Q%F)
» F = {F, .., F.},whereforevery1 <i < k,F, € Q

= Arun p of Bisaccepting ifforeach F; € F, inf(p) N F; = @

@




Generalized Biichi Automata isec.tugraz.at W

= Arunpof BisacceptingifforeachF; € F, inf(p) N F; +# @

= What words are accepted?
a. Theinfinite word b®? X
b. Theinfinite word a®? v/
c. Theinfinite word (ab)®?

Fi =191, 92}, F>={q1}




Algorithm: Generalized Buichi To Biichi Automata isec.tugraz.at

= Given generalized Buchi Automaton B = (£,Q,A,Q%F) withF = {F, ..., F,}
= Construct Buchi Automaton B’ that accepts the same language

" |dea:
* Introduce counterfrom 1 ...k = k copies of the state space
= In copy i we wait for accepting statein F;
= When F; is visited in copy i, redirect edges to move to copy i + 1  (from Fyto copyi = 1)
= - Acycle through all copies will contain accepting states from eachset F, ..., F,

a
/\!
\_/

b b




Algorithm: Generalized Buichi To Biichi Automata isec.tugraz.at

= Given generalized Buchi Automaton B = (£,Q,A,Q%F) withF = {F, ..., F,}
= Construct Buchi Automaton B’ that accepts the same language

= B'=(X,Qx{1,.., k},A,Q%< 1, F, x k) with:

= A% ((q,x),a, (q’,y)) e A if

" (g,a,9) € A
" fgeF,andx =i,theny=i+4+1fori<k
" Ifge Fyandx = k,theny =1

= Otherwise,x = y. Size of B’ = (size of B)xk

a
/\!
\_/

b b




Example: Generalized Biichi To Blichi Automata isec.tugraz.at

" L(B)=c"(alb)(a|blc)®




Example: Generalized Blichi To Buichi Automata isec.tugraz.at

= Translate generalized Buchi Automaton B to a Buchi automaton B’
1. Create two copies, since we have two accepting sets




Example: Generalized Biichi To Blichi Automata isec.tugraz.at

= Translate generalized Buchi Automaton B to a Buchi automaton B’
4. Only one copy is accepting




Example: Generalized Biichi To Blichi Automata isec.tugraz.at

= Translate generalized Buchi Automaton B to a Buchi automaton B’
4. Only one copy is accepting

5. Remove unreachable states




Plan for Today isec.tugraz.at M

= Presentation of Homework

= Part1-LTL Model Checking

= Generalized Biichi Automata
= Translation of LTL to Blichi Automata

= Part 2 - Reactive Synthesis
= Safety Games
» Reachability Games
* Blichi Games




Translation of LTL to Blichi Automata isec.tugraz.at M

= Today: discuss simple algorithm from Vardi and Wolper (book, page 98)
= Size of automaton always exponential in the size of the specification

L.!J M.Y. Vardi, and P. Wolper.
An automata-theoretic approach to automatic program verification.

In Logic in Computer Science (LICS), pages 332-344, 1986

= More efficient algorithm by Gerth, Peled, Vardi and Wolper
(book, page 101)

L...J R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper.
Simple on-the-fly automatic verification of linear temporal logic.
In Protocol Specification Testing and Verification, pages 3-18, 1995




isec.tugraz.at H

Algorithm: LTL to Buchi Automata

= Input: LTL specification ¢
= Output: Buchi automaton A, s.t. A, accepts exactly all the traces that satisfy ¢

= Steps of the Algorithm:

1. Rewrite of ¢ to use only —,A,V, X, U operators
* viarewritingrulese.g., Fo = true Up, Gp = —F—@ etc ...

2. Translate ¢ into generalized Biichi Automaton <mm

3. Translate generalized Blchi to Buchi automaton




LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= Input: LTL specification ¢
= Output: Buchi automaton A, s.t. A, accepts exactly all the traces that satisfy ¢

= Step 1: Defining the state space of A,

» |dea: Each state g is labelled with a set of sub-formulas that should be
satisfied on paths starting at g.

= Algorithm:
1. Build the closure cl(¢) of ¢ = subformulas of ¢ and their negation
= ¢ € cl(p).

If o, € cl(@), then =@, € cl(p).
If =, € cl(p), then ¢, € cl(p).
If o,V @, € cl(p),then ¢, € cl(p) and @, € cl(p).
If X @, € cl(p), then ¢, € cl(p).
If o, U @, € cl(p),then @, € cl(¢p) and ¢, € cl(p).




LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= Input: LTL specification ¢
= Output: Buchi automaton A, s.t. A, accepts exactly all the traces that satisfy ¢

= Step 1: Defining the state space of A,
» |dea: Each state g is labelled with a set of sub-formulas that should be
satisfied on paths starting at g.
= Algorithm:
1. Build the closure cl(¢) of ¢ = subformulas of ¢ and their negation
2. Compute the good sets S € c/(¢) = maximal sets of formulas in cl(¢p) that are consistent
» Forallp, Ecllp): p,€ESS ¢, &S,
» Forall @,V @, € cl(p): at least one of ¢, @, isin S.




LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= Input: LTL specification ¢
= Output: Buchi automaton A, s.t. A, accepts exactly all the traces that satisfy ¢

= Step 1: Defining the state space of A,
» |dea: Each state g is labelled with a set of sub-formulas that should be
satisfied on paths starting at g.
= Algorithm:
1. Build the closure cl(¢) of ¢ = subformulas of ¢ and their negation
2. Compute the good sets S € c/(¢) = maximal sets of formulas in cl(¢p) that are consistent
3. All good sets of cl(¢p) define the state space of A,




LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= Example: Define the state space of A ,:
" Q= —-hUc
= Algorithm:
1. Build the closure cl(¢) of ¢ = subformulas of ¢ and their negation
2. Compute the good sets S € c/(¢) = maximal sets of formulas in cl(¢p) that are consistent
3. All good sets of cl(¢p) define the state space of A,

= Solution:
= cl(p) = {h,=h,c,—c, @, @}

-y . Q = {{h' C, <,0}, {_'hJ C, <,0}, {h, C, <P}, {_'h' —C, (p};
{h,c,=@},{=h,c,—@},{h c,—@},{=h —c,—¢@}}




LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= Input: LTL specification ¢
= Output: Buchi automaton A, s.t. A, accepts exactly all the traces that satisfy ¢

= Step 1: Defining the state space of A,

» |dea: Each state g is labelled with a set of sub-formulas that should be satisfied on paths
starting at g.

= Step 2: Defining the transition relation of A,




LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= A,=(2,Q,4,Q%F)

= (Q=setofallthe goodsetsincl(p)
» |dea: Each state g is labelled with a set of sub-formulas that should be satisfied on paths starting at g.

= Forg,q' € Qando € AP,(q,0,q9") € Alf:
= g=q N AP
= Forall X, € cl(g): if X, € q then ¢, € ¢
= Forallp,U ¢, € cl(p):if ¢, U @, € qtheneitherp,€qorbothp, €qandp,Up,€q’
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Example: Transition Relation of GBA A,

((W’f) Uc)
h ¢

" ¢ :=—h U
= Draw the transitions of A,

Forq,q’ € Q and o S AP, (q,0,q9") € Aif:

= g=q N AP

= Forall X¢, € cl(¢): 7
" X9 €q & 91 €EQq

= Forall p,U ¢, € cl(p):

= ¢, U @, € q & either(p, € qor both
ps€qand ¢, U ¢p,€EQq
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Example: Transition Relation of GBA A,

" ¢ :=—h U
= Draw the transitions of A,

Forg,g' € Q and o € AP, (q,0,q") € A if:
G
= Forall X¢, € cl(¢):

" Xp, €9 & 91 €4
= Forall p,U ¢, € cl(p):
= ¢, U @, € q & either(p, € qor both
¢,€qand o, Ug,€q




Example: Transition Relation of GBA A, isec.tugraz.at M

" ¢ :=—h U
= Draw the transitions of A,

Forg,g' € Q and o € AP, (q,0,q") € A if:
G- oD
= Forall X¢, € cl(¢):

" Xp, €9 & 91 €4
= Forall p,U ¢, € cl(p):
= ¢, U @, € q & either(p, € qor both
¢,€qand o, Ug,€q




Example: Transition Relation of GBA A, isec.tugraz.at M

= ¢ :=—hU(
= Draw the transitions of A,
—|h,C
2
| - 3
(-h)Uc (=h)Uec
-h( ¢ h,C -h -
—|h, —C
. h,C h,—|C )
—|h,C h’_lc
=((=h)Uc) (-h)Uc
Forg,q' € Q and o € AP, (q,0,q9") € Alif: hoc h e
I _Ih, —C
= Forall X¢, € cl(¢):

!
| 7 5
" Xp; €9 S 91 €EQ 6
= Forall p,U ¢, € cl(p):
" ¢, U @, € q & either(p, € g )or both | |
¢, €qand ¢, U g, €q ‘
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Example: Transition Relation of GBA A,

" 9 :=—hUc
= Draw the transitions of A,

Forg,g' € Q and o € AP, (q,0,q") € A if:
G- oD
= Forall X¢, € cl(¢): 7

" X, €Eq @ 91 €Eq
= Forall p,U ¢, € cl(p):

" 9, U ¢, € q& either ¢, € q or both
AT
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Example: Transition Relation of GBA A,

" 9 :=—hUc
= Draw the transitions of A,

Forg,g' € Q and o € AP, (q,0,q") € A if:
G- oD
= Forall X¢, € cl(¢):

" X, €Eq @ 91 €Eq
= Forall p,U ¢, € cl(p):

" 9, U ¢, € q& either ¢, € q or both |
AT




Example: Transition Relation of GBA A, isec.tugraz.at M

" 9 :=—hUc
= Draw the transitions of A,

Forg,g' € Q and o € AP, (q,0,q") € A if:
G- oD
= Forall X¢, € cl(¢):

" X, €Eq @ 91 €Eq
= Forall p,U ¢, € cl(p):

" 9, U ¢, € q& either ¢, € q or both |
AT
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Example: Transition Relation of GBA A,

" 9 :=—hUc
= Draw the transitions of A,

Forg,g' € Q and o € AP, (q,0,q") € A if:
G- oD
= Forall X¢, € cl(¢):

" X, €Eq @ 91 €Eq
= Forall p,U ¢, € cl(p):

" 9, U ¢, € q& either ¢, € q or both |
AT




LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= A,=(2,Q,4,Q%F)

= (Q=setofallthe goodsetsincl(p)
» |dea: Each state g is labelled with a set of sub-formulas that should be satisfied on paths starting at g.

= Forg,q' € Qando € AP,(q,0,q9") € Alf:
= g=q N AP
= Forall Xoq: if X¢, €q then ¢, €(q
= Forall =X¢;: if =X, € q then =@, € ¢

= Forall o, U ¢,: if ¢, U @, € qthen either ¢, € qorboth p,€qand ¢, Up,€E(q
= Forall = (.U @5): if =(¢@,U@,) € qtheneither = ¢, € qandeither- ¢, eqor-(p,;Up,)Eq




Example: Transition Relation of GBA A, isec.tugraz.at M

" 9 :=—hUc
= Draw the transitions of A,




LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= A,=(2,Q,4,Q%F)

= (Q=setofallthe goodsetsincl(p)
» |dea: Each state g is labelled with a set of sub-formulas that should be satisfied on paths starting at g.

= Forg,q' € Qando € AP,(q,0,q9") € Alf:
= g=q N AP
= Forall X¢, € cl(p): if Xp; € q then ¢, € ¢
= Forallp,U ¢, € cl(p):if ¢, U @, € qtheneitherp,€qorbothp, €qandp,Up,€q’

= |nitial States?

= Accepting States?




Example: Transition Relation of GBA A, isec.tugraz.at M

= |nitial States?




Example: Transition Relation of GBA A, isec.tugraz.at M




LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= A,=(2,Q,4,Q%F)

= (Q=setofallthe goodsetsincl(p) U {1}
» |dea: Each state g is labelled with a set of sub-formulas that should be satisfied on paths starting at g.

= Forgq,q' € Qando € AP, (q,0,q") € Alf:
= g=q N AP
= Forall X, € cl(g): if X, € q then ¢, € ¢

= Forallp,U ¢, € cl(p):if ¢, U @, € qtheneitherp,€qorbothp, €qandp,Up,€q’
* (Lo,q)EA© peqand o =qN AP

= Accepting States?




LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= A,=(5,Q,A, LF)

= (Q=setofallthe goodsetsincl(p) U {1}
» |dea: Each state g is labelled with a set of sub-formulas that should be satisfied on paths starting at g.

= Forgq,q' € Qando € AP, (q,0,q") € Alf:
= g=q N AP
= Forall X, € cl(g): if X, € q then ¢, € ¢

= Forallp,U ¢, € cl(p):if ¢, U @, € qtheneitherp,€qorbothp, €qandp,Up,€q’
* (Lo,q)EA© peqand o =qN AP

= Accepting States
= Forevery ¢, U @,, Fincludes the set F<P1 Ug,= {geQ| ¢, eqor-(p, U, €q}l.




Example: Transition Relation of GBA A, isec.tugraz.at M

F=11,2,5,6,7,8}}




Plan for Today isec.tugraz.at M

= Presentation of Homework

= Part1-LTL Model Checking °_9o

= Generalized Buichi Automata
= Translation of LTL to Blichi Automata

= Part 2 - Shielded Reinforcement Learning




OUtline isec.tugraz.at W

= Shielding for Safety
= Integration of a shield in RL
= Symbolic Models
= Shields with Absolute Safety Guarantees
= Shields with Probabilistic Guarantees




. . TU
Reinforcement Learning Graza

= Decision Making under Uncertainty
= Environment modeled as Markov Decision Process

N &

Uncertainty caused by sensor
imprecision, wind gusts, and
limited view

Complex task specification

Setting from Nils Jansen



Reinforcement Learning isec tugrazat

= RL agent learns optimal policy via trial and error

observation

] (Environmentj . :[ RL Agent ]
=) rewar T« >
/@@’ ’9@; %ﬂ <
¢ // S =] o
g7 —/» action T

Find a policy m* that maximixes E [Y.72, 7" R;]

with the discount factor0 <y < 1 andreward R; attime't




Reinforcement Learning isec tugrazat

Limitations ) . observation
. . . . Environment i RL Agent
= Safety violations (during exploration) B = W reward ]
= RLis data-hungry 9(@Q ,
g7 —/ n action

= Rewards cannot capture sophisticated
task specifications




Integration of a Shield in RL

Pre-Shielding

observation safe
actions
[Environment | RL Agent ]

reward

Tsafe action

isec.tugraz.at H



Integration of a Shield in RL

Pre-Shielding

observation

safe
actions

[Environment | RL Agent ]

Tsafe action

reward

isec.tugraz.at H

Post-Shielding

rewa rd

[Environment

A

observation

safe action

RL Agent }

l action

shield O |




Pros/Cons of Post-Shielding isec.tugraz.at M

Post-Shielding
= Advantages

| o reward
= Safety during training/deployment [Environment RL Agent }
1 J l action
observation
shield O |

safe action




Pros/Cons of Post-Shielding isec.tugraz.at M

Post-Shielding
= Advantages

rewa rd

= Safety during training/.deployment [Environment RL Agent }
= Can improve the learning performance of RL - / l ’
= Ashield injects domain knowledge observation action
to reduce search space Shield O]
safe action

T — Policies
@—0 Safe policies




Pros/Cons of Post-Shielding isec.tugraz.at M

Post-Shielding
* Disadvantages

e . reward
= Shielding Assumptl?ns [Environment RL Agent ]
= Symbolic model is correct and captures 'y ’ ,
: . _ l action
everything safety critical observation
= Observations are correct Shield O]

safe action




Pros/Cons of Post-Shielding isec.tugraz.at M

Post-Shielding
* Disadvantages

o . reward
= Shielding Assumptions [Environment RL Agent ]
= Symbolic modelis correct and captures - / _
everything safety critical observation | _action
= Observations are correct Shield O]
= Naive integration can destroy association between safe action

executed action and reward.




Pros/Cons of Post-Shielding isec.tugraz.at M

Post-Shielding
* Disadvantages

. 1 : reward
= Shielding Assumptions [Environment RL Agent }
= Symbolic modelis correct and captures - / _
everything safety critical observation | _action
= Observations are correct Shield O]
= Naive integration can destroy association between safe action

executed action and reward.

= Shield may hinder agent to explore environment.




Pros/Cons of Pre-Shielding

= Advantages
= Easy integration for maskable RL algorithms

= Final decision about which action to explore
remains with RL agent

* Disadvantages
= Integration difficult for non-maskable RL algorithms

= QOthers as before

isec.tugraz.at H

Pre-Shielding

observation 1 safe

[

N

actions

Environment

Tsafe action

:l RL Agent ]

reward




Shield Integration via Constrainted RL 'sec.tugraz.at M

= Agent should learn to behave safely

| shield O |

observation Costs C(s,a)

[Environment : | RL Agent ]

reward

Tsafe action

Find policy méix]ge = Eron, [Z620V  Re(St, Ap, Se41)] St Jp° < e




OUtline isec.tugraz.at W

= Shielding for Safety
= Integration of a shield in RL
= Symbolic Models




Symbolic World Model isec.tugraz.at M

= Assumption: Environment has finite number of states, time is discrete
= > model as Markov Decision Process M

> m O O m M

) o @
JA @ i




Symbolic World Model isec.tugraz.at M

= Assumption: Environment has finite number of states, time is discrete
= > model as Markov Decision Process M

= @ is a safety specification in temporal logic
= Defines unsafe states in M

= Shield prevents/limits probability of reaching an unsafe state in M

> @ O g m M




Scalability of Shielded Learning isec.tugraz.at M

= Shieldingis less scalable as RL
= Shielding can handle MDPs with Millions of states




Scalability of Shielded Learning isec.tugraz.at M

= Shieldingis less scalable as RL
= Shielding can handle MDPs with Millions of states

= Shield computed on safety-relevant MDP

= RL works on original MDP
= Shield works with MDP with reduced feature space

| shield O] (*7.2v)
obs. shield safe ‘ o

actions
: obs. agent
E t
{ nvironmen :[ RL Agent}
y,
reward

safe action




How to get the Model? isec.tugraz.at

= Most of the time, no models are available!

UJ

~ -~ = 7 — o
> & ™ >4 - -3
& ) O~ ~—
{ i .
)




How to get the Model? isec.tugraz.at

= Most of the time, no models are available!
= - Use automata learning to learn world model

RL agent
initial set of trajectories environment iteratively collected trajectories
WA\

Tl = Sla155a359a2 ...533 TTl = S3a758a4520a1 ...541

sample trajectories

[

sample trajectories

E—

Tn+1 = $2A152Q15170Q3 ... S5

I model
refinement

T, = Sza5$9a3542a1 ...515

l collect states

@ N i .

dim. reduction model /
& clustering % learning

observed states abstract states MDP over abstract states

e

M. Tappler, E. Muskardin, B. Aichernig, B. Konighofer:
Learning Environment Models with Continuous Stochastic Dynamics. ICST 2024




OUtline isec.tugraz.at W

= Shielding for Safety
= Integration of a shield in RL
= Symbolic Models
= Shields with Absolute Safety Guarantees




Shield with Absolute Safety Guarantees isec.tugraz.at M

= Given: MDP M, safety spec @ defines set of unsafe states in M

= Shield provides absolute safety guarantees

= Unsafe states are never visited!
* InLTL: G(safe)




Shields with Absolute Safety Guarantees

= Shield Computation: Transform MDP to 2-Player Game
= Replace probabilities by choices of environment



Shields with Absolute Safety Guarantees

= Shield Computation: Transform MDP to 2-Player Game
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= Shield Computation: Transform MDP to 2-Player Game
= Replace probabilities by choices of environment

P =1 Y Player
Player 1: RL Agent
Probabilistic Y2 Player

ayer Game
Player 1: RL Agent
Plyer 2: Environment




Shields with Absolute Safety Guarantees

= Shield computation = Solve Safety Game
= Agent: Good player: wins if only safe states are visited
= Environment: Evil player: wins if an unsafe state is visited
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= Shield computation = Solve Safety Game
= Agent: Good player: wins if only safe states are visited
= Environment: Evil player: wins if an unsafe state is visited
= Solve safety game
" Fixpoint computation
* Lineartimeinsize of graph
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m RL Agent
outputs
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if @ isnever visited
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Safe Region [ Dangerous Region [ Unsafe Region TU
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Dangerous Region:
Shield cannot enforce

that unsafe state is
never visited
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SCORE: 322 SCORE: 72
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OUtline isec.tugraz.at W

= Shielding for Safety
= Integration of a shield in RL
= Symbolic Models
= Shields with Absolute Safety Guarantees
= Shields with Probabilistic Guarantees




Probabilistic Worldview for RL

= Worst-case assumptions are too pessimistic
= E.g. Sensors:
» Assuming that any sensor always fails does not yield to useful results

= Consider finite horizon

* A bad event that can happen with low probability at each step,
will eventually occur with probability 1.

* Choose finite horizon of h steps
» E.g. h = mission time, or expected battery life...




Shield with Probabilistic Safety Guarantees isec.tugraz.at

= Given: MDP M, safety spec ¢ defines set of unsafe statesin M
= Shield: Limits probability of visiting an unsafe state.

P




Probabilistic Model Checking

= M = (S,5sy,4,P) ... Markov Decision Process (MDP)
“m: S—> A ...policy
= M™ = (S, sy, P) induced Markov Chain by applying T to M




Probabilistic Model Checking

¢ = G(safe), policy m, MDP M

Model Checking:

"Pyny,: S X N - [0,1] ... expected probability to satisfy ¢ from a state
s within h steps in the MC M™

" Pyo (s, h) = max Py, (s, h) ... maximal expected probability over all policies to
satisfy ¢ from a state s within h steps.

Py (s,a,h) =Yu cP(s,a,s') Py,(s' h—1)

.. maximal expected probability over all policies to

satisfy @ from a state s when taking action a
within h steps.



Simple Shield for Quantitative Safety

isec.tugraz.at H

= Shielding Objective (@, h, €)
= ¢ = G(safe)
= h ... finite horizon
= ¢... safety threshold

VsVa:if P ,(s,a,h) < ethenaisshieldedins

* ldea of using P™e*;

" Piio (s,a,h) = P(s,a,s") - Py (s’ h— 1)

s'es

= Shield interferes, if after executing a, the safest policy is too risky




Simple Shield for Quantitative Safety

isec.tugraz.at H

Shield: blocks actions with P™** (s,a,h) < €

Critical Region Ja: P™%* (s,a, h) > €

Dangerous Region
Safe Region Va: P (s,a,h) <€

Va: P (s,a,h) > €

Unsafe Region




Simple Shield for Quantitative Safety

isec.tugraz.at H

Shield: Domain specific solution
* Allow only the safest action
» Pre-defined fallback action (breaking), hand over control to human...

Critical Region Ja: P™%* (s,a, h) > €

Dangerous Region
Safe Region Va: P (s,a,h) <€

Va: P (s,a,h) > €

Unsafe Region




Shield Integration via Constrainted RL 'sec.tugraz.at M

= Agent should learn to behave safely

—>[ Shield O] C(s,a) = Pyy, (s,a)

observation costs

[Environment | RL Agent ]

reward

Tsafe action

= Find policy mgzx],’,fg S.t. ]Z;TQ =PY:C(sp,ar) =2n] <€




Demonstration
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" Training: maskable Proximal Policy Optimization,
via Stable-Baseline3, default parameters

* 59 prob. that wind displaces UAV

= Shield enforces that the minimal probability of reaching an unsafe state within 20 steps is at

mostp € {0.0,0.03,0.05}
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Demo Molecular Assembly

RL Agent
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Demo Molecular Assembly isec.tugraz.at
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Demo Molecular Assembly isec.tugraz.at

SAT-based matching and scheduling

Shield: Forces molecule to stay in corridor




Demo Molecular Assembly isec.tugraz.at




Playground for Shielding

= MinigridSafe
= TEMPEST

* |ntegrates Tempest directly in the
Gymnasium AP|

Minigrid Environments

The environments listed below are implemented in the minigrid/envs directory. Each environme
provides one or more configurations registered with OpenAl gym. Each environment is also

programmatically tunable in terms of size/complexity, which is useful for curriculum learning or
tune difficulty.

Blockedunlockpickupenv Crossingenv Distshiftenv
Doorkeyenv Dynamicobstaclesenv Emptyenv

Fetchenv Fourroomsenv Gotodoorenv

T




isec.tugraz.at H

Shields are great...
...if you have an accurate world model.
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