JAY,

Graz
SCIENCE

Model Checking for LTL - ecniato%
Part 2

Bettina Konighofer

bettina.koenighofer@tugraz.at

> isec.tugraz.at

mailto:Bettina.koenighofer@tugraz.at

Plan for Today isec.tugraz.at M

= Presentation of Homework

= Part1-LTL Model Checking

= Generalized Buichi Automata
= Translation of LTL to Blichi Automata

= Part 2 - Shielded Reinforcement Learning

Algorithm: Intersection of Biichi Automata (last week) ~ isectugrazat =

= B=(X,Q,A,Q°%F)s.t. L(B) = L(B,) N L(B,) is defined as follows:

- 10,1, 2}
- {0}
o {2} Intuition:

x=0 ... waiting for s € F,
x=1...waiting fors € F,

" ((91,02:%), 3, (9°,9"X) €A <
1. (q1,a>q,1) < Al and (qz,a,q,z) S A2 and
2. Ifx=0and q’;€ F, then x’=1
Ifx=1and q’,€ F, then x’=2
If x=2 then x’=0
Else, x’=x

If some s with x=2 is visited inf often,
then states from F, and states from F,

have been visited inf often.

= Homework: Define the transition relation for B using x € {0, 1}

Algorithm: Intersection of Biichi Automata (last week) ~ isectugrazat =

= B=(X,Q,A,Q°%F)s.t. L(B) = L(B,) N L(B,) is defined as follows:

- {0, 1}
" {0}
o {2} Intuition:

x=0 ... waiting for s € F,
x=1...waiting fors € F,

» F=F,xQ, x{0}

If some s with x=2 is visited inf often,

= ((), a, (q'1,0%,x)) € A then states from F, and states from F,
9092%), 4, 9,4 ,X)) € & < have been visited inf often.

1. (94,a,9’y) € A, and (g,,a,q’,) € A, and
2. Ifx=0and q’,e F; then x’=1

If x=1and q’,€ F, then x’=

Else, x’=x

isec.tugraz.at H

2b) 1. Construct -2

2 = A[F ((y =2) AX(x =3))]

isec.tugraz.at H

2b) 2. Construct Buchi automaton $-¢

(already given)

isec.tugraz.at H

2b) 3. Translate M to an automaton A

Reminder

e Move labels to incoming transitions
e Allstates are accepting

_ O

isec.tugraz.at H

2b) 3. Translate M to an automaton A

_ O

isec.tugraz.at H

2b) 4. Construct automaton B with L(B) N L(S-¢)

y & 2
y =2
> t1 {X O
}
X # 2

s1.t1.1

isec.tugraz.at H

{

0,
0

}
}

X
y

{ 1,
2

X
y

s1.t1.1

If £L(B) =0 = M [¢,

e L(B)=10is evident, as Fgz =10
e Thus, M = ¢, holds.

isec.tugraz.at H

2a) 1. Construct -

@1 =[F ((x=1) A(y=3))]

isec.tugraz.at H

2a) 2. Construct Buchi automaton S-

(already given)

x#1 vy=#3

isec.tugraz.at H

2a) 4. Construct automaton B with L(B) = L(A) N L(S-)

isec.tugraz.at H

A counterexample v - w® € L(B) exists

e A counter example for ¢; is
{r=0,y=0}-{z=1Ly=2}-{z=2,y=3} - {z =0,y =1}~

e Thus, M [~ ¢.

Plan for Today isec.tugraz.at M

= Presentation of Homework

= Part1-LTL Model Checking

= Generalized Buichi Automata
= Translation of LTL to Blichi Automata

= Part 2 - Shielded Reinforcement Learning

Model Checking of LTL isec.tugraz.at

= Given a Kripke structure M and a LTL formula ¢: Does M = ¢?

= Automata-based Algorithm

Construct ¢ ’ Today!
Construct a Biichi automaton §_,

Translate M to an automaton A.

Construct the automaton B with L(B) = L(A) N L(S_,)
fLB)=0=>MEq@

It L(B) 0 =M ¥ @.
Aword v -w® € L(B)is acounterexample Runs satisfying A
—> atrace in M that does not satisfy ¢

Runs satisfying §
Bettina Konighofer

Counterexample

\

o> oA W N e

Blichi Automata isec.tugraz.at W

" B=(X,Q,4,Q°F)

= Anrun pis accepting & p visits an accepting state infinitely often.

a
H Q L(B) = {words with infinitely many a}
\/
a b b

Generalized Biichi Automata isec.tugraz.at W

= Have several sets of accepting states
" B=(2,Q,A4,Q%F)
» F = {F, .., F.},whereforevery1 <i < k,F, € Q

= Arun p of Bisaccepting ifforeach F; € F, inf(p) N F; = @

@

Generalized Biichi Automata isec.tugraz.at W

= Arunpof BisacceptingifforeachF; € F, inf(p) N F; +# @

= What words are accepted?
a. Theinfinite word b®? X
b. Theinfinite word a®? v/
c. Theinfinite word (ab)®?

Fi =191, 92}, F>={q1}

Algorithm: Generalized Buichi To Biichi Automata isec.tugraz.at

= Given generalized Buchi Automaton B = (£,Q,A,Q%F) withF = {F, ..., F,}
= Construct Buchi Automaton B’ that accepts the same language

" |dea:
* Introduce counterfrom 1 ...k = k copies of the state space
= In copy i we wait for accepting statein F;
= When F; is visited in copy i, redirect edges to move to copy i + 1 (from Fyto copyi = 1)
= - Acycle through all copies will contain accepting states from eachset F, ..., F,

a
/\!
_/

b b

Algorithm: Generalized Buichi To Biichi Automata isec.tugraz.at

= Given generalized Buchi Automaton B = (£,Q,A,Q%F) withF = {F, ..., F,}
= Construct Buchi Automaton B’ that accepts the same language

= B'=(X,Qx{1,.., k},A,Q%< 1, F, x k) with:

= A% ((q,x),a, (q’,y)) e A if

" (g,a,9) € A
" fgeF,andx =i,theny=i+4+1fori<k
" Ifge Fyandx = k,theny =1

= Otherwise,x = y. Size of B’ = (size of B)xk

a
/\!
_/

b b

Example: Generalized Biichi To Blichi Automata isec.tugraz.at

" L(B)=c"(alb)(a|blc)®

Example: Generalized Blichi To Buichi Automata isec.tugraz.at

= Translate generalized Buchi Automaton B to a Buchi automaton B’
1. Create two copies, since we have two accepting sets

Example: Generalized Biichi To Blichi Automata isec.tugraz.at

= Translate generalized Buchi Automaton B to a Buchi automaton B’
4. Only one copy is accepting

Example: Generalized Biichi To Blichi Automata isec.tugraz.at

= Translate generalized Buchi Automaton B to a Buchi automaton B’
4. Only one copy is accepting

5. Remove unreachable states

Plan for Today isec.tugraz.at M

= Presentation of Homework

= Part1-LTL Model Checking

= Generalized Biichi Automata
= Translation of LTL to Blichi Automata

= Part 2 - Reactive Synthesis
= Safety Games
» Reachability Games
* Blichi Games

Translation of LTL to Blichi Automata isec.tugraz.at M

= Today: discuss simple algorithm from Vardi and Wolper (book, page 98)
= Size of automaton always exponential in the size of the specification

L.!J M.Y. Vardi, and P. Wolper.
An automata-theoretic approach to automatic program verification.

In Logic in Computer Science (LICS), pages 332-344, 1986

= More efficient algorithm by Gerth, Peled, Vardi and Wolper
(book, page 101)

L...J R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper.
Simple on-the-fly automatic verification of linear temporal logic.
In Protocol Specification Testing and Verification, pages 3-18, 1995

isec.tugraz.at H

Algorithm: LTL to Buchi Automata

= Input: LTL specification ¢
= Output: Buchi automaton A, s.t. A, accepts exactly all the traces that satisfy ¢

= Steps of the Algorithm:

1. Rewrite of ¢ to use only —,A,V, X, U operators
* viarewritingrulese.g., Fo = true Up, Gp = —F—@ etc ...

2. Translate ¢ into generalized Biichi Automaton <mm

3. Translate generalized Blchi to Buchi automaton

LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= Input: LTL specification ¢
= Output: Buchi automaton A, s.t. A, accepts exactly all the traces that satisfy ¢

= Step 1: Defining the state space of A,

» |dea: Each state g is labelled with a set of sub-formulas that should be
satisfied on paths starting at g.

= Algorithm:
1. Build the closure cl(¢) of ¢ = subformulas of ¢ and their negation
= ¢ € cl(p).

If o, € cl(@), then =@, € cl(p).
If =, € cl(p), then ¢, € cl(p).
If o,V @, € cl(p),then ¢, € cl(p) and @, € cl(p).
If X @, € cl(p), then ¢, € cl(p).
If o, U @, € cl(p),then @, € cl(¢p) and ¢, € cl(p).

LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= Input: LTL specification ¢
= Output: Buchi automaton A, s.t. A, accepts exactly all the traces that satisfy ¢

= Step 1: Defining the state space of A,
» |dea: Each state g is labelled with a set of sub-formulas that should be
satisfied on paths starting at g.
= Algorithm:
1. Build the closure cl(¢) of ¢ = subformulas of ¢ and their negation
2. Compute the good sets S € c/(¢) = maximal sets of formulas in cl(¢p) that are consistent
» Forallp, Ecllp): p,€ESS ¢, &S,
» Forall @,V @, € cl(p): at least one of ¢, @, isin S.

LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= Input: LTL specification ¢
= Output: Buchi automaton A, s.t. A, accepts exactly all the traces that satisfy ¢

= Step 1: Defining the state space of A,
» |dea: Each state g is labelled with a set of sub-formulas that should be
satisfied on paths starting at g.
= Algorithm:
1. Build the closure cl(¢) of ¢ = subformulas of ¢ and their negation
2. Compute the good sets S € c/(¢) = maximal sets of formulas in cl(¢p) that are consistent
3. All good sets of cl(¢p) define the state space of A,

LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= Example: Define the state space of A ,:
" Q= —-hUc
= Algorithm:
1. Build the closure cl(¢) of ¢ = subformulas of ¢ and their negation
2. Compute the good sets S € c/(¢) = maximal sets of formulas in cl(¢p) that are consistent
3. All good sets of cl(¢p) define the state space of A,

= Solution:
= cl(p) = {h,=h,c,—c, @, @}

-y . Q = {{h' C, <,0}, {_'hJ C, <,0}, {h, C, <P}, {_'h' —C, (p};
{h,c,=@},{=h,c,—@},{h c,—@},{=h —c,—¢@}}

LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= Input: LTL specification ¢
= Output: Buchi automaton A, s.t. A, accepts exactly all the traces that satisfy ¢

= Step 1: Defining the state space of A,

» |dea: Each state g is labelled with a set of sub-formulas that should be satisfied on paths
starting at g.

= Step 2: Defining the transition relation of A,

LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= A,=(2,Q,4,Q%F)

= (Q=setofallthe goodsetsincl(p)
» |dea: Each state g is labelled with a set of sub-formulas that should be satisfied on paths starting at g.

= Forg,q' € Qando € AP,(q,0,q9") € Alf:
= g=q N AP
= Forall X, € cl(g): if X, € q then ¢, € ¢
= Forallp,U ¢, € cl(p):if ¢, U @, € qtheneitherp,€qorbothp, €qandp,Up,€q’

isec.tugraz.at H

Example: Transition Relation of GBA A,

((W’f) Uc)
h ¢

" ¢ :=—h U
= Draw the transitions of A,

Forq,q’ € Q and o S AP, (q,0,q9") € Aif:

= g=q N AP

= Forall X¢, € cl(¢): 7
" X9 €q & 91 €EQq

= Forall p,U ¢, € cl(p):

= ¢, U @, € q & either(p, € qor both
ps€qand ¢, U ¢p,€EQq

isec.tugraz.at H

Example: Transition Relation of GBA A,

" ¢ :=—h U
= Draw the transitions of A,

Forg,g' € Q and o € AP, (q,0,q") € A if:
G
= Forall X¢, € cl(¢):

" Xp, €9 & 91 €4
= Forall p,U ¢, € cl(p):
= ¢, U @, € q & either(p, € qor both
¢,€qand o, Ug,€q

Example: Transition Relation of GBA A, isec.tugraz.at M

" ¢ :=—h U
= Draw the transitions of A,

Forg,g' € Q and o € AP, (q,0,q") € A if:
G- oD
= Forall X¢, € cl(¢):

" Xp, €9 & 91 €4
= Forall p,U ¢, € cl(p):
= ¢, U @, € q & either(p, € qor both
¢,€qand o, Ug,€q

Example: Transition Relation of GBA A, isec.tugraz.at M

= ¢ :=—hU(
= Draw the transitions of A,
—|h,C
2
| - 3
(-h)Uc (=h)Uec
-h(¢ h,C -h -
—|h, —C
. h,C h,—|C)
—|h,C h’_lc
=((=h)Uc) (-h)Uc
Forg,q' € Q and o € AP, (q,0,q9") € Alif: hoc h e
I _Ih, —C
= Forall X¢, € cl(¢):

!
| 7 5
" Xp; €9 S 91 €EQ 6
= Forall p,U ¢, € cl(p):
" ¢, U @, € q & either(p, € g)or both | |
¢, €qand ¢, U g, €q ‘

isec.tugraz.at H

Example: Transition Relation of GBA A,

" 9 :=—hUc
= Draw the transitions of A,

Forg,g' € Q and o € AP, (q,0,q") € A if:
G- oD
= Forall X¢, € cl(¢): 7

" X, €Eq @ 91 €Eq
= Forall p,U ¢, € cl(p):

" 9, U ¢, € q& either ¢, € q or both
AT

isec.tugraz.at H

Example: Transition Relation of GBA A,

" 9 :=—hUc
= Draw the transitions of A,

Forg,g' € Q and o € AP, (q,0,q") € A if:
G- oD
= Forall X¢, € cl(¢):

" X, €Eq @ 91 €Eq
= Forall p,U ¢, € cl(p):

" 9, U ¢, € q& either ¢, € q or both |
AT

Example: Transition Relation of GBA A, isec.tugraz.at M

" 9 :=—hUc
= Draw the transitions of A,

Forg,g' € Q and o € AP, (q,0,q") € A if:
G- oD
= Forall X¢, € cl(¢):

" X, €Eq @ 91 €Eq
= Forall p,U ¢, € cl(p):

" 9, U ¢, € q& either ¢, € q or both |
AT

isec.tugraz.at H

Example: Transition Relation of GBA A,

" 9 :=—hUc
= Draw the transitions of A,

Forg,g' € Q and o € AP, (q,0,q") € A if:
G- oD
= Forall X¢, € cl(¢):

" X, €Eq @ 91 €Eq
= Forall p,U ¢, € cl(p):

" 9, U ¢, € q& either ¢, € q or both |
AT

LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= A,=(2,Q,4,Q%F)

= (Q=setofallthe goodsetsincl(p)
» |dea: Each state g is labelled with a set of sub-formulas that should be satisfied on paths starting at g.

= Forg,q' € Qando € AP,(q,0,q9") € Alf:
= g=q N AP
= Forall Xoq: if X¢, €q then ¢, €(q
= Forall =X¢;: if =X, € q then =@, € ¢

= Forall o, U ¢,: if ¢, U @, € qthen either ¢, € qorboth p,€qand ¢, Up,€E(q
= Forall = (.U @5): if =(¢@,U@,) € qtheneither = ¢, € qandeither- ¢, eqor-(p,;Up,)Eq

Example: Transition Relation of GBA A, isec.tugraz.at M

" 9 :=—hUc
= Draw the transitions of A,

LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= A,=(2,Q,4,Q%F)

= (Q=setofallthe goodsetsincl(p)
» |dea: Each state g is labelled with a set of sub-formulas that should be satisfied on paths starting at g.

= Forg,q' € Qando € AP,(q,0,q9") € Alf:
= g=q N AP
= Forall X¢, € cl(p): if Xp; € q then ¢, € ¢
= Forallp,U ¢, € cl(p):if ¢, U @, € qtheneitherp,€qorbothp, €qandp,Up,€q’

= |nitial States?

= Accepting States?

Example: Transition Relation of GBA A, isec.tugraz.at M

= |nitial States?

Example: Transition Relation of GBA A, isec.tugraz.at M

LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= A,=(2,Q,4,Q%F)

= (Q=setofallthe goodsetsincl(p) U {1}
» |dea: Each state g is labelled with a set of sub-formulas that should be satisfied on paths starting at g.

= Forgq,q' € Qando € AP, (q,0,q") € Alf:
= g=q N AP
= Forall X, € cl(g): if X, € q then ¢, € ¢

= Forallp,U ¢, € cl(p):if ¢, U @, € qtheneitherp,€qorbothp, €qandp,Up,€q’
* (Lo,q)EA© peqand o =qN AP

= Accepting States?

LTL formula ¢ to Generalized Biichi Automata A, isec.tugraz.at M

= A,=(5,Q,A, LF)

= (Q=setofallthe goodsetsincl(p) U {1}
» |dea: Each state g is labelled with a set of sub-formulas that should be satisfied on paths starting at g.

= Forgq,q' € Qando € AP, (q,0,q") € Alf:
= g=q N AP
= Forall X, € cl(g): if X, € q then ¢, € ¢

= Forallp,U ¢, € cl(p):if ¢, U @, € qtheneitherp,€qorbothp, €qandp,Up,€q’
* (Lo,q)EA© peqand o =qN AP

= Accepting States
= Forevery ¢, U @,, Fincludes the set F<P1 Ug,= {geQ| ¢, eqor-(p, U, €q}l.

Example: Transition Relation of GBA A, isec.tugraz.at M

F=11,2,5,6,7,8}}

Plan for Today isec.tugraz.at M

= Presentation of Homework

= Part1-LTL Model Checking °_9o

= Generalized Buichi Automata
= Translation of LTL to Blichi Automata

= Part 2 - Shielded Reinforcement Learning

OUtline isec.tugraz.at W

= Shielding for Safety
= Integration of a shield in RL
= Symbolic Models
= Shields with Absolute Safety Guarantees
= Shields with Probabilistic Guarantees

. . TU
Reinforcement Learning Graza

= Decision Making under Uncertainty
= Environment modeled as Markov Decision Process

N &

Uncertainty caused by sensor
imprecision, wind gusts, and
limited view

Complex task specification

Setting from Nils Jansen

Reinforcement Learning isec tugrazat

= RL agent learns optimal policy via trial and error

observation

] (Environmentj . :[RL Agent]
=) rewar T« >
/@@’ ’9@; %ﬂ <
¢ // S =] o
g7 —/» action T

Find a policy m* that maximixes E [Y.72, 7" R;]

with the discount factor0 <y < 1 andreward R; attime't

Reinforcement Learning isec tugrazat

Limitations) . observation
. . . . Environment i RL Agent
= Safety violations (during exploration) B = W reward]
= RLis data-hungry 9(@Q ,
g7 —/ n action

= Rewards cannot capture sophisticated
task specifications

Integration of a Shield in RL

Pre-Shielding

observation safe
actions
[Environment | RL Agent]

reward

Tsafe action

isec.tugraz.at H

Integration of a Shield in RL

Pre-Shielding

observation

safe
actions

[Environment | RL Agent]

Tsafe action

reward

isec.tugraz.at H

Post-Shielding

rewa rd

[Environment

A

observation

safe action

RL Agent }

l action

shield O |

Pros/Cons of Post-Shielding isec.tugraz.at M

Post-Shielding
= Advantages

| o reward
= Safety during training/deployment [Environment RL Agent }
1 J l action
observation
shield O |

safe action

Pros/Cons of Post-Shielding isec.tugraz.at M

Post-Shielding
= Advantages

rewa rd

= Safety during training/.deployment [Environment RL Agent }
= Can improve the learning performance of RL - / l ’
= Ashield injects domain knowledge observation action
to reduce search space Shield O]
safe action

T — Policies
@—0 Safe policies

Pros/Cons of Post-Shielding isec.tugraz.at M

Post-Shielding
* Disadvantages

e . reward
= Shielding Assumptl?ns [Environment RL Agent]
= Symbolic model is correct and captures 'y ’ ,
: . _ l action
everything safety critical observation
= Observations are correct Shield O]

safe action

Pros/Cons of Post-Shielding isec.tugraz.at M

Post-Shielding
* Disadvantages

o . reward
= Shielding Assumptions [Environment RL Agent]
= Symbolic modelis correct and captures - / _
everything safety critical observation | _action
= Observations are correct Shield O]
= Naive integration can destroy association between safe action

executed action and reward.

Pros/Cons of Post-Shielding isec.tugraz.at M

Post-Shielding
* Disadvantages

. 1 : reward
= Shielding Assumptions [Environment RL Agent }
= Symbolic modelis correct and captures - / _
everything safety critical observation | _action
= Observations are correct Shield O]
= Naive integration can destroy association between safe action

executed action and reward.

= Shield may hinder agent to explore environment.

Pros/Cons of Pre-Shielding

= Advantages
= Easy integration for maskable RL algorithms

= Final decision about which action to explore
remains with RL agent

* Disadvantages
= Integration difficult for non-maskable RL algorithms

= QOthers as before

isec.tugraz.at H

Pre-Shielding

observation 1 safe

[

N

actions

Environment

Tsafe action

:l RL Agent]

reward

Shield Integration via Constrainted RL 'sec.tugraz.at M

= Agent should learn to behave safely

| shield O |

observation Costs C(s,a)

[Environment : | RL Agent]

reward

Tsafe action

Find policy méix]ge = Eron, [Z620V Re(St, Ap, Se41)] St Jp° < e

OUtline isec.tugraz.at W

= Shielding for Safety
= Integration of a shield in RL
= Symbolic Models

Symbolic World Model isec.tugraz.at M

= Assumption: Environment has finite number of states, time is discrete
= > model as Markov Decision Process M

> m O O m M

) o @
JA @ i

Symbolic World Model isec.tugraz.at M

= Assumption: Environment has finite number of states, time is discrete
= > model as Markov Decision Process M

= @ is a safety specification in temporal logic
= Defines unsafe states in M

= Shield prevents/limits probability of reaching an unsafe state in M

> @ O g m M

Scalability of Shielded Learning isec.tugraz.at M

= Shieldingis less scalable as RL
= Shielding can handle MDPs with Millions of states

Scalability of Shielded Learning isec.tugraz.at M

= Shieldingis less scalable as RL
= Shielding can handle MDPs with Millions of states

= Shield computed on safety-relevant MDP

= RL works on original MDP
= Shield works with MDP with reduced feature space

| shield O] (*7.2v)
obs. shield safe ‘ o

actions
: obs. agent
E t
{ nvironmen :[RL Agent}
y,
reward

safe action

How to get the Model? isec.tugraz.at

= Most of the time, no models are available!

UJ

~ -~ = 7 — o
> & ™ >4 - -3
&) O~ ~—
{ i .
)

How to get the Model? isec.tugraz.at

= Most of the time, no models are available!
= - Use automata learning to learn world model

RL agent
initial set of trajectories environment iteratively collected trajectories
WA\

Tl = Sla155a359a2 ...533 TTl = S3a758a4520a1 ...541

sample trajectories

[

sample trajectories

E—

Tn+1 = $2A152Q15170Q3 ... S5

I model
refinement

T, = Sza5$9a3542a1 ...515

l collect states

@ N i .

dim. reduction model /
& clustering % learning

observed states abstract states MDP over abstract states

e

M. Tappler, E. Muskardin, B. Aichernig, B. Konighofer:
Learning Environment Models with Continuous Stochastic Dynamics. ICST 2024

OUtline isec.tugraz.at W

= Shielding for Safety
= Integration of a shield in RL
= Symbolic Models
= Shields with Absolute Safety Guarantees

Shield with Absolute Safety Guarantees isec.tugraz.at M

= Given: MDP M, safety spec @ defines set of unsafe states in M

= Shield provides absolute safety guarantees

= Unsafe states are never visited!
* InLTL: G(safe)

Shields with Absolute Safety Guarantees

= Shield Computation: Transform MDP to 2-Player Game
= Replace probabilities by choices of environment

Shields with Absolute Safety Guarantees

= Shield Computation: Transform MDP to 2-Player Game
= Replace probabilities by choices of environment

&l el

TU

Grazm

Shields with Absolute Safety Guarantees TU

Grazm

= Shield Computation: Transform MDP to 2-Player Game
= Replace probabilities by choices of environment

P =1 Y Player
Player 1: RL Agent
Probabilistic Y2 Player

ayer Game
Player 1: RL Agent
Plyer 2: Environment

Shields with Absolute Safety Guarantees

= Shield computation = Solve Safety Game
= Agent: Good player: wins if only safe states are visited
= Environment: Evil player: wins if an unsafe state is visited

Shields with Absolute Safety Guarantees TU

Grazm

= Shield computation = Solve Safety Game
= Agent: Good player: wins if only safe states are visited
= Environment: Evil player: wins if an unsafe state is visited
= Solve safety game
" Fixpoint computation
* Lineartimeinsize of graph

Example: Shield Construction = Solve Safety Game TU

Grazm

inputs

Player 2 Player 1
Environment JIL R Agent
outputs

Environment

RL Agent

Example: Shield Construction = Solve Safety Game TU

Grazm

inputs
Player2 Pla er1
Environment JIL R Agent
04 outputs

4)
Player 1 wins,

if @ isnever visited
. J

Example: Shield Construction = Solve Safety Game TU

Grazm

inputs

Player 2 Player 1
Environment JIL R Agent
01 outputs
L1
4 AW 4)
Player 1 wins, Winning Region: States from which Player 1
if @ is never visited can enforce that @ is never visited

\. J \\ J

Example: Shield Construction = Solve Safety Game TU

Grazm

inputs

_ O
Player 2 Player 1
Environment
outputs
za@/ | e
'@ Sg
So%\) s
S2

(N\ [)
Player 1 wins, Winning Region: States from which Player 1

if @ isnever visited can enforce that @ is never visited
\. J \\ J

Example: Shield Construction = Solve Safety Game TU

Grazm

inputs

Player2 Pla er1
Environment
outputs
@/ |-
/=20
f e
S%\) Q Sa
S2

(N\ [)
Player 1 wins, Winning Region: States from which Player 1

if @ isnever visited can enforce that @ is never visited
\. J \\ J

Example: Shield Construction = Solve Safety Game

\.

Player 1 wins,
if @ isnever visited

TU
inputs
Player 2 Player 1
Environment JIL R Agent
outputs
A
S4
()
Winning Region: States from which Player 1
can enforce that @ is never visited
U J

Example: Shield Construction = Solve Safety Game

\.

Player 1 wins,

if @ isnever visited

\.

TU
inputs
Player 2 Player 1
Environment JIL R Agent
outputs
N
Winning Region: States from which Player 1
can enforce that @ is never visited
J

Example: Shield Construction = Solve Safety Game TU

Grazm

inputs

Player 2 Player 1
Environment JIL R Agent
outputs
@

’ . N \

Player 1 wins, Winning Region: States from which Player 1

if @ isnever visited can enforce that @ is never visited
\. J \\ J

Example: Shield Construction = Solve Safety Game TU

Grazm

inputs

Player 2 Player 1
m RL Agent
outputs
@

4)
Player 1 wins,

if @ isnever visited
. J

Safe Region [Dangerous Region [Unsafe Region TU

Grazm

Dangerous Region:
Shield cannot enforce

that unsafe state is
never visited

VidEO Pac-Man isec.tugraz.at W

SCORE: 322 SCORE: 72

Demo

|
9 -
= 0
2
Q
| = 7 -1}
@ \ =
%= G - 0k 50k 100k
N X - - ‘:P_ Ikﬂ
- ' | | |
| 21,500 -
' o
‘0 1,000 |
o)
S 500 |-
=
0 |— | |
Ok 50k 100k
unshielded

shielded

OUtline isec.tugraz.at W

= Shielding for Safety
= Integration of a shield in RL
= Symbolic Models
= Shields with Absolute Safety Guarantees
= Shields with Probabilistic Guarantees

Probabilistic Worldview for RL

= Worst-case assumptions are too pessimistic
= E.g. Sensors:
» Assuming that any sensor always fails does not yield to useful results

= Consider finite horizon

* A bad event that can happen with low probability at each step,
will eventually occur with probability 1.

* Choose finite horizon of h steps
» E.g. h = mission time, or expected battery life...

Shield with Probabilistic Safety Guarantees isec.tugraz.at

= Given: MDP M, safety spec ¢ defines set of unsafe statesin M
= Shield: Limits probability of visiting an unsafe state.

P

Probabilistic Model Checking

= M = (S,5sy,4,P) ... Markov Decision Process (MDP)
“m: S—> A ...policy
= M™ = (S, sy, P) induced Markov Chain by applying T to M

Probabilistic Model Checking

¢ = G(safe), policy m, MDP M

Model Checking:

"Pyny,: S X N - [0,1] ... expected probability to satisfy ¢ from a state
s within h steps in the MC M™

" Pyo (s, h) = max Py, (s, h) ... maximal expected probability over all policies to
satisfy ¢ from a state s within h steps.

Py (s,a,h) =Yu cP(s,a,s') Py,(s' h—1)

.. maximal expected probability over all policies to

satisfy @ from a state s when taking action a
within h steps.

Simple Shield for Quantitative Safety

isec.tugraz.at H

= Shielding Objective (@, h, €)
= ¢ = G(safe)
= h ... finite horizon
= ¢... safety threshold

VsVa:if P ,(s,a,h) < ethenaisshieldedins

* ldea of using P™e*;

" Piio (s,a,h) = P(s,a,s") - Py (s’ h— 1)

s'es

= Shield interferes, if after executing a, the safest policy is too risky

Simple Shield for Quantitative Safety

isec.tugraz.at H

Shield: blocks actions with P™** (s,a,h) < €

Critical Region Ja: P™%* (s,a, h) > €

Dangerous Region
Safe Region Va: P (s,a,h) <€

Va: P (s,a,h) > €

Unsafe Region

Simple Shield for Quantitative Safety

isec.tugraz.at H

Shield: Domain specific solution
* Allow only the safest action
» Pre-defined fallback action (breaking), hand over control to human...

Critical Region Ja: P™%* (s,a, h) > €

Dangerous Region
Safe Region Va: P (s,a,h) <€

Va: P (s,a,h) > €

Unsafe Region

Shield Integration via Constrainted RL 'sec.tugraz.at M

= Agent should learn to behave safely

—>[Shield O] C(s,a) = Pyy, (s,a)

observation costs

[Environment | RL Agent]

reward

Tsafe action

= Find policy mgzx],’,fg S.t.]Z;TQ =PY:C(sp,ar) =2n] <€

Demonstration

rrr

anae- PR SRR

Reward

unshielded
p =0.05
—— p=20.03
—— p=0.0

200k 400k

600
400
200 |- |

ol s s e
e i
o
~

:
M
44s
Er
Violations
1
]

0] L

Ok 200k 400k

" Training: maskable Proximal Policy Optimization,
via Stable-Baseline3, default parameters

* 59 prob. that wind displaces UAV

= Shield enforces that the minimal probability of reaching an unsafe state within 20 steps is at

mostp € {0.0,0.03,0.05}

tugraz.at @

IsecC

Demo Molecular Assembly

RL Agent

Environment

&
[3 2
= n

\.w. A
LN %
o

hy 9 \
R
\

RS
ﬂvwf A

o / UOI3E3104 9DEIBNY
o
(=] o N

-40
-60

4 v 9
N

vV LT
es)

qu%

Q
©
BAavaAPoevdg spge 9w
pAaY B Paqad 49 99)
v 305V B B8PV EY LA
< v 44b<%h\0ﬂ/,vv LN
vvcabb%\kﬁ.”w\vva
vvb%n\% %h\ﬁvﬂ_vdvv
iRt Yy
Y- b* 4
4&\ Apaxm\d«\..\b
v 2) a
p 4
v 4
4 «
v
4 a

b v bR o BB

abLg b
vo & g

.......6.......

-2
Qeec
2

Bettina Konighofer

—
o
—

Demo Molecular Assembly isec.tugraz.at

=
=
)
(-
=
0.6 S
®)
~

S
=

onm

Demo Molecular Assembly isec.tugraz.at

SAT-based matching and scheduling

Shield: Forces molecule to stay in corridor

Demo Molecular Assembly isec.tugraz.at

Playground for Shielding

= MinigridSafe
= TEMPEST

* |ntegrates Tempest directly in the
Gymnasium AP|

Minigrid Environments

The environments listed below are implemented in the minigrid/envs directory. Each environme
provides one or more configurations registered with OpenAl gym. Each environment is also

programmatically tunable in terms of size/complexity, which is useful for curriculum learning or
tune difficulty.

Blockedunlockpickupenv Crossingenv Distshiftenv
Doorkeyenv Dynamicobstaclesenv Emptyenv

Fetchenv Fourroomsenv Gotodoorenv

T

isec.tugraz.at H

Shields are great...
...if you have an accurate world model.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: 2b) 1. Construct ¬ϕ2
	Slide 6: 2b) 2. Construct Büchi automaton 𝒮¬ϕ
	Slide 7: 2b) 3. Translate M to an automaton 𝓐
	Slide 8: 2b) 3. Translate M to an automaton 𝓐
	Slide 9: 2b) 4. Construct automaton 𝓑 with 𝓛(𝓑) = 𝓛(𝓐) ∩ 𝓛(𝒮¬𝜑)
	Slide 10: 2b) 5. 𝓛(𝓑) = ∅ ?
	Slide 11: 2a) 1. Construct ¬ϕ1
	Slide 12: 2a) 2. Construct Büchi automaton 𝒮¬ϕ
	Slide 13: 2a) 4. Construct automaton 𝓑 with 𝓛(𝓑) = 𝓛(𝓐) ∩ 𝓛(𝒮¬𝜑)
	Slide 14: 2a) 5. 𝓛(𝓑) = ∅ ?
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106

