JAY,

Graz

SCIENCE
PASSION
TECHNOLOGY

Model Checking for LTL

Bettina Konighofer

bettina.koenighofer@tugraz.at

> isec.tugraz.at

mailto:Bettina.koenighofer@tugraz.at

Plan for Today isec.tugraz.at M

= Presentation of Homework

= LTL Model Checking
= Recap /Overview
= Basics of Automata Theory
= LTL Model-Checking Algorithm

Homework Task 6a: f; = -EG(start — EX (error)) isec.tugraz.at M

Start
Close
Error

1. Check start, error = [[start]]y = {2,5,6,7}, [[error]]y = {2,5}
2. Check fl(l) = EX error = || fl)}]M ={1,2,5}
3. Check fl(Q) = start — fl(l) =] 1(2)“M ={1,2,3,4,5}

4. Check ¥ =EG 2 = [[f¥)lx = {1,2,3,4,5}

5. Check f1 = -f® = [[Allm = {6,7}

Homework Task 6b: f, = EF(E(start U close) A EG close) sectverazat ®

Start
Close
Error

[[close]|ar = {3,4,5,6,7}

(3) — p(2) (1) (3) _
1. Check start, close — [[start]|y = {2,5,6,7} 4. Check f3™ = 37 A fo — [[f2 |l =1{3,4,6,7}

_ (3) _
2. Check fi" = BG close = [[f{"]]ar = {3,4,6,7} 5. Check f, = EF f; = [[fo]ln ={1,2,3,4,5,6,7}

3. Check f(2) = E (start U close) = [52)]]M = {2,3,4,5,6,7} As Sy C [[f2]]m, M = f2 holds.

Plan for Today isec.tugraz.at M

= Presentation of Homework

= LTL Model Checking
= Recap /Overview
= Basics of Automata Theory
= LTL Model-Checking Algorithm

Recap - LTL/CTL/CTL* isec.tugraz.at M

LTL

GFo,— F ¢,

G(¢,—~ F ¢,)

or resp.
AG(¢, — AF ¢,)

Implicit A
quantifier

Recap - Temporal Operators

* Temporal operators
= Describe properties along a given path

= AP: a set of atomic propositions, p,q € AP

= Next: Xp
= Globally: Gp
= Eventually: Fp
= Until: pUq
= Release: pRq

:A
u

00000

I A 4 A 4 A 4 CV

N
O
@
AN
O
N
O
N
O

» O

» O

O

O

O

O

isec.tugraz.at H

PRq ... “preleases q”: g hasto hold until p holds.

However, p is not required to hold eventually.

RECap -LTL - Syntax isec.tugraz.at W

= State formulas
= Ag where g is a path formula

= Path formulas
=p € AP

" 91, 91V 92 91N G2 Xg1, Ggi1, g1Ugz gi1Rg;
where g,and g, are path formulas

Model Checking of LTL isec.tugraz.at

= Given a Kripke structure M and a LTL formula ¢:
Does M &= ¢?

Model Checking of LTL isec.tugraz.at

= Given a Kripke structure M and a LTL formula ¢:
Does M &= ¢?

= Automata-based Algorithm

Construct @

Construct a Buchi automaton S_o

Translate M to an automaton A.

Construct the automaton B with L(B) = L(A) N L(S_,)
fLB)=0=>MEq@

fLB)+D=>MHEe@. Awordv -w® € L(B)is acounterexample
—> atrace in M that does not satisfy @

S A o

Plan for Today isec.tugraz.at M

= LTL Model Checking

= Recap/Overview
» Basics of Automata Theory
* Finite automata on finite words (Regular automata)

» Finite automata on infinite words (Blichi automata)
= Definitions: Automata, word, run, language
= Deterministic vs non-deterministic automata
= |ntersection of automata
= Checking emptiness of automata

» Kripke structures to automata

= LTL Model-Checking Algorithm

Definitions
DFAs and NFAs

Finite Automata on Finite Words - Regular Automata NFAS to DFAS

(Subset Constr)
Complement
Intersection of NFAs

Bettina Konighofer

Finite Automata on Finite Words - Regular Automata

" A=(X,Q,4,Q°F)
= Yisthefinite alphabet
= (Qisthefinite set of states
= AC QxXxQisthetransition relation
= (QVisthesetofinitial states
= Fisthe set of accepting states

Bettina Konighofer

= Definitions
= DFAs and NFAs
= NFAs to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= DFAs and NFAs

Finite Automata on Finite Words - Regular Automata | oo

(Subset Constr)
= Complement
= |ntersection of NFAs

" A=(X,Q,4,Q°F)
= Yisthefinite alphabet
= (Qisthefinite set of states
= AC QxXxQisthetransition relation
= (QVisthesetofinitial states
= Fisthe set of accepting states

Bettina Konighofer

= DFAs and NFAs

Finite Automata on Finite Words - Regular Automata | oo

(Subset Constr)

= Complement
= |ntersection of NFAs

= ¥ ={a, b}

* Q=1{q1, 92}

" A=1{(q1,a,91),(q1,b,92),(q2,a,91),(q2,b,q3)}
* Q° = {¢1}

" F = {q4}

Bettina Konighofer

Words and Runs on Finite Automata

= Aword v is a sequence in X" of length |v|
= Arun pis a pathin the automaton A.

Bettina Konighofer

= DFAs and NFAs
= NFAs to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= DFAs and NFAs

Words and Runs on Finite Automata = NFASs to DFAs

(Subset Constr)

= Complement
= |ntersection of NFAs

= Aword v is a sequence in 2~ of length |v|
= Arun p is a path in the automaton A.

= Givenawordv = a,, a,, ..., a, and automaton A
= >Arunp = q,q,, -..q, of Aisasequence of states s.t.

" qoc Q°
T
el e

" Vi:0<i<n-—-1: (q9;,a;:19;+1) €A
g T O

Bettina Konighofer a b

= DFAs and NFAs

Accepting Words / Runs [Language of Finite Automata | 1

(Subset Constr)

= Complement
= |ntersection of NFAs

Bettina Konighofer

D]-= [D
= DFAs and NFAs

Accepting Words / Runs [Language of Finite Automata | 1

(Subset Constr)

= Complement
= |ntersection of NFAs

= Arunp = ¢, q, ..q,isaccepting= q, < F

Bettina Konighofer

= DFAs and NFAs

Accepting Words / Runs [Language of Finite Automata | 1

(Subset Constr)

= Complement
= |ntersection of NFAs

" Arunp = q,q, ...q, isaccepting=q, € F

= Aacceptsawordv = a,,a,,..,0,, &
if there is a corresponding accepting run p

Bettina Konighofer

Accepting Words / Runs | Language of Finite Automata |

(Subset Constr)

= Complement
= |ntersection of NFAs

" Arunp = q,q, ...q, isaccepting=q, € F

= Aacceptsawordv = a,,a,,..,0,, &
if there is a corresponding accepting run p

= L(A) € X...Language of A, is the set of words v that A accepts.
= Languages accepted by finite automata are reqular languages.

H/\
P

Accepting Words / Runs | Language of Finite Automata |

(Subset Constr)

= Complement
= |ntersection of NFAs

" Arunp = q,q, ...q, isaccepting=q, € F

= Aacceptsawordv = a,,a,,..,0,, &
if there is a corresponding accepting run p

= L(A) € X...Language of A, is the set of words v that <A accepts.
= Languages accepted by finite automata are reqular languages.

%? What is L(cﬂ) ? /\
a

Accepting Words / Runs | Language of Finite Automata |

(Subset Constr)

= Complement
= |ntersection of NFAs

" Arunp = q,q, ...q, isaccepting=q, € F

= Aacceptsawordv = a,,a,,..,0,, &
if there is a corresponding accepting run p

= L(A) € X...Language of A, is the set of words v that <A accepts.
= Languages accepted by finite automata are reqular languages.

= Whatis L(A) ? L T
= L(A)={empty word} U {all words that end with a} H
={e}uia,b}a
o T
a b

DFAs and NFAs

Task: Build a Regular Automata NFAs to DFAS

(Subset Constr)

Complement
Intersection of NFAs

= Build an automaton that accepts all and only those strings that contain 001.

Bettina Konighofer

= Definitions
= DFAs and NFAs

Task: Build a Regular Automata + NFAS to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= Build an automaton that accepts all and only those strings that contain 001.

Bettina Konighofer

Deterministic and Non-Deterministic Automata

Bettina Konighofer

Definitions
DFAs and NFAs
NFAs to DFAs

(Subset Constr)
Complement
Intersection of NFAs

= DFAs and NFAs

Deterministic and Non-Deterministic Automata = NFAsto DFAs

(Subset Constr)

e .. = Complement
= Deterministic Finite Automata (DFA)Z = Intersection of NFAs

= A isdeterministicif Ais afunction (one output for each input).
" 1Q% =1
" Vge Q,Vae X:|A(g,a)| <1

= Det. automata have exactly one run for each word.

Deterministic and Non-Deterministic Automata e NFAS to DFAS

(Subset Constr)

e .. = Complement
= Deterministic Finite Automata (DFA)Z = Intersection of NFAs

= Aisdeterministicif A is a function (one output for each input).
" 1@l = 1
" Vge Q,Vae X:|A(g,a)| <1

= Det. automata have exactly one run for each word.

= Non-deterministic Finite Automata (NFA):
= Can havetransitions (q,a,q'),(q,a,q"") € Aand q"” # q'
= Can have e-transitions (transitions without a letter)

\ _
L) O

= Definitions
= DFAs and NFAs

Language of an NFA + NFASto DFAS

(Subset Constr)
= Complement
= |ntersection of NFAs

= An NFA accepts all words that have a run that ends in an accepting state

Bettina Konighofer

= Definitions
= DFAs and NFAs

Language of an NFA + NFAsto DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= An NFA accepts all words that have a run that ends in an accepting state

= Whatis the language of this automaton?

L(A) ={all words that end with a}

\
. O
a,b o a

Bettina Konighofer

NFA on Finite Words to DFA

Any non-deterministic finite automata on finite words can be
translated into an equivalent deterministic automaton.

= DFAs and NFAs

= NFAs to DFAs

(Subset Constr)

= Complement
= |ntersection of NFAs

NEA A Equivalent DFA A’

T~ T~ a
: O =
a 04
a,b b b
Bettina Konighofer

= DFAs and NFAs

Algorithm: NFA to finite words to DFA + NFAs to DFAs

(Subset Constr)

= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)

NEA A Equivalent DFA A’

\ — R
S e O SO S &
d, b b < b a

Bettina Konighofer

= DFAs and NFAs

Algorithm: NFA to finite words to DFA + NFAs to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ = (%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

NEA A Equivalent DFA A’

\ — R
S e O SO S &
d, b b < b a

Bettina Konighofer

= DFAs and NFAs

Algorithm: NFA to finite words to DFA + NFAs to DFAs

(Subset Constr)

= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ = (%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

= Each statein A’ corresponds to the set of states in A
that is reached after reading an input sequence

= A P(Q) XX > P(Q)where (Qq,a,Q;) € A" ifQ; = Ugeo,{q'|(q a,q') € A}

NEA A Equivalent DFA A’

\ — R
S e O SO S &
d, b b < b a

Bettina Konighofer

= DFAs and NFAs

Algorithm: NFA to finite words to DFA + NFAs to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ = (%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

= Each statein A’ corresponds to the set of states in A
that is reached after reading an input sequence

= A P(Q) XX > P(Q)where (Qq,a,Q;) € A" ifQ; = Ugeo,{q'|(q a,q') € A}

= Example:
({so },b,{sg }) € A’ since (sy,b,sg) € A

NEA A Equivalent DFA A’

Bettina Konighofer

= DFAs and NFAs

Algorithm: NFA to finite words to DFA + NFAs to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ = (%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

= Each statein A’ corresponds to the set of states in A
that is reached after reading an input sequence

= A P(Q) XX > P(Q)where (Qq,a,Q;) € A" ifQ; = Ugeo,{q'|(q a,q') € A}

= Example:
({so },a,{sg,s1}) € A’ since (sy,a,sy) € Aand (sq,a,s1) € A

NEA A Equivalent DFA A’

Bettina Konighofer

= DFAs and NFAs

Algorithm: NFA to finite words to DFA + NFAs to DFAs

(Subset Constr)

= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ = (%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

= Each statein A’ corresponds to the set of states in A
that is reached after reading an input sequence

= A P(Q) XX > P(Q)where (Qq,a,Q;) € A" ifQ; = Ugeo,{q'|(q a,q') € A}

= Example:
({so },a,{sg,s1}) € A’ since (sy,a,sy) € Aand (sq,a,s1) € A

NEA A Equivalent DFA A’

T~ 3 T~ a
. () RO== D>
a,b CQ i Cb b b ?

Bettina Konighofer

= DFAs and NFAs

Algorithm: NFA to finite words to DFA + NFAs to DFAs

(Subset Constr)

= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ = (%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

= Each statein A’ corresponds to the set of states in A
that is reached after reading an input sequence

= A P(Q) XX > P(Q)where (Qq,a,Q;) € A" ifQ; = Ugeo,{q'|(q a,q') € A}

= Example:
({s0,51}, b, {sg }) € A" since (sy, b, Sp) € A

NEA A Equivalent DFA A’

T~ T~ a
@) Tt
a,b b b
Bettina Konighofer

= DFAs and NFAs

Algorithm: NFA to finite words to DFA + NFAs to DFAs

(Subset Constr)

= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ = (%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

= Each statein A’ corresponds to the set of states in A
that is reached after reading an input sequence

= A P(Q) XX > P(Q)where (Qq,a,Q;) € A" ifQ; = Ugeo,{q'|(q a,q') € A}

= Example:
({so, 51}, a,{sg,Ss1}) € A" since (sy,a,s9) € A and (sy,a,s1) € Aand(sy,a,s1) € A

NEA A Equivalent DFA A’

T~ 3 T~ a
. () RO== D>
a,b CQ i Cb b b ?

Bettina Konighofer

= DFAs and NFAs

Example 1/2: NFA to finite words to DFA « NFAs to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ =(%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

"= A P(Q) XX - P(Q)where(Qq,a,Q;) € A" ifQ; = Uge,{q9'l(q,a,q') € A}
= F'={Q'|Q'nF + ¢}

NFA A | Equivalent DFA A’?

Bettina Konighofer

= DFAs and NFAs

Example 1/2: NFA to finite words to DFA « NFAs to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ =(%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

"= A P(Q) XX - P(Q)where(Qq,a,Q;) € A" ifQ; = Uge,{q9'l(q,a,q') € A}
= F'={Q'|Q'nF + ¢}

NFA A Equivalent DFA A’?

y a poroN-C
a,bab b a bba

Bettina Konighofer

= Definitions
= DFAs and NFAs

Example 2/2: NFA to finite words to DFA - NFAs to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ =(%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

" A:P(Q) x X - P(Q) where (Q1,a,Q2) € 4 ifQ; = Uyeq,(q'I(q.a,4') € 4}
= F'={Q'|Q'nF # 0}

NFA A Equivalent DFA A’?

Bettina Konighofer

= Definitions
= DFAs and NFAs

Example 2/2: NFA to finite words to DFA - NFAs to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ =(%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

" A:P(Q) x X - P(Q) where (Q1,a,Q2) € 4 ifQ; = Uyeq,(q'I(q.a,4') € 4}
= F'={Q'|Q'nF # 0}

NFA A Equivalent DFA A’?

Bettina Konighofer

= DFAs and NFAs

Complement of DFAs « NFAs to DFAS

(Subset Constr)
= Complement
= |ntersection of NFAs

= The complement automaton A accepts exactly those words that are rejected by A

A A

b b
IeCENBOVECONHE Oy

Bettina Konighofer

= DFAs and NFAs

Complement of DFAs « NFAs to DFAS
(Subset Constr)
= Complement
= |ntersection of NFAs

= The complement automaton A accepts exactly those words that are rejected by A

= Algorithm: Construction of A
= Substitution of accepting and non-accepting states

A A

b b
IeCENBOVECONHE Oy

Bettina Konighofer

= DFAs and NFAs

Example: Complement of NFAs * NFAsto DFAs

(Subset Constr)

= Complement

= NFA A accepts words that end with 001 S
W = Is A’ the compelent A of A?

[0 0 1
A’ ©
Bettina Konighofer

= DFAs and NFAs

Example: Complement of NFAs * NFAsto DFAs

(Subset Constr)

= Complement

= NFA A accepts words that end with 001 S
= |s A’ the compelent A of A?

*

[N

A TEE B NG
A GG N

NO! The language of this automaton s {0,1}*

Bettina Konighofer

= DFAs and NFAs

Algorithm: Complement of NFAs * NFAs to DFAS

(Subset Constr)
= Complement
= |ntersection of NFAs

= The complement automaton A accepts exactly those words that are rejected by A
% = Algorithm to construct A ?

Bettina Konighofer

= DFAs and NFAs

Algorithm: Complement of NFAs * NFAs to DFAS

(Subset Constr)
= Complement
= |ntersection of NFAs

= The complement automaton A accepts exactly those words that are rejected by A

= Algorithm to construct A ?
1. Convert NFA to DFA (make NFA deterministic)
2. Substitution of accepting and non-accepting states

Bettina Konighofer

Definitions
DFAs and NFAs

Intersection of NFAs NFAS to DFAS

(Subset Constr)
Complement
Intersection of NFAs

Bettina Konighofer

= Definitions
= DFAs and NFAs

Intersection of NFAs - NFAs to DFAS

(Subset Constr)
= Complement
= |Intersection of NFAs

= Theintersection of two languages L, and L,isL, N L, = {w|we L, andwe L, }

= Algorithm: Compute Product Automaton A = A, x A, s.t. L(A) = L(A;) N L(A,)

Bettina Konighofer

= Definitions
= DFAs and NFAs

Intersection of NFAs - NFAs to DFAS

(Subset Constr)
= Complement
= Intersection of NFAs

= Theintersection of two languages L, and L,isL, N L, = {w|we L, andwe L, }

= Algorithm: Compute Product Automaton A = A, x A, s.t. L(A) = L(A;) N L(A,)
" Q=01X%X0Q;
. A((Ch: q2), a) = (A1(q1,a),0,(q2,a))
" Q°=0Q) % Q3
" (91,92) EF & qu€ Fiandq; € F,

Bettina Konighofer

= DFAs and NFAs

Intersection of NFAs - NFAs to DFAS

(Subset Constr)
= Complement
= |Intersection of NFAs

= Algorithm: Compute Product Automaton A = A, X A, s.t. L(A) = L(A,) N L(A,)

b
a, Oy L
4 \

Bettina Konighofer

= DFAs and NFAs

Intersection of NFAs - NFAs to DFAS

(Subset Constr)
= Complement
= |Intersection of NFAs

= Algorithm: Compute Product Automaton A = A, X A, s.t. L(A) = L(A,) N L(A,)
= Q =0, X0, > States: (Sg,t,), (Sest1), (S1,to), (S,t;)
= 00 =0Q? x Q) > Initial state: (s,,t,)

A=A, x A,

a b
Jlla b @

Bettina Konighofer

= DFAs and NFAs

Intersection of NFAs - NFAs to DFAS

(Subset Constr)
= Complement
= |Intersection of NFAs

= Algorithm: Compute Product Automaton A = A, X A, s.t. L(A) = L(A,) N L(A,)
" A((Ch, CIZ)» Cl) — (Al (ql) Cl), AZ (qZJ a))

b
a Oy s
A Z :

Bettina Konighofer

= DFAs and NFAs

Intersection of NFAs - NFAs to DFAS

(Subset Constr)
= Complement
= |Intersection of NFAs

= Algorithm: Compute Product Automaton A = A, X A, s.t. L(A) = L(A,) N L(A,)
" A((Ch, CIZ)» Cl) — (Al (ql) Cl), AZ (qZJ a))

A=A, x A,

a b

A, a b @ S, {[0
a

Az b b| |a

Sl,tl

Bettina Konighofer

= DFAs and NFAs

Intersection of NFAs - NFAs to DFAS

(Subset Constr)
= Complement
= |Intersection of NFAs

= Algorithm: Compute Product Automaton A = A, X A, s.t. L(A) = L(A,) N L(A,)
" (91,92) €EF & qu€ Fiand q; € F,

A=A, x A,

b
a Oy s
A Z b [

Sl,tl

Bettina Konighofer

Plan for Today isec.tugraz.at M

= LTL Model Checking

= Recap/Overview
» Basics of Automata Theory

= Finite automata on infinite words (Biichi automata)
= Definitions: Automata, word, run, language
= Deterministic vs non-deterministic automata
= |ntersection of automata
= Checking emptiness of automata

» Kripke structures to automata

= LTL Model-Checking Algorithm

= Det/Nondet. Blichi

Automata on Infinite Words - Complementation

= |ntersection Buchi
» Emptiness Buchi

= We are interested in reactive systems
= Designed to not hold during normal execution

= Runs are infinite sequences
* Words are v € X“, where w denotes infinitely many (i.e., |v| = o)

= Languages accepted by finite automata on infinite words are called w-regular languages.

= Biichi Automata - Simplest automata over infinite words

= Definitions
= Det/Nondet. Blichi

BﬁChi A“tomata = Complementation

= |ntersection Bulichi
» Emptiness Buchi

B =(X,Q,4,Q°F)
= Yisthefinite alphabet
= (Qisthefinite set of states
= ACQxXxQisthetransition relation
= (QVisthesetofinitial states
= Fisthe set of accepting states

a
Wl e
b
a b

n Bettina Konighofer

= Definitions
= Det/Nondet. Blichi

Accepting Words / Runs [Language of Buichi Automata | @t

= |ntersection Bulichi

» Emptiness Buchi

" B=(X,Q.A,Q°F)

a
W e
b
a b

Bettina Konighofer

= Det/Nondet. Blichi

Accepting Words / Runs [Language of Buichi Automata | @t

= |ntersection Bulichi

» Emptiness Buchi

" B=(X,Q.A,Q°F)

= Aninfinite run p is accepting & p visits an accepting state infinitely often.
* inf(p) ...setof statesin p that appear infinitely often
 inf(p)N F # @

a
W e
b
a b

Bettina Konighofer

= Det/Nondet. Blichi

Accepting Words / Runs [Language of Buichi Automata | @t

= |ntersection Bulichi
» Emptiness Buchi

" B=(X,Q.A,Q°F)

= Aninfinite run p is accepting & p visits an accepting state infinitely often.
* inf(p) ...setof statesin p that appear infinitely often
 inf(p)N F # @

= L(B) € X is the set of all infinite words that B accepts

a
W e
b
a b

Bettina Konighofer

= Det/Nondet. Blichi

Accepting Words / Runs [Language of Buichi Automata | @t

= |ntersection Bulichi

» Emptiness Buchi

" B=(X,Q.A,Q°F)

= Aninfinite run p is accepting & p visits an accepting state infinitely often.
* inf(p) ...setof statesin p that appear infinitely often
 inf(p)N F # @

= L(B) € X is the set of all infinite words that B accepts

H Q What is the language of this automaton? (In LTL)
\/ _

a b b %o

Bettina Konighofer

= Det/Nondet. Biichi

Accepting Words / Runs [Language of Buichi Automata | @t

= |ntersection Bulichi

» Emptiness Buchi

" B=(X,Q.A,Q°F)

= Aninfinite run p is accepting & p visits an accepting state infinitely often.
* inf(p) ...setof statesin p that appear infinitely often
 inf(p)N F # @

= L(B) € X is the set of all infinite words that B accepts

a
H Q What is the language of this automaton?
\/
b L(B) ={words with infinitely many a}
a b 0

r
L(B)={a,b}*a)® orinlLTL: GF(a)

= Det/Nondet. Blichi

Deterministic /Non-Deterministic Buichi Automata + Complementation

= |ntersection Buchi
» Emptiness Buchi

Deterministic Blichi automata are strictly less
expressive than nondeterministic Buchi automata.

= - not every nondeterministic Buchi automaton has an equivalent deterministic Blichi one.

= Det/Nondet. Biichi

Deterministic /Non-Deterministic Buichi Automata + Complementation

= |ntersection Bulichi

» Emptiness Buchi

Deterministic Blichi automata are strictly less
expressive than nondeterministic Buchi automata.

= - not every nondeterministic Buchi automaton has an equivalent deterministic Blichi one.

= Proof Idea: (details see book)

b
= Non-det. Buchi automaton B B H@ ’
a,b b

= L(B)={words with a finitely many a}in LTL: FGb

= Det/Nondet. Blichi

Deterministic /Non-Deterministic Buichi Automata + Complementation

= |ntersection Buchi
» Emptiness Buchi

Deterministic Blichi automata are strictly less
expressive than nondeterministic Buchi automata.

= - not every nondeterministic Buchi automaton has an equivalent deterministic Blichi one.

= Proof Idea: (details see book)

b
= Non-det. Buchiautomaton B B H@ ’
a,b b

= L(B)={words with a finitely many a}in LTL: FGb

* The proof shows that there is no deterministic Buchi automaton for “finitely many”

= Det/Nondet. Blichi

Deterministic /Non-Deterministic Buichi Automata = Complementation

= |ntersection Bulichi
» Emptiness Buchi

Deterministic Buchi automata are not closed under complementation.

= Why?
= Hint: Automata below

@

]

n Bettina Konighofer

Deterministic /Non-Deterministic Buichi Automata e

= |ntersection Bulichi

» Emptiness Buchi

Deterministic Buchi automata are not closed under complementation.

= Proof:
= Deterministic Blichi automaton A with £(A) = {words with infinitely many a}.
= A accepts those words that are rejected by A 2> L(A) = {words with finitely many a}.

= - There there is no deterministic Blichi automaton for “finitely many”
(see Theorem before).

= Det/Nondet. Blichi

Deterministic /Non-Deterministic Buichi Automata = Complementation

= |ntersection Buchi
» Emptiness Buchi

Non-Deterministic Buichi automata are closed under complementation.

= The construction is very complicated.
= We will not discuss it here. Algorithms try to avoid it.

= Biichi showed an algorithm for complementation that
is double exponential in the size n of the automaton.

= Safra proved that it can be done by 20(1ogn)

= Definitions
= Det/Nondet. Blichi

Intersection of Blichi Automata * Complementation
= Intersection Biichi

» Emptiness Buchi

« What s L(eA) = L(-A,) N L(A,) ?

b

B, a B, b
/\ /\
a b b a a

Bettina Konighofer

= Definitions
= Det/Nondet. Blichi

Intersection of Blichi Automata - Complementation

= |Intersection Biichi

» Emptiness Buchi

» L(A,) N L(A,) = {words with infinitely many a and infinitely many b}

B, a B, b
/\ /\
a b b b a a

Bettina Konighofer

= Det/Nondet. Blichi

Intersection of Blichi Automata - Complementation

= |Intersection Biichi
» Emptiness Buchi

= L(A,) N L(A,) = {words with infinitely many a and infinitely many b}

= Astandard intersection does not work —automaton has no accepting states!

B, a B, b
/\ /\
a b b b a a

Bettina Konighofer

= Det/Nondet. Blichi

Intersection of Blichi Automata - Complementation

= |Intersection Biichi
» Emptiness Buchi

= L(A,) N L(A,) = {words with infinitely many a and infinitely many b}

= Astandard intersection does not work —automaton has no accepting states!
= Solution: Introduce counter!

B, a B, b
/\ /\
a b b b a a

Bettina Konighofer

= Det/Nondet. Blichi

Intersection of Blichi Automata - Complementation

= |Intersection Biichi
» Emptiness Buchi

= L(A,) N L(A,) = {words with infinitely many a and infinitely many b}

= Astandard intersection does not work —automaton has no accepting states!
= Solution: Introduce counter!

B, a B, b
/\ /\
a b b b a a

Bettina Konighofer

= Det/Nondet. Blichi

Algorithm: Intersection of Buichi Automata + Complementation

= |Intersection Biichi
» Emptiness Buchi

. Given Bl — (zanaAlananl) and Bz = (zanaAz,on,Fz)
= B=(X,Q,A,Q%F)s.t. L(B) = L(B,) N L(B,) is defined as follows:

Bettina Konighofer

= Det/Nondet. Blichi

Algorithm: Intersection of Buichi Automata + Complementation

= |Intersection Biichi

» Emptiness Buchi

= GivenB,=(2,Q,,4,,Q,°F,) and B,=(X2,Q,,4,,Q,°F,)
= B=(X,Q,A,Q%F)s.t. L(B) = L(B,) N L(B,) is defined as follows:

" Q=Q,xQ,x{0,1,2}
. QO:Qlo X Q20><{0}
" F=Q,xQ,x{2}

Bettina Konighofer

= Det/Nondet. Blichi

Algorithm: Intersection of Buichi Automata + Complementation

= |Intersection Biichi
» Emptiness Buchi

. Given Bl — (zanaAlleanl) and Bz = (Z)QzaAz,on,Fz)
= B=(X,Q,A,Q%F)s.t. L(B) = L(B,) N L(B,) is defined as follows:

" Q=Q,xQ,x{0,1,2}
. QO:Qlo X Q20><{0}
" F=Q,xQ,x{2}

- ((ql’qZ’X)’ a) (q,l’q,z)x,)) S A =
1. (g9,2,9’) € A; and (g,,a,q7,) € A, and
2. Ifx=0and q’,e F; then x’=1
If x=1and q’, € F, then x’=2
If x=2 then x’=0
Else, x’=x

Bettina Konighofer

= Det/Nondet. Biichi

Algorithm: Intersection of Buichi Automata + Complementation

= |ntersection Blichi
» Emptiness Buchi

= GivenB,=(2,Q,,4,,Q,°F,) and B,=(X2,Q,,4,,Q,°F,)
= B=(X,Q,A,Q%F)s.t. L(B) = L(B,) N L(B,) is defined as follows:

- {0,1, 2}
- {0}
- {2}
" ((q1,9,,%), 3, (@’1,9',X)) € A < Intuition:
1. (ql,a,q’l) e A and (qz,a,q’z) c A, and x=0 ... waiting for s € F,
2. Ifx=0and q’,e F, then x’=1 i 000 WEIITBITArS Q1T
If x=1and q’,€ F, then x’=2 If some s with x=2 is visited inf often,
If x=2 then x’=0 then states from F, and states from F,

Else, x’=x have been visited inf often.

= Det/Nondet. Biichi

Example: Intersection of Buichi Automata * Complementation
= |Intersection Buichi
= Compute B =(Z,Q,A,Q%F) s.t. L(B) = £L(B,) N L(B,) e

= First copy: waits fors € F,
= Second copy: waits fors € F,
= Third copy: all states are accepting

B, /G\ Q (ry, dy, 0)
ROy
a b b

= Det/Nondet. Biichi

Example: Intersection of Buichi Automata + Complementation

= |ntersection Blichi

» Compute B=(X,Q,A,Q%F)s.t. £L(B) = L(B,) N L(B,) - _Emptiness Bch!
= First copy: waits fors € F,
= Second copy: waits fors € F,
= Third copy: all states are accepting

B a
! @/\: : <r13 qla O>
\/’ \
a b b

a b
B, b (ry, dy 1>© Q (ry, dy, 0)
EORN S
T

= Det/Nondet. Biichi

Example: Intersection of Buichi Automata + Complementation

= |ntersection Blichi

» Compute B=(X,Q,A,Q%F)s.t. £L(B) = L(B,) N L(B,) - _Emptiness Bch!
= First copy: waits fors € F,
= Second copy: waits fors € F,
= Third copy: all states are accepting

B a
1 ‘/\ (ry, Gy, 0)
DEEAEEIE
b
L .
B b (ry, da, 1) Q (ry, dy, 0)
RO
b a aq

= Det/Nondet. Biichi

Example: Intersection of Biichi Automata + Complementation
. Inter§ection”Bii.chi
= Compute B=(%,Q,A,Q°F) s.t. L(B) = L(B,) N £L(B,) e

= First copy: waits fors € F,
= Second copy: waits fors € F,
= Third copy: all states are accepting

" T (1> G5, 0)
RoamoR S
a b b
B b (ry, da, 1) Q (ry,dy3, 0)
Yean R
’v @

(r A, 2)

= Det/Nondet. Biichi

Example: Intersection of Biichi Automata + Complementation
. Inter§ection”Bii.chi
= Compute B=(%,Q,A,Q°F) s.t. L(B) = L(B,) N £L(B,) e

= First copy: waits fors € F,
= Second copy: waits fors € F,
= Third copy: all states are accepting

By /_C’\ (ry, dy, 0)
H\/@ y y y b
o —
(ry, das 1)) (ry, dy, 0)

&

(r A, 2)

= Det/Nondet. Biichi

Example: Intersection of Biichi Automata + Complementation
. Inter§ection”Bii.chi
= Compute B=(%,Q,A,Q°F) s.t. L(B) = L(B,) N £L(B,) e

= First copy: waits fors € F,
= Second copy: waits fors € F,
= Third copy: all states are accepting

‘B a
| @/\< / ! <r1, d1, 0)
_/' b
a b b
‘B b <r1a d,, l> / <r23 di» O>
RO
b a a <r1, d,, O>

(r2 di, 2>
w6

= Det/Nondet. Biichi

Example: Intersection of Biichi Automata + Complementation
. Inter§ection”Bii.chi
= Compute B=(%,Q,A,Q°F) s.t. L(B) = L(B,) N £L(B,) e

= First copy: waits fors € F,
= Second copy: waits fors € F,
= Third copy: all states are accepting

B a
. ‘/\ <r1: d1s O>
,\/’; a / \
a b b

a
<r1, SPY 1> <r2’ A O>
B, /b\e
’\/ ! (11> G2, 0)
b a qa <r2a ql) 2> ! q2

= Det/Nondet. Blichi

Example: Intersection of Buichi Automata + Complementation

= |Intersection Biichi

» Emptiness Buchi

= Question

= |nevery interval we first wait for an s in F; and then wait foran s in F,.
_ = We ignore accepting states that don’t appear in this order.
% = Can we miss accepting pathsin B?

<rla ql’ O>
, a a b b
- s
(ry, dy 1) (ry, di, 0)

ﬂ (r2, Ay, 2) @

Bettina Konighofer b a

<r1a q2a O>

= Det/Nondet. Blichi

Example: Intersection of Buichi Automata + Complementation

= |Intersection Biichi
» Emptiness Buchi

= Question
= |n every interval we first wait for an s in F; and then wait foran s in F,.
= We ignore accepting states that don’t appear in this order.

= Can we miss accepting pathsin B?

= NO! An accepting path visits infinitely many s from F; and F..
- We can ignore finitely many accepting states in each interval

‘B a
a
b
a b b
(ry, A 1) (ry, 4y, 0)
b
@ (I, 4y 0)
n Bettina Konighofer b a <I’2, 91 2)

= Det/Nondet. Blichi

MOdel ChECking Of LTL = Complementation

= |Intersection Biichi

» Emptiness Buchi

= Given a Kripke structure M and a LTL formula ¢:
Does M &= ¢?

= Automata-based Algorithm

Construct-¢ /

Construct a Bichi automaton §_,

Translate M to an automaton A.

Construct the automaton B with L(B) = L(A) N L(S_,) /
fLB) =0=>MEq@ <4um

fLB)+D=>MHEe@. Awordv -w® € L(B)is acounterexample
—> atrace in M that does not satisfy ¢

n Bettina Konighofer

S A o

= Det/Nondet. Blichi

Checking for Emptiness of L(B) + Complementation

= |ntersection Bulichi

= Emptiness Biichi

= Aninfinite run p is accepting < it visits an accepting state an infinitely often.
= inf(p) N F = 0

= L(B)=0ifthereisnoreachable accepting state on a cycle

Bettina Konighofer

Checking for Emptiness of £(B) . Complementation

= |ntersection Buchi
= Emptiness Biichi

= Aninfinite run p is accepting < it visits an accepting state an infinitely often.
" inf(p) N F + 0

= L(B)=0ifthereis noreachable accepting state on a cycle
= Algorithm to check Emptiness for Biichi Automata:

= L(B)is nonempty < The graph induced by B contains a path from an initial state
to a statet € F and a path from t back to itselr. @

rgolpe

= Det/Nondet. Blichi

Example: Checking for Emptiness of L(B) + Complementation
= |sthe language L(B) empty? %

= |ntersection Bulichi
= Emptiness Biichi

(ri, 43, 0)

(ry, dy 1) (ry, di, 0)

b

(ry A1, 2) @

<r13 q2a O>

Bettina Konighofer

= Det/Nondet. Blichi

Example: Checking for Emptiness of L(B) + Complementation

= |ntersection Bulichi
= Emptiness Biichi

= |sthe language L(B) empty?

= No: <r,,q;,2> is accepting and reachable from <r,,q,,0> and reachable from itself.

(ry, dy, 0)
a a b b
e
(ry, dy 1) (ry, q;, 0)

b

(ry A1, 2) @

<r13 q2a O>

Bettina Konighofer

= Det/Nondet. Blichi

MOdel ChECking Of LTL = Complementation

= |Intersection Biichi

» Emptiness Buchi

= Given a Kripke structure M and a LTL formula ¢:
Does M &= ¢?

= Automata-based Algorithm

Construct-¢ /

Construct a Bichi automaton §_,

Translate M to an automaton A. <=

Construct the automaton B with L(B) = L(A) N L(S_,) /
fLB)=0=>MEe@ ¢

fLB)+D=>MHEe@. Awordv -w® € L(B)is acounterexample /
—> atrace in M that does not satisfy ¢

Bettina Konighofer

S A o

Plan for Today isec.tugraz.at M

= LTL Model Checking

= Recap/Overview
» Basics of Automata Theory
* Finite automata on finite words (Regular automata)

" Finite automata on infinite words (Blichi automata)
= Definitions: Automata, word, run, language
= Deterministic vs non-deterministic automata
" Intersection of automata
* Checking emptiness of automata

» Kripke structures to automata

= LTL Model-Checking Algorithm

n Bettina Konighofer

Kripke Structure to Blichi Automaton isec.tugraz.at

= Move labels to incoming transitions
= Push labels backwards

= All states are accepting

1P}

50 @/\\/@ 51
{P, 4}
{P,a} {4}
Ay s,

i

. L

Kripke Structure to Blichi Automaton isec.tugraz.at

= Move labels to incoming transitions
= Push labels backwards

= All states are accepting
= What about initial states?

X

o

1P}

50 @/\\/@ 51
0 51 {p,q}
\ / {P, 4} {9}
M: S Ay s,

Kripke Structure to Blichi Automaton isec.tugraz.at

= Move labels to incoming transitions
= Push labels backwards

= All states are accepting

P, 4} 1P}
1P}

50 @/\\/@ 51
0 51 {p,q}
\ / {P, 4} {9}
M: S Ay s,

Kripke Structure to Blichi Automaton isec.tugraz.at

= Algorithm:
= M=(S,S,, R,AP, L) = Ay = (X, SU{L}, A, {t}, SU{L}), where X = P(AP).

* (s,a,s)EA & (s,s') e Randa = L(s")
* (La,s)EA & seSjanda = L(s)

{P, q}

0 s, {p q)
/ {p,a} {d}
M: S2 c/lM

Model Checking of LTL isec.tugraz.at

= Given a Kripke structure M and a LTL formula ¢:
Does M &= ¢?

= Automata-based Algorithm

Construct-¢ /

Construct a Biichi automaton §_ , 4mm Next Week
Translate M to an automaton A. /

Construct the automaton B with L(B) = L(A) N L(S_,) /
fLB)=0=>MEe@ ¢

fLB)+D=>MHEe@. Awordv -w® € L(B)is acounterexample /
—> atrace in M that does not satisfy @

S A o

Plan for Today isec.tugraz.at M

= LTL Model Checking

= Recap/Overview
» Basics of Automata Theory
* Finite automata on finite words (Regular automata)
" Finite automata on infinite words (Blichi automata)
= Definitions: Automata, word, run, language
= Deterministic vs non-deterministic automata
* |ntersection of automata
* Checking emptiness of automata

= Kripke structures to automata

= LTL Model-Checking Algorithm

ilPll Bettina Konighofer

LTL MC when system A and spec S are given 'sectugrazat M
as Buichi Automata

= A satisfies S if L(A) € L(S)

* |sany behaviour of A allowed by § Runs satisfying A

Runs satisfying §

Wl Bettina Konighofer

LTL MC when system A and spec § are given isectugraz.at
as Buchi Automata

= A satisfies S if L(A) € L(S)

* |sany behaviour of A allowed by § Runs satisfying A

Runs satisfying §

= A does not satisfy S if L(A) & L(S) Counterexample

'4

Runs satisfying A

Runs satisfying §

Il Bettina Konighofer

LTL MC when system A and spec § are given isec.tugraz.at M
as Buchi Automata

= A satisfies S if L(A) € L(S)

* |sany behaviour of A allowed by § Runs satisfying A

Runs satisfying §

= A does not satisfy S if L(A) & L(S) Counterexample

= LTL MC: B 4
= L(A) L LS) = LA)NL(S) 2D Runs satisfying A

Runs satisfying §

Wl Bettina Konighofer

LTL MC when system A and spec S are given as Biichi Automata sectugrazat ®

= Algorithm - Version 1

1. Compute complementofS > §

2. Construct the automaton B with L(B) = L(A) N L(S)
3. fL(B)=0 = A satisfies §
4

. Otherwise,aword v - w® € L(B) is a counterexample

Counterexample

'4

Runs satisfying A

Runs satisfying §

Il Bettina Konighofer

LTL MC when system A and spec S are given as Biichi Automata sectugrazat ®

= Algorithm - Version 1 very hard

1. Compute complementofS > § «

2. Construct the automaton B with L(B) = L(A) N L(S)
3. fL(B)=0 = A satisfies §
4

. Otherwise,aword v - w® € L(B) is a counterexample

Counterexample

'4

Runs satisfying A

Runs satisfying §

WAl Bettina Konighofer

LTL MC when system A and spec S are given as Biichi Automata sectugrazat ®

= Algorithm - Version 2
1. Construct =@
Construct Buchi Automaton §_,
Construct the automaton B with L(B) = L(A) N L(S)
If L(B) =0 = A satisfies S
Otherwise,aword v - w® € L(B) is a counterexample

A S

Counterexample

'4

Runs satisfying A

Runs satisfying §

Il Bettina Konighofer

LTL MC when system A and spec S are given as Biichi Automata sectugrazat ®

= Algorithm - Version 2

1. Construct —|fp | Next Week
Construct Buchi Automaton §_, L o

Construct the automaton B with L(B) = L(A) N L(S)
If L(B) =0 = A satisfies §
Otherwise,aword v - w® € L(B) is a counterexample

A S

Counterexample

'4

Runs satisfying A

Runs satisfying §

ILEl Bettina Konighofer

isec.tugraz.at H

ﬂ‘%&;fé;
ANY é

QUESTIONS&

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110

