

Model Checking for LTL – Part 2

Bettina Könighofer

bettina.koenighofer@tugraz.at

Plan for Today

Presentation of Homework

- Part 1 LTL Model Checking
 - Generalized Büchi Automata
 - Translation of LTL to Büchi Automata
- Part 2 Shielded Reinforcement Learning

isec.tugraz.at

- $\mathcal{B} = (\Sigma, \mathbb{Q}, \Delta, \mathbb{Q}^0, \mathbb{F})$ s.t. $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$ is defined as follows:
 - $\mathbf{Q} = \mathbf{Q}_1 \times \mathbf{Q}_2 \times \{\mathbf{0}, \mathbf{1}, \mathbf{2}\}$
 - $\mathbf{Q}^{0} = \mathbf{Q}_{1}^{0} \times \mathbf{Q}_{2}^{0} \times \{\mathbf{0}\}$
 - $F = \mathbf{Q}_1 \times \mathbf{Q}_2 \times \{\mathbf{2}\}$
 - $((q_1,q_2,x), a, (q'_1,q'_2,x')) \in \Delta \Leftrightarrow$
 - 1. $(q_1,a,q_1) \in \Delta_1$ and $(q_2,a,q_2) \in \Delta_2$ and
 - 2. If x=0 and $q'_1 \in \mathbf{F}_1$ then x'=1If x=1 and $q'_2 \in \mathbf{F}_2$ then x'=2If x=2 then x'=0Else, x'=x

Intuition:

x=0 ... waiting for $s \in \mathbb{F}_1$ x=1 ... waiting for $s \in \mathbb{F}_2$

If some s with x=2 is visited inf often, then states from \mathbf{F}_1 and states from \mathbf{F}_2 have been visited inf often.

■ Homework: Define the transition relation for \mathcal{B} using $x \in \{0, 1\}$

- $\mathcal{B} = (\Sigma, \mathbb{Q}, \Delta, \mathbb{Q}^0, \mathbb{F})$ s.t. $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$ is defined as follows:
 - $Q = Q_1 \times Q_2 \times \{0, 1\}$
 - $\mathbf{Q}^{0} = \mathbf{Q}_{1}^{0} \times \mathbf{Q}_{2}^{0} \times \{\mathbf{0}\}$
 - $F = Q_1 \times Q_2 \times \{2\}$
 - $F = F_1 \times Q_2 \times \{0\}$

- $((q_1,q_2,x), a, (q'_1,q'_2,x')) \in \Delta \Leftrightarrow$
 - 1. $(q_1,a,q_1) \in \Delta_1$ and $(q_2,a,q_2) \in \Delta_2$ and
 - 2. If x=0 and $q'_1 \in F_1$ then x'=1If x=1 and $q'_2 \in F_2$ then x'=0Else, x'=x

Intuition:

x=0 ... waiting for $s \in \mathbb{F}_1$ x=1 ... waiting for $s \in \mathbb{F}_2$

If some s with x=2 is visited inf often, then states from \mathbf{F}_1 and states from \mathbf{F}_2 have been visited inf often.

2b) 1. Construct $\neg \varphi_2$

$$\neg \phi_2 \equiv \neg [\textbf{F} \ ((y=2) \land \textbf{X}(x=3))]$$

2b) 2. Construct Büchi automaton $S_{\neg \varphi}$

(already given)

2b) 3. Translate M to an automaton \mathcal{A}

Reminder

- Move labels to incoming transitions
- All states are accepting

2b) 3. Translate M to an automaton \mathcal{A}

2b) 4. Construct automaton \mathcal{B} with $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{S}_{\neg \varphi})$

 t_1

2b) 5. $\mathcal{L}(\mathcal{B}) = \emptyset$?

If
$$\mathcal{L}(\mathcal{B}) = \emptyset \Longrightarrow M \models \phi_2$$

- $\mathcal{L}(\mathcal{B}) = \emptyset$ is evident, as $F_{\mathcal{B}} = \emptyset$.
- Thus, $M \models \phi_2$ holds.

2a) 1. Construct $\neg \phi_1$

$$\neg \phi_1 \equiv \neg [\textbf{F} ((x = 1) \land (y = 3))]$$

2a) 2. Construct Büchi automaton $S_{\neg \varphi}$

(already given)

2a) 4. Construct automaton \mathcal{B} with $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{S}_{\neg \varphi})$

2a) 5. $\mathcal{L}(\mathcal{B}) = \emptyset$?

A counterexample $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ exists

• A counter example for ϕ_1 is

$${x = 0, y = 0} \cdot ({x = 1, y = 2} \cdot {x = 2, y = 3} \cdot {x = 0, y = 1})^{\omega}$$

• Thus, $M \not\models \phi_1$.

Plan for Today

Presentation of Homework

- Part 1 LTL Model Checking
 - Generalized Büchi Automata
 - Translation of LTL to Büchi Automata
- Part 2 Shielded Reinforcement Learning

Model Checking of LTL

• Given a Kripke structure M and a LTL formula φ : Does $M \models \varphi$?

Automata-based Algorithm

- 1. Construct $\neg \varphi$
- 2. Construct a Büchi automaton $S_{\neg \phi}$
- 3. Translate M to an automaton A.
- 4. Construct the automaton \mathcal{B} with $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{S}_{\neg \varphi})$
- 5. If $\mathcal{L}(\mathcal{B}) = \emptyset \Rightarrow M \models \varphi$
- 6. If $\mathcal{L}(\mathcal{B}) \neq \emptyset \Rightarrow M \not\models \varphi$.
 A word $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ is a **counterexample** \Rightarrow a trace in M that does not satisfy φ

Today!

Counterexample

Runs satisfying A

Runs satisfying S

•
$$\mathcal{B} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$$

• An run ρ is accepting $\Leftrightarrow \rho$ visits an accepting state infinitely often.

 $\mathcal{L}(\mathcal{B}) = \{ \text{words with infinitely many } a \}$

Generalized Büchi Automata

- Have several sets of accepting states
- - $\mathbf{F} = \{F_1, \dots, F_k\}$, where for every $1 \le i \le k$, $F_i \subseteq Q$
- A run ρ of \mathcal{B} is accepting if for each $F_i \in F$, $\inf(\rho) \cap F_i \neq \emptyset$

Generalized Büchi Automata

- A run ρ of \mathcal{B} is accepting if for each $F_i \in F$, $\inf(\rho) \cap F_i \neq \emptyset$
- What words are accepted?
 - a. The infinite word b^{ω} ?
 - b. The infinite word a^{ω} ?
 - c. The infinite word $(ab)^{\omega}$?

$$F_1 = \{q_1, q_2\}, F_2 = \{q_1\}$$

Algorithm: Generalized Büchi To Büchi Automata

- Given generalized Büchi Automaton $\mathcal{B} = (\Sigma, \mathbb{Q}, \Delta, \mathbb{Q}^0, \mathbb{F})$ with $\mathbb{F} = \{F_1, \dots, F_k\}$
- Construct Büchi Automaton B' that accepts the same language

Idea:

- Introduce counter from $1 \dots k \rightarrow k$ copies of the state space
- In copy i we wait for accepting state in F_i
- When F_i is visited in copy i, redirect edges to move to copy i + 1 (from F_k to copy i = 1)
- \rightarrow A cycle through all copies will contain accepting states from each set F_1, \dots, F_k

Algorithm: Generalized Büchi To Büchi Automata

- Given generalized Büchi Automaton $\mathcal{B} = (\Sigma, \mathbb{Q}, \Delta, \mathbb{Q}^0, \mathbb{F})$ with $\mathbb{F} = \{F_1, \dots, F_k\}$
- Construct Büchi Automaton B' that accepts the same language
- $\mathcal{B}' = (\Sigma, \mathbb{Q} \times \{1, ..., k\}, \Delta', \mathbb{Q}^0 \times \mathbb{1}, \mathbb{F}_k \times k)$ with:
- Δ' : $((q, x), a, (q', y)) \in \Delta'$ if
 - $(q, a, q') \in \Delta$
 - If $q \in F_i$ and x = i, then y = i + 1 for i < k
 - If $q \in F_k$ and x = k, then y = 1
 - Otherwise, x = y.

Size of
$$\mathcal{B}$$
' = (size of \mathcal{B})×k

•
$$\mathcal{L}(\mathcal{B}) = c^*(a|b)(a|b|c)^{\omega}$$

- Translate generalized Büchi Automaton B to a Büchi automaton B'
- 1. Create two copies, since we have two accepting sets

- Translate generalized Büchi Automaton **B** to a Büchi automaton **B**'
- 4. Only one copy is accepting

- Translate generalized Büchi Automaton B to a Büchi automaton B'
- 4. Only one copy is accepting
- 5. Remove unreachable states

Plan for Today

Presentation of Homework

- Part 1 LTL Model Checking
 - Generalized Büchi Automata
 - Translation of LTL to Büchi Automata

- Part 2 Reactive Synthesis
 - Safety Games
 - Reachability Games
 - Büchi Games

Translation of LTL to Büchi Automata

- Today: discuss simple algorithm from Vardi and Wolper (book, page 98)
- Size of automaton always exponential in the size of the specification

 More efficient algorithm by Gerth, Peled, Vardi and Wolper (book, page 101)

Algorithm: LTL to Büchi Automata

- Input: LTL specification φ
- **Output:** Büchi automaton \mathcal{A}_{φ} s. t. \mathcal{A}_{φ} accepts exactly all the traces that satisfy φ
- Steps of the Algorithm:
 - 1. Rewrite of φ to use only \neg, \land, \lor, X, U operators
 - via rewriting rules e.g., $F\varphi = true\ U\varphi$, $G\varphi = \neg F \neg \varphi$ etc ...
 - 2. Translate φ into generalized Büchi Automaton

3. Translate generalized Büchi to Büchi automaton

- Input: LTL specification φ
- **Output:** Büchi automaton \mathcal{A}_{φ} s. t. \mathcal{A}_{φ} accepts exactly all the traces that satisfy φ
- Step 1: Defining the **state space** of \mathcal{A}_{φ} :
 - Idea: Each state q is labelled with a set of sub-formulas that should be satisfied on paths starting at q.
 - Algorithm:
 - 1. Build the **closure** $cl(\varphi)$ of $\varphi \equiv$ subformulas of φ and their negation
 - $\varphi \in cl(\varphi)$.
 - If $\varphi_1 \in cl(\varphi)$, then $\neg \varphi_1 \in cl(\varphi)$.
 - If $\neg \varphi_1 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$.
 - If $\varphi_1 \vee \varphi_2 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$ and $\varphi_2 \in cl(\varphi)$.
 - If $X \varphi_1 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$.
 - If $\varphi_1 U \varphi_2 \in cl(\varphi)$, then $\varphi_1 \in cl(\varphi)$ and $\varphi_2 \in cl(\varphi)$.

- Input: LTL specification φ
- **Output:** Büchi automaton \mathcal{A}_{φ} s. t. \mathcal{A}_{φ} accepts exactly all the traces that satisfy φ
- Step 1: Defining the **state space** of \mathcal{A}_{φ} :
 - Idea: Each state q is labelled with a set of sub-formulas that should be satisfied on paths starting at q.
 - Algorithm:
 - 1. Build the **closure** $cl(\varphi)$ of $\varphi \equiv$ subformulas of φ and their negation
 - 2. Compute the **good sets** $S \subseteq cl(\varphi) \equiv \text{maximal sets}$ of formulas in $cl(\varphi)$ that are **consistent**
 - For all $\varphi_1 \in cl(\varphi)$: $\varphi_1 \in S \Leftrightarrow \neg \varphi_1 \notin S$,
 - For all $\varphi_1 \lor \varphi_2 \in cl(\varphi)$: at least one of φ_1, φ_2 is in S.

- Input: LTL specification φ
- **Output:** Büchi automaton \mathcal{A}_{φ} s. t. \mathcal{A}_{φ} accepts exactly all the traces that satisfy φ
- Step 1: Defining the **state space** of \mathcal{A}_{φ} :
 - Idea: Each state q is labelled with a set of sub-formulas that should be satisfied on paths starting at q.
 - Algorithm:
 - 1. Build the **closure** $cl(\varphi)$ of $\varphi \equiv$ subformulas of φ and their negation
 - 2. Compute the **good sets** $S \subseteq cl(\varphi) \equiv \text{maximal sets}$ of formulas in $cl(\varphi)$ that are **consistent**
 - 3. All **good sets of cl(\varphi)** define the state space of \mathcal{A}_{φ}

- **Example: Define the state space** of \mathcal{A}_{ω} :
 - $\varphi \coloneqq \neg h \cup c$
 - Algorithm:
 - Build the **closure cl(\varphi)** of $\varphi \equiv$ subformulas of φ and their negation
 - 2. Compute the **good sets** $S \subseteq cl(\varphi) \equiv \text{maximal sets}$ of formulas in $cl(\varphi)$ that are **consistent**
 - 3. All **good sets of cl(\varphi)** define the state space of \mathcal{A}_{φ}
 - Solution:

•
$$cl(\varphi) := \{h, \neg h, c, \neg c, \varphi, \neg \varphi\}$$

•
$$cl(\varphi) \coloneqq \{h, \neg h, c, \neg c, \varphi, \neg \varphi\}$$

• $Q = \{\{h, c, \varphi\}, \{\neg h, c, \varphi\}, \{h, c, \varphi\}, \{\neg h, \neg c, \varphi\}, \{h, c, \neg \varphi\}, \{\neg h, c, \neg \varphi\}, \{h, c, \neg \varphi\}, \{\neg h, \neg c, \neg \varphi\}\}$

- Input: LTL specification φ
- **Output:** Büchi automaton \mathcal{A}_{φ} s. t. \mathcal{A}_{φ} accepts exactly all the traces that satisfy φ
- Step 1: Defining the **state space** of \mathcal{A}_{φ}
 - Idea: Each state q is labelled with a set of sub-formulas that should be satisfied on paths starting at q.
- Step 2: Defining the **transition relation** of \mathcal{A}_{φ}

- Q = set of all the good sets in $cl(\varphi)$
 - Idea: Each state q is labelled with a set of sub-formulas that should be satisfied on paths starting at q.
- For $q, q' \in Q$ and $\sigma \subseteq AP$, $(q, \sigma, q') \in \Delta$ if:
 - $\sigma = q' \cap AP$
 - For all $X\varphi_1 \in cl(\varphi)$: if $X\varphi_1 \in q$ then $\varphi_1 \in q'$
 - For all $\varphi_1 U \varphi_2 \in cl(\varphi)$: if $\varphi_1 \cup \varphi_2 \in q$ then either $\varphi_2 \in q$ or **both** $\varphi_1 \in q$ **and** $\varphi_1 \cup \varphi_2 \in q'$

Example: Transition Relation of GBA ${\cal A}_{\varphi}$

- $\varphi \coloneqq \neg h \ U \bigcirc$
- lacksquare Draw the transitions of ${\cal A}_{arphi}$

For $q, q' \in Q$ and $\sigma \subseteq AP$, $(q, \sigma, q') \in \Delta$ if:

- $\sigma = q' \cap AP$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{either } \varphi_2 \in q \text{ or both}$ $\varphi_1 \in q \text{ and } \varphi_1 \cup \varphi_2 \in q'$

Example: Transition Relation of GBA ${\cal A}_{\varphi}$

- $\varphi \coloneqq \neg h \ U \bigcirc$
- lacksquare Draw the transitions of ${\cal A}_{arphi}$

For $q, q' \in Q$ and $\sigma \subseteq AP$, $(q, \sigma, q') \in \Delta$ if:

- $\bullet \sigma = q' \cap AP$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{either } \varphi_2 \in q \text{ or both}$ $\varphi_1 \in q \text{ and } \varphi_1 \cup \varphi_2 \in q'$

Example: Transition Relation of GBA \mathcal{A}_{arphi}

- $\varphi \coloneqq \neg h \ U \bigcirc$
- lacksquare Draw the transitions of ${\cal A}_{arphi}$

For $q, q' \in Q$ and $\sigma \subseteq AP$, $(q, \sigma, q') \in \Delta$ if:

- $\bullet \sigma = q' \cap AP$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{either } \varphi_2 \in q \text{ or both}$ $\varphi_1 \in q \text{ and } \varphi_1 \cup \varphi_2 \in q'$

Example: Transition Relation of GBA ${\cal A}_{\varphi}$

- $\varphi \coloneqq \neg h \ U \bigcirc$
- lacksquare Draw the transitions of ${\cal A}_{arphi}$

For $q, q' \in Q$ and $\sigma \subseteq AP$, $(q, \sigma, q') \in \Delta$ if:

- $\bullet (\sigma = q' \cap AP)$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{either } \varphi_2 \in q \text{ or both}$ $\varphi_1 \in q \text{ and } \varphi_1 \cup \varphi_2 \in q'$

Example: Transition Relation of GBA \mathcal{A}_{arphi}

- $\varphi \coloneqq \neg h \cup c$
- lacksquare Draw the transitions of ${\cal A}_{arphi}$

 \sim

For $q, q' \in Q$ and $\sigma \subseteq AP$, $(q, \sigma, q') \in \Delta$ if:

- $\bullet (\sigma = q' \cap AP)$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{ either } \varphi_2 \in q \text{ or both}$

 $\varphi_1 \in q$ and $\varphi_1 \cup \varphi_2 \in q'$

Example: Transition Relation of GBA ${\cal A}_{\varphi}$

- $\varphi \coloneqq \neg h \cup c$
- lacksquare Draw the transitions of ${\cal A}_{arphi}$

For $q, q' \in Q$ and $\sigma \subseteq AP$, $(q, \sigma, q') \in \Delta$ if:

- $\bullet \sigma = q' \cap AP$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{ either } \varphi_2 \in q \text{ or both }$

 $\varphi_1 \in q$ and $\varphi_1 \cup \varphi_2 \in q'$

Example: Transition Relation of GBA \mathcal{A}_{ω}

- $\varphi \coloneqq \neg h \cup c$
- lacksquare Draw the transitions of ${\cal A}_{arphi}$

For $q, q' \in Q$ and $\sigma \subseteq AP$, $(q, \sigma, q') \in \Delta$ if:

- $\bullet (\sigma = q' \cap AP)$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{ either } \varphi_2 \in q \text{ or both}$ $\varphi_1 \in q$ and $\varphi_1 \cup \varphi_2 \in q'$

Example: Transition Relation of GBA ${\cal A}_{\varphi}$

- $\varphi \coloneqq \neg h \cup c$
- lacksquare Draw the transitions of ${\cal A}_{arphi}$

For $q, q' \in Q$ and $\sigma \subseteq AP$, $(q, \sigma, q') \in \Delta$ if:

- $\bullet (\sigma = q' \cap AP)$
- For all $X\varphi_1 \in cl(\varphi)$:
 - $X\varphi_1 \in q \Leftrightarrow \varphi_1 \in q'$
- For all $\varphi_1 U \varphi_2 \in cl(\varphi)$:
 - $\varphi_1 \cup \varphi_2 \in q \Leftrightarrow \text{ either } \varphi_2 \in q \text{ or both}$

 $\varphi_1 \in q$ and $\varphi_1 \cup \varphi_2 \in q'$

LTL formula $oldsymbol{arphi}$ to Generalized Büchi Automata $oldsymbol{\mathcal{A}}_{arphi}$

- Q = set of all the good sets in $cl(\varphi)$
 - Idea: Each state q is labelled with a set of sub-formulas that should be satisfied on paths starting at q.
- For $q, q' \in Q$ and $\sigma \subseteq AP$, $(q, \sigma, q') \in \Delta$ if:
 - $\sigma = q' \cap AP$
 - For all $X\varphi_1$: if $X\varphi_1 \in q$ then $\varphi_1 \in q'$
 - For all $\neg X \varphi_1$: if $\neg X \varphi_1 \in q$ then $\neg \varphi_1 \in q'$
 - For all $\varphi_1 U \varphi_2$: if $\varphi_1 \cup \varphi_2 \in q$ then either $\varphi_2 \in q$ or **both** $\varphi_1 \in q$ **and** $\varphi_1 \cup \varphi_2 \in q'$
 - For all $\neg (\varphi_1 U \varphi_2)$: if $\neg (\varphi_1 U \varphi_2) \in q$ then either $\neg \varphi_2 \in q$ and **either** $\neg \varphi_1 \in q$ **or** $\neg (\varphi_1 U \varphi_2) \in q$

Example: Transition Relation of GBA \mathcal{A}_{φ}

- $\varphi \coloneqq \neg h \cup c$
- Draw the transitions of \mathcal{A}_{φ}

LTL formula $oldsymbol{arphi}$ to Generalized Büchi Automata $oldsymbol{\mathcal{A}}_{arphi}$

- Q = set of all the good sets in $cl(\varphi)$
 - Idea: Each state q is labelled with a set of sub-formulas that should be satisfied on paths starting at q.
- For $q, q' \in Q$ and $\sigma \subseteq AP$, $(q, \sigma, q') \in \Delta$ if:
 - $\sigma = q' \cap AP$
 - For all $X\varphi_1 \in cl(\varphi)$: if $X\varphi_1 \in q$ then $\varphi_1 \in q'$
 - For all $\varphi_1 U \varphi_2 \in cl(\varphi)$: if $\varphi_1 \cup \varphi_2 \in q$ then either $\varphi_2 \in q$ or **both** $\varphi_1 \in q$ **and** $\varphi_1 \cup \varphi_2 \in q'$
- Initial States?
- Accepting States?

Example: Transition Relation of GBA \mathcal{A}_{φ}

Initial States?

Example: Transition Relation of GBA \mathcal{A}_{φ}

LTL formula $oldsymbol{arphi}$ to Generalized Büchi Automata $oldsymbol{\mathcal{A}}_{arphi}$

- Q = set of all the good sets in $cl(\varphi) \cup \{\iota\}$
 - Idea: Each state q is labelled with a set of sub-formulas that should be satisfied on paths starting at q.
- For $q, q' \in Q$ and $\sigma \subseteq AP$, $(q, \sigma, q') \in \Delta$ if:
 - $\sigma = q' \cap AP$
 - For all $X\varphi_1 \in cl(\varphi)$: if $X\varphi_1 \in q$ then $\varphi_1 \in q'$
 - For all $\varphi_1 U \varphi_2 \in cl(\varphi)$: if $\varphi_1 \cup \varphi_2 \in q$ then either $\varphi_2 \in q$ or **both** $\varphi_1 \in q$ **and** $\varphi_1 \cup \varphi_2 \in q'$
 - $(\iota, \sigma, q) \in \Delta \Leftrightarrow \varphi \in q \text{ and } \sigma = q \cap AP$

• Accepting States?

LTL formula $oldsymbol{arphi}$ to Generalized Büchi Automata $oldsymbol{\mathcal{A}}_{arphi}$

- $\mathcal{A}_{\omega} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{L}, \mathbf{F})$
- Q = set of all the good sets in $cl(\varphi) \cup \{\iota\}$
 - Idea: Each state q is labelled with a set of sub-formulas that should be satisfied on paths starting at q.
- For $q, q' \in Q$ and $\sigma \subseteq AP$, $(q, \sigma, q') \in \Delta$ if:
 - $\sigma = q' \cap AP$
 - For all $X\varphi_1 \in cl(\varphi)$: if $X\varphi_1 \in q$ then $\varphi_1 \in q'$
 - For all $\varphi_1 U \varphi_2 \in cl(\varphi)$: if $\varphi_1 \cup \varphi_2 \in q$ then either $\varphi_2 \in q$ or **both** $\varphi_1 \in q$ **and** $\varphi_1 \cup \varphi_2 \in q'$
 - $(\iota, \sigma, q) \in \Delta \Leftrightarrow \varphi \in q \text{ and } \sigma = q \cap AP$
- Accepting States
 - For every $\varphi_1 \cup \varphi_2$, **F** includes the set $F_{\varphi_1 \cup \varphi_2} = \{q \in \mathbb{Q} \mid \varphi_2 \in q \text{ or } \neg (\varphi_1 \cup \varphi_2) \in q\}$.

Example: Transition Relation of GBA \mathcal{A}_{φ}

Plan for Today

Presentation of Homework

- Part 1 LTL Model Checking
 - Generalized Büchi Automata
 - Translation of LTL to Büchi Automata

Part 2 – Shielded Reinforcement Learning

Outline

Shielding for Safety

- Integration of a shield in RL
- Symbolic Models
- Shields with Absolute Safety Guarantees
- Shields with Probabilistic Guarantees

Reinforcement Learning

- Decision Making under Uncertainty
- Environment modeled as Markov Decision Process

Uncertainty caused by sensor imprecision, wind gusts, and limited view

Complex task specification

Reinforcement Learning

RL agent learns optimal policy via trial and error

Find a policy π^* that maximixes $\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_t\right]$ with the discount factor $0 \le \gamma \le 1$ and reward R_t at time t

Reinforcement Learning

Limitations

- Safety violations (during exploration)
- RL is data-hungry
- Rewards cannot capture sophisticated task specifications

Integration of a Shield in RL

Pre-Shielding

Integration of a Shield in RL

Pre-Shielding

- Advantages
 - Safety during training/deployment

Advantages

- Safety during training/deployment
- Can improve the learning performance of RL
- A shield injects domain knowledge to reduce search space

Disadvantages

- Shielding Assumptions
 - Symbolic model is correct and captures everything safety critical
 - Observations are correct

Disadvantages

- Shielding Assumptions
 - Symbolic model is correct and captures everything safety critical
 - Observations are correct
- Naive integration can destroy association between executed action and reward.

Disadvantages

- Shielding Assumptions
 - Symbolic model is correct and captures everything safety critical
 - Observations are correct
- Naive integration can destroy association between executed action and reward.
- Shield may hinder agent to explore environment.

Advantages

- Easy integration for maskable RL algorithms
- Final decision about which action to explore remains with RL agent

Disadvantages

Integration difficult for non-maskable RL algorithms

Others as before

Pre-Shielding

Shield Integration via Constrainted RL

Agent should learn to behave safely

Find policy
$$\max_{\theta} J_R^{\pi_{\theta}} = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^t R_t(s_t, a_t, s_{t+1}) \right] \quad s. t. \quad J_C^{\pi_{\theta}} \leq \epsilon.$$

Outline

Shielding for Safety

- Integration of a shield in RL
- Symbolic Models
- Shields with Absolute Safety Guarantees
- Shields with Probabilistic Guarantees

Symbolic World Model

- Assumption: Environment has finite number of states, time is discrete
- → model as Markov Decision Process M

Symbolic World Model

- Assumption: Environment has finite number of states, time is discrete
- → model as Markov Decision Process M
- ullet φ is a safety specification in temporal logic
 - Defines unsafe states in M
- Shield prevents/limits probability of reaching an unsafe state in M

Scalability of Shielded Learning

- Shielding is less scalable as RL
 - Shielding can handle MDPs with Millions of states
- Shield computed on safety-relevant MDP
 - RL works on original MDP
 - Shield works with MDP with reduced feature space

Scalability of Shielded Learning

- Shielding is less scalable as RL
 - Shielding can handle MDPs with Millions of states
- Shield computed on safety-relevant MDP
 - RL works on original MDP
 - Shield works with MDP with reduced feature space

How to get the Model?

• Most of the time, no models are available!

How to get the Model?

- Most of the time, no models are available!
- Juse automata learning to learn world model

M. Tappler, E. Muskardin, B. Aichernig, B. Könighofer: Learning Environment Models with Continuous Stochastic Dynamics. ICST 2024

Outline

Shielding for Safety

- Integration of a shield in RL
- Symbolic Models
- Shields with Absolute Safety Guarantees
- Shields with Probabilistic Guarantees

- Given: MDP M, safety spec φ defines set of unsafe states in M
- Shield provides absolute safety guarantees
 - Unsafe states are never visited!
 - In LTL: G(safe)

- Shield Computation: Transform MDP to 2-Player Game
 - Replace probabilities by choices of environment

- Shield Computation: Transform MDP to 2-Player Game
 - Replace probabilities by choices of environment

- Shield Computation: Transform MDP to 2-Player Game
 - Replace probabilities by choices of environment

 $MDP = 1 \frac{1}{2} Player$

→ Player 1: RL Agent

→ Probabilistic ½ Player

2 Player Game

→ Player 1: RL Agent

→ Plyer 2: Environment

- Shield computation = Solve Safety Game
 - Agent: Good player: wins if only safe states are visited
 - Environment: Evil player: wins if an unsafe state is visited

- Shield computation = Solve Safety Game
 - Agent: Good player: wins if only safe states are visited
 - Environment: Evil player: wins if an unsafe state is visited
 - Solve safety game
 - Fixpoint computation
 - Linear time in size of graph

Player 1 wins, if is never visited

Player 1 wins, if **never** visited

Player 1 wins, if **never** visited

Player 1 wins, if **never** visited

Player 1 wins, if **never** visited

Player 1 wins, if **never** visited

Player 1 wins, if **never** visited

 S_3

Player 1 wins, if is never visited

Safe Region / Dangerous Region / Unsafe Region

Video Pac-Man

Demo

Outline

Shielding for Safety

- Integration of a shield in RL
- Symbolic Models
- Shields with Absolute Safety Guarantees
- Shields with Probabilistic Guarantees

Probabilistic Worldview for RL

- Worst-case assumptions are too pessimistic
 - E.g. Sensors:
 - Assuming that any sensor always fails does not yield to useful results
- Consider finite horizon
 - A bad event that can happen with low probability at each step, will eventually occur with probability 1.
 - Choose finite horizon of h steps
 - E.g. h = mission time, or expected battery life...

Shield with Probabilistic Safety Guarantees

- Given: MDP M, safety spec φ defines set of unsafe states in M
- Shield: Limits probability of visiting an unsafe state.

Probabilistic Model Checking

- $M = (S, s_0, A, P)$... Markov Decision Process (MDP)
- π : $S \to A$... policy
- $M^{\pi} = (S, s_0, P)$ induced Markov Chain by applying π to M

Probabilistic Model Checking

$$\varphi = G(\text{safe})$$
, policy π , MDP M

Model Checking:

 $\blacksquare \mathbb{P}_{M^{\pi}, \varphi} \colon S \times N \to [0, 1]$

- ... expected probability to satisfy φ from a state s within h steps in the MC M^π
- $\mathbb{P}_{M,\varphi}^{max}(s,a,h) = \sum_{s' \in S} P(s,a,s') \cdot \mathbb{P}_{M,\varphi}^{max}(s',h-1)$

... **maximal** expected probability over all policies to satisfy φ from a state s when **taking action** α within h steps.

- Shielding Objective $\langle \boldsymbol{\varphi}, \boldsymbol{h}, \boldsymbol{\epsilon} \rangle$
 - $\varphi = G(safe)$
 - h ... finite horizon
 - ϵ ... safety threshold

 $\forall s \forall a$: if $\mathbb{P}^{max}_{\varphi}(s, a, h) < \epsilon$ then a is shielded in s

- Idea of using \mathbb{P}^{max} :
 - $\mathbb{P}_{M,\varphi}^{max}(s,a,h) = \sum_{s' \in S} P(s,a,\mathbf{s}') \cdot \mathbb{P}_{M,\varphi}^{max}(\mathbf{s}',h-1)$
 - Shield interferes, if after executing a, the **safest policy** is too risky

Shield: blocks actions with $\mathbb{P}^{max}_{\varphi}(s, a, h) < \epsilon$

Simple Shield for Quantitative Safety

isec.tugraz.at

Shield: Domain specific solution

- Allow only the safest action
- Pre-defined fallback action (breaking), hand over control to human...

Shield Integration via Constrainted RL

Agent should learn to behave safely

• Find policy $\max_{\theta} J_R^{\pi_{\theta}} s.t.$ $J_C^{\pi_{\theta}} = \mathbb{P}[\sum_t C(s_t, a_t) \ge \eta] \le \epsilon$

Demonstration

- Training: maskable Proximal Policy Optimization, via Stable-Baseline3, default parameters
- 5% prob. that wind displaces UAV
- Shield enforces that the **minimal probability** of reaching an unsafe state within 20 steps is at most $p \in \{0.0, 0.03, 0.05\}$

SAT-based matching and scheduling

Shield: Forces molecule to stay in corridor

Playground for Shielding

- MinigridSafe
- TEMPEST
 - Integrates Tempest directly in the Gymnasium API

Minigrid Environments

The environments listed below are implemented in the minigrid/envs directory. Each environme provides one or more configurations registered with OpenAl gym. Each environment is also programmatically tunable in terms of size/complexity, which is useful for curriculum learning or tune difficulty.

Shields are great...

...if you have an accurate world model.

