

Model Checking for LTL

Bettina Könighofer

bettina.koenighofer@tugraz.at

Plan for Today

Presentation of Homework

- LTL Model Checking
 - Recap / Overview
 - Basics of Automata Theory
 - LTL Model-Checking Algorithm

Homework Task 6a: $f_1 = \neg EG(start \rightarrow EX(error))$

isec.tugraz.at

- 1. Check start, error \implies [[start]]_M = {2, 5, 6, 7}, [[error]]_M = {2, 5}
- 2. Check $f_1^{(1)} \equiv \mathbf{EX} \text{ error } \implies [[f_1^{(1)}]]_M = \{1, 2, 5\}$
- 3. Check $f_1^{(2)} \equiv \text{start} \to f_1^{(1)} \implies [[f_1^{(2)}]]_M = \{1, 2, 3, 4, 5\}$
- 4. Check $f_1^{(3)} \equiv \mathbf{EG} \ f_1^{(2)} \implies [[f_1^{(3)}]]_M = \{1, 2, 3, 4, 5\}$
- 5. Check $f_1 \equiv \neg f_1^{(3)} \implies [[f_1]]_M = \{6, 7\}$

Homework Task 6b: $f_2 = EF(E(start\ U\ close)\ \land EG\ close)$ isec.tugraz.at

$$[[close]]_M = \{3, 4, 5, 6, 7\}$$

- 1. Check start, close \Longrightarrow $[[start]]_M = \{2, 5, 6, 7\}$
- 2. Check $f_2^{(1)} \equiv \mathbf{EG}$ close \Longrightarrow $[[f_2^{(1)}]]_M = \{3, 4, 6, 7\}$
- 3. Check $f_2^{(2)} \equiv \mathbf{E} \text{ (start } \mathbf{U} \text{ close)} \implies [[f_2^{(2)}]]_M = \{2, 3, 4, 5, 6, 7\}$

4. Check
$$f_2^{(3)} \equiv f_2^{(2)} \wedge f_2^{(1)} \implies [[f_2^{(3)}]]_M = \{3, 4, 6, 7\}$$

5. Check $f_2 \equiv \mathbf{EF} \ f_2^{(3)} \implies [[f_2]]_M = \{1, 2, 3, 4, 5, 6, 7\}$

As $S_0 \subseteq [[f_2]]_M$, $M \models f_2$ holds.

Plan for Today

Presentation of Homework

- LTL Model Checking
 - Recap / Overview
 - Basics of Automata Theory
 - LTL Model-Checking Algorithm

Recap - LTL/CTL/CTL*

Recap - Temporal Operators

- Temporal operators
 - Describe properties along a given path
- AP: a set of atomic propositions, $p, q \in AP$

pRq ... "**p** releases **q**": **q** has to hold until **p** holds. However, **p** is not required to hold eventually.

Recap - LTL - Syntax

State formulas

• Ag where g is a path formula

Path formulas

- $p \in AP$
- $\neg g_1$, $g_1 \lor g_2$, $g_1 \land g_2$, Xg_1 , Gg_1 , g_1Ug_2 , g_1Rg_2 where g_1 and g_2 are path formulas

Model Checking of LTL

• Given a Kripke structure M and a LTL formula φ : Does $M \models \varphi$?

Model Checking of LTL

• Given a Kripke structure M and a LTL formula φ : Does $M \models \varphi$?

Automata-based Algorithm

- 1. Construct $\neg \varphi$
- 2. Construct a Büchi automaton $S_{\neg \phi}$
- 3. Translate M to an automaton A.
- 4. Construct the automaton \mathcal{B} with $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{S}_{\neg \varphi})$
- 5. If $\mathcal{L}(\mathcal{B}) = \emptyset \Rightarrow M \models \varphi$
- 6. If $\mathcal{L}(\mathcal{B}) \neq \emptyset \Rightarrow M \not\models \varphi$. A word $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ is a **counterexample** \rightarrow a trace in M that does not satisfy φ

Plan for Today

- LTL Model Checking
 - Recap / Overview
 - Basics of Automata Theory
 - Finite automata on finite words (Regular automata)
 - Finite automata on infinite words (Büchi automata)
 - Definitions: Automata, word, run, language
 - Deterministic vs non-deterministic automata
 - Intersection of automata
 - Checking emptiness of automata
 - Kripke structures to automata
 - LTL Model-Checking Algorithm

Finite Automata on Finite Words - Regular Automata

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

Finite Automata on Finite Words – Regular Automata

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- - ∑ is the finite alphabet
 - Q is the finite set of **states**
 - $\Delta \subseteq \mathbf{Q} \times \mathbf{\Sigma} \times \mathbf{Q}$ is the **transition relation**
 - Q⁰ is the set of **initial states**
 - **F** is the set of **accepting states**

Finite Automata on Finite Words - Regular Automata

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- $\mathcal{A} = (\mathbf{\Sigma}, \mathbf{Q}, \mathbf{\Delta}, \mathbf{Q}^0, \mathbf{F})$
 - ∑ is the finite alphabet
 - Q is the finite set of **states**
 - $\Delta \subseteq \mathbf{Q} \times \mathbf{\Sigma} \times \mathbf{Q}$ is the **transition relation**
 - Q⁰ is the set of **initial states**
 - F is the set of accepting states

Finite Automata on Finite Words - Regular Automata

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- - $\Sigma = \{a, b\}$
 - $\mathbf{Q} = \{q_1, q_2\}$
 - $\Delta = \{ (q_1, a, q_1), (q_1, b, q_2), (q_2, a, q_1), (q_2, b, q_2) \}$
 - $\mathbf{Q}^0 = \{q_1\}$
 - $\mathbf{F} = \{q_1\}$

Words and Runs on Finite Automata

- A word v is a sequence in Σ^* of length |v|
- A run ρ is a **path** in the automaton \mathcal{A} .

- **Definitions**
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

Words and Runs on Finite Automata

- A word v is a sequence in Σ^* of length |v|
- A run ρ is a **path** in the automaton \mathcal{A} .
- Given a word $v = a_1, a_2, ..., a_n$ and automaton \mathcal{A}
- \rightarrow A run $\rho = q_0, q_1, ... q_n$ of \mathcal{A} is a sequence of states s.t.
 - lacksquare $q_0 \in Q^0$
 - $∀i: 0 ≤ i ≤ n 1: (q_i, a_{i+1}q_{i+1}) ∈ Δ$

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

• A run
$$\rho = q_0, q_1, ... q_n$$
 is accepting $\Leftrightarrow q_n \in F$

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- A run $\rho = q_0, q_1, ... q_n$ is accepting $\Leftrightarrow q_n \in F$
- A accepts a word $v = a_1, a_2, ..., a_n \Leftrightarrow$ if there is a corresponding accepting run ρ

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- A run $\rho = q_0, q_1, ... q_n$ is accepting $\Leftrightarrow q_n \in F$
- A accepts a word $v = a_1, a_2, ..., a_n \Leftrightarrow$ if there is a corresponding accepting run ρ
- $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^*$... Language of \mathcal{A} , is the set of words v that \mathcal{A} accepts.
 - Languages accepted by finite automata are regular languages.

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- A run $\rho = q_0, q_1, ... q_n$ is accepting $\Leftrightarrow q_n \in F$
- A accepts a word $v = a_1, a_2, ..., a_n \Leftrightarrow$ if there is a corresponding accepting run ρ
- $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^*$... Language of \mathcal{A} , is the set of words v that \mathcal{A} accepts.
 - Languages accepted by finite automata are regular languages.

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- A run $\rho = q_0, q_1, ... q_n$ is accepting $\Leftrightarrow q_n \in F$
- A accepts a word $v = a_1, a_2, ..., a_n \Leftrightarrow$ if there is a corresponding accepting run ρ
- $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^*$... Language of \mathcal{A} , is the set of words v that \mathcal{A} accepts.
 - Languages accepted by finite automata are regular languages.
- What is $\mathcal{L}(\mathcal{A})$?
 - $\mathcal{L}(\mathcal{A}) = \{\text{empty word}\} \cup \{\text{all words that end with } a\}$ = $\{\varepsilon\} \cup \{a, b\}^* a$

Task: Build a Regular Automata

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs
- Build an automaton that accepts all and only those strings that contain 001.

Task: Build a Regular Automata

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

• Build an automaton that accepts all and only those strings that contain 001.

Deterministic and Non-Deterministic Automata

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

Deterministic and Non-Deterministic Automata

- Deterministic Finite Automata (DFA):
- \mathcal{A} is **deterministic** if Δ is a **function** (one output for each input).
 - $|Q^0| = 1$
 - $\forall q \in Q, \forall a \in \Sigma : |\Delta(q, a)| \leq 1$
- Det. automata have exactly one run for each word.

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

Deterministic and Non-Deterministic Automata

- **Deterministic Finite Automata (DFA):**
- \mathcal{A} is **deterministic** if Δ is a **function** (one output for each input).
 - $|Q^0| = 1$
 - $\forall q \in Q, \forall a \in \Sigma : |\Delta(q, a)| \leq 1$
- Det. automata have exactly one run for each word.

- Non-deterministic Finite Automata (NFA):
 - Can have transitions $(q, a, q'), (q, a, q'') \in \Delta$ and $q'' \neq q'$
 - Can have ε-transitions (transitions without a letter)

NFAs to DFAs (Subset Constr)

DFAs and NFAs

Definitions

- Complement
- Intersection of NFAs

Language of an NFA

- An NFA accepts all words that have a run that ends in an accepting state

What is the language of this automaton?

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

Language of an NFA

- An NFA accepts all words that have a run that ends in an accepting state
- What is the language of this automaton?

 $\mathcal{L}(\mathcal{A}) = \{\text{all words that end with a}\}\$

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

NFA on Finite Words to DFA

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

Any non-deterministic finite automata on *finite words* can be translated into an equivalent deterministic automaton.

NFA A

Subset-Construction (exponential blow-up)

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

NFA \mathcal{A}

- Subset-Construction (exponential blow-up)
 - NFA: $\mathcal{A} = (\mathbf{\Sigma}, \mathbf{Q}, \mathbf{\Delta}, \mathbf{Q}^0, \mathbf{F})$
 - DFA: $\mathcal{A}' = (\Sigma, P(Q), \Delta', \{Q^0\}, F')$

with $P(\mathbf{Q})$...powerset of \mathbf{Q}

NFA \mathcal{A}

Equivalent DFA A'

Definitions

DFAs and NFAs

NFAs to DFAs

Complement

(Subset Constr)

Intersection of NFAs

- Definitions
- **DFAs and NFAs**
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- Subset-Construction (exponential blow-up)
 - NFA: $\mathcal{A} = (\Sigma, Q, \Delta, Q^0, F)$
 - DFA: $\mathcal{A}' = (\Sigma, P(Q), \Delta', \{Q^0\}, F')$ with P(Q)...powerset of Q

- Each state in \mathcal{A} ' corresponds to the **set of states** in \mathcal{A} that is reached after reading an input sequence

NFA A

- Definitions
- **DFAs and NFAs**
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- Subset-Construction (exponential blow-up)
 - NFA: $\mathcal{A} = (\Sigma, Q, \Delta, Q^0, F)$
 - DFA: $\mathcal{A}' = (\Sigma, P(Q), \Delta', \{Q^0\}, F')$ with P(Q)...powerset of Q

- Each state in \mathcal{A} ' corresponds to the **set of states** in \mathcal{A} that is reached after reading an input sequence
- Example: $(\{s_0\}, b, \{s_0\}) \in \Delta' \text{ since } (s_0, b, s_0) \in \Delta$

NFA A

- Definitions
- **DFAs and NFAs**
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- Subset-Construction (exponential blow-up)
 - NFA: $\mathcal{A} = (\Sigma, Q, \Delta, Q^0, F)$
 - DFA: $\mathcal{A}' = (\Sigma, P(Q), \Delta', \{Q^0\}, F')$ with P(Q)...powerset of Q

- Each state in \mathcal{A} ' corresponds to the **set of states** in \mathcal{A} that is reached after reading an input sequence
- $\Delta': P(Q) \times \Sigma \to P(Q)$ where $(Q_1, a, Q_2) \in \Delta'$ if $Q_2 = \bigcup_{q \in Q_1} \{q' | (q, a, q') \in \Delta\}$
- Example:

$$(\{s_0\}, a, \{s_0, s_1\}) \in \Delta' \text{ since } (s_0, a, s_0) \in \Delta \text{ and } (s_0, a, s_1) \in \Delta$$

NFA A

Algorithm: NFA to finite words to DFA

- Definitions
- **DFAs and NFAs**
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- Subset-Construction (exponential blow-up)
 - NFA: $\mathcal{A} = (\Sigma, Q, \Delta, Q^0, F)$
 - DFA: $\mathcal{A}' = (\Sigma, P(Q), \Delta', \{Q^0\}, F')$ with P(Q)...powerset of Q

- Each state in \mathcal{A} ' corresponds to the **set of states** in \mathcal{A} that is reached after reading an input sequence
- $\Delta': P(Q) \times \Sigma \to P(Q)$ where $(Q_1, a, Q_2) \in \Delta'$ if $Q_2 = \bigcup_{q \in Q_1} \{q' | (q, a, q') \in \Delta\}$
- Example:

$$(\{s_0\}, a, \{s_0, s_1\}) \in \Delta' \text{ since } (s_0, a, s_0) \in \Delta \text{ and } (s_0, a, s_1) \in \Delta$$

NFA A

Equivalent DFA A'

Algorithm: NFA to finite words to DFA

- Definitions
- **DFAs and NFAs**
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- Subset-Construction (exponential blow-up)
 - NFA: $\mathcal{A} = (\Sigma, Q, \Delta, Q^0, F)$
 - DFA: $\mathcal{A}' = (\Sigma, P(Q), \Delta', \{Q^0\}, F')$ with P(Q)...powerset of Q

- Each state in \mathcal{A} ' corresponds to the **set of states** in \mathcal{A} that is reached after reading an input sequence
- Example: $(\{s_0, s_1\}, b, \{s_0\}) \in \Delta' \text{ since } (s_0, b, s_0) \in \Delta$

NFA A

Equivalent DFA A'

Algorithm: NFA to finite words to DFA

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- Subset-Construction (exponential blow-up)
 - NFA: $\mathcal{A} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$
 - DFA: $\mathcal{A}' = (\Sigma, P(Q), \Delta', \{Q^0\}, F')$

with $P(\mathbf{Q})$...powerset of \mathbf{Q}

- Each state in A' corresponds to the set of states in A that is reached after reading an input sequence
- $\Delta': P(Q) \times \Sigma \to P(Q)$ where $(Q_1, a, Q_2) \in \Delta'$ if $Q_2 = \bigcup_{q \in Q_1} \{q' | (q, a, q') \in \Delta\}$
- Example: $(\{s_0, s_1\}, a, \{s_0, s_1\}) \in \Delta' \text{ since } (s_0, a, s_0) \in \Delta \text{ and } (s_0, a, s_1) \in \Delta \text{ and } (s_1, a, s_1) \in \Delta'$

NFA A

Equivalent DFA A'

Example 1/2: NFA to finite words to DFA

- Definitions
 - DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- Subset-Construction (exponential blow-up)
 - NFA: $\mathcal{A} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$
 - DFA: $\mathcal{A}' = (\Sigma, P(Q), \Delta', \{Q^0\}, F')$ with P(Q)...powerset of Q
 - $\Delta': P(Q) \times \Sigma \to P(Q)$ where $(Q_1, a, Q_2) \in \Delta'$ if $Q_2 = \bigcup_{q \in Q_1} \{q' | (q, a, q') \in \Delta\}$
 - $F' = \{Q' | Q' \cap F \neq \emptyset\}$

NFA A

Equivalent DFA A'?

Example 1/2: NFA to finite words to DFA

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- Subset-Construction (exponential blow-up)
 - NFA: $\mathcal{A} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$
 - DFA: $\mathcal{A}' = (\Sigma, P(Q), \Delta', \{Q^0\}, F')$ with P(Q)...powerset of Q
 - $\Delta': P(Q) \times \Sigma \to P(Q)$ where $(Q_1, a, Q_2) \in \Delta'$ if $Q_2 = \bigcup_{q \in Q_1} \{q' | (q, a, q') \in \Delta\}$
 - $F' = \{Q' | Q' \cap F \neq \emptyset\}$

NFA \mathcal{A}

Equivalent DFA A'?

Example 2/2: NFA to finite words to DFA

- **Definitions**
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- Subset-Construction (exponential blow-up)
 - NFA: $\mathcal{A} = (\Sigma, Q, \Delta, Q^0, F)$
 - DFA: $\mathcal{A}' = (\Sigma, P(Q), \Delta', \{Q^0\}, F')$ with P(Q)...powerset of Q

- $\Delta': P(Q) \times \Sigma \to P(Q)$ where $(Q_1, a, Q_2) \in \Delta'$ if $Q_2 = \bigcup_{q \in Q_1} \{q' | (q, a, q') \in \Delta\}$
- $F' = \{Q' | Q' \cap F \neq \emptyset\}$

NFA A

Equivalent DFA \mathcal{A} '?

Example 2/2: NFA to finite words to DFA

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- Subset-Construction (exponential blow-up)
 - NFA: $\mathcal{A} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$
 - DFA: $\mathcal{A}' = (\Sigma, P(Q), \Delta', \{Q^0\}, F')$ with P(Q)...powerset of Q
 - $\Delta': P(Q) \times \Sigma \to P(Q)$ where $(Q_1, a, Q_2) \in \Delta'$ if $Q_2 = \bigcup_{q \in Q_1} \{q' | (q, a, q') \in \Delta\}$
 - $F' = \{Q' | Q' \cap F \neq \emptyset\}$

NFA A

Equivalent DFA A'?

Complement of DFAs

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

• The **complement** automaton $\overline{\mathcal{A}}$ accepts exactly those words that are **rejected** by \mathcal{A}

Complement of DFAs

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs
- The **complement** automaton $\overline{\mathcal{A}}$ accepts exactly those words that are **rejected** by \mathcal{A}
- Algorithm: Construction of $\overline{\mathcal{A}}$
 - Substitution of accepting and non-accepting states

Example: Complement of NFAs

NFA A accepts words that end with 001

• Is \mathcal{A} ' the compelent $\overline{\mathcal{A}}$ of \mathcal{A} ?

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

Example: Complement of NFAs

- NFA A accepts words that end with 001
- Is \mathcal{A} ' the compelent $\overline{\mathcal{A}}$ of \mathcal{A} ?

NO! The language of this automaton is {0,1}*

Definitions

DFAs and NFAs

(Subset Constr)
Complement

Intersection of NFAs

NFAs to DFAs

Algorithm: Complement of NFAs

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- The complement automaton $\overline{\mathcal{A}}$ accepts exactly those words that are rejected by \mathcal{A}
- Algorithm to construct $\overline{\mathcal{A}}$?

Algorithm: Complement of NFAs

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs
- The complement automaton $\bar{\mathcal{A}}$ accepts exactly those words that are rejected by \mathcal{A}
- Algorithm to construct $\overline{\mathcal{A}}$?
 - 1. Convert NFA to DFA (make NFA deterministic)
 - 2. Substitution of accepting and non-accepting states

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs
- The intersection of two languages L_1 and L_2 is $L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}$
- Algorithm: Compute Product Automaton $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$ s.t. $L(\mathcal{A}) = L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs
- The intersection of two languages L_1 and L_2 is $L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}$
- Algorithm: Compute Product Automaton $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$ s.t. $L(\mathcal{A}) = L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$
 - $Q = Q_1 \times Q_2$
 - $\Delta((q_1, q_2), a) = (\Delta_1(q_1, a), \Delta_2(q_2, a))$
 - $Q^0 = Q_1^0 \times Q_2^0$
 - $(q_1, q_2) \in F \Leftrightarrow q_1 \in F_1 \text{ and } q_2 \in F_2$

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs

• Algorithm: Compute Product Automaton $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$ s.t. $L(\mathcal{A}) = L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$

- **Definitions**
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- **Intersection of NFAs**
- Algorithm: Compute Product Automaton $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$ s.t. $L(\mathcal{A}) = L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$

 - $Q = Q_1 \times Q_2$ > States: $(s_0, t_0), (s_0, t_1), (s_1, t_0), (s_1, t_1)$

 - $Q^0 = Q_1^0 \times Q_2^0$ \triangleright Initial state: (s_0, t_0)

$$\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$$

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs
- Algorithm: Compute Product Automaton $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$ s.t. $L(\mathcal{A}) = L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$
 - $\Delta((q_1, q_2), a) = (\Delta_1(q_1, a), \Delta_2(q_2, a))$

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs
- Algorithm: Compute Product Automaton $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$ s.t. $L(\mathcal{A}) = L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$
 - $\Delta((q_1, q_2), a) = (\Delta_1(q_1, a), \Delta_2(q_2, a))$

- Definitions
- DFAs and NFAs
- NFAs to DFAs (Subset Constr)
- Complement
- Intersection of NFAs
- Algorithm: Compute Product Automaton $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$ s.t. $L(\mathcal{A}) = L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$
 - $(q_1, q_2) \in F \Leftrightarrow q_1 \in F_1 \text{ and } q_2 \in F_2$

Plan for Today

- LTL Model Checking
 - Recap / Overview
 - Basics of Automata Theory
 - Finite automata on finite words (Regular automata)
 - Finite automata on infinite words (Büchi automata)
 - Definitions: Automata, word, run, language
 - Deterministic vs non-deterministic automata
 - Intersection of automata
 - Checking emptiness of automata
 - Kripke structures to automata
 - LTL Model-Checking Algorithm

Automata on Infinite Words

- **Definitions**
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

- We are interested in reactive systems
 - Designed to not hold during normal execution
- Runs are infinite sequences
 - Words are $v \in \Sigma^{\omega}$, where ω denotes **infinitely many** (i.e., $|v| = \infty$)
- Languages accepted by finite automata on infinite words are called ω -regular languages.
- Büchi Automata → Simplest automata over infinite words

Büchi Automata

- - ∑ is the finite alphabet
 - Q is the finite set of states
 - $\Delta \subseteq \mathbf{Q} \times \mathbf{\Sigma} \times \mathbf{Q}$ is the **transition relation**
 - Q⁰ is the set of **initial states**
 - **F** is the set of **accepting states**

- **Definitions**
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

- **Definitions**
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

- $\mathcal{B} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$
- An infinite run ρ is accepting $\Leftrightarrow \rho$ visits an accepting state infinitely often.
 - $inf(\rho)$... set of states in ρ that appear **infinitely often**
 - $inf(\rho) \cap F \neq \emptyset$

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

- An infinite run ρ is accepting $\Leftrightarrow \rho$ visits an accepting state infinitely often.
 - $inf(\rho)$... set of states in ρ that appear **infinitely often**
 - $inf(\rho) \cap F \neq \emptyset$
- $\mathcal{L}(\mathcal{B}) \subseteq \Sigma^{\omega}$ is the set of **all infinite words** that \mathcal{B} accepts

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

•
$$\mathcal{B} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$$

- An infinite run ρ is accepting $\Leftrightarrow \rho$ visits an accepting state infinitely often.
 - $inf(\rho)$... set of states in ρ that appear **infinitely often**
 - $inf(\rho) \cap F \neq \emptyset$
- $\mathcal{L}(\mathcal{B}) \subseteq \Sigma^{\omega}$ is the set of all infinite words that \mathcal{B} accepts

What is the language of this automaton? (In LTL)

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

•
$$\mathcal{B} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$$

- An infinite run ρ is accepting $\Leftrightarrow \rho$ visits an accepting state infinitely often.
 - $inf(\rho)$... set of states in ρ that appear **infinitely often**
 - $inf(\rho) \cap F \neq \emptyset$
- $\mathcal{L}(\mathcal{B}) \subseteq \Sigma^{\omega}$ is the set of **all infinite words** that \mathcal{B} accepts

What is the language of this automaton?

$$\mathcal{L}(\mathcal{B}) = \{ \text{words with infinitely many } a \}$$

$$\mathcal{L}(\mathcal{B}) = (\{a,b\}^* a)^{\omega}$$
 or in LTL: $GF(a)$

- Definitions
- Det/Nondet, Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

Deterministic Büchi automata are **strictly less expressive** than nondeterministic Büchi automata.

■ → not every nondeterministic Büchi automaton has an equivalent deterministic Büchi one.

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

Deterministic Büchi automata are **strictly less expressive** than nondeterministic Büchi automata.

- → not every nondeterministic Büchi automaton has an equivalent deterministic Büchi one.
- Proof Idea: (details see book)
 - Non-det. Büchi automaton **B**
 - $\mathcal{L}(\mathcal{B}) = \{ \text{words with a finitely many a} \} \text{ in LTL: } FGb$

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

Deterministic Büchi automata are **strictly less expressive** than nondeterministic Büchi automata.

- → not every nondeterministic Büchi automaton has an equivalent deterministic Büchi one.
- Proof Idea: (details see book)
 - Non-det. Büchi automaton **B**
 - $\mathcal{L}(\mathcal{B}) = \{ \text{words with a finitely many a} \} \text{ in LTL: } FGb$

■ The proof shows that there is no **deterministic** Büchi automaton for "**finitely many**"

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

Deterministic Büchi automata are not closed under complementation.

- Why?
- Hint: Automata below

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

Deterministic Büchi automata are not closed under complementation.

- Proof:
 - Deterministic Büchi automaton \mathcal{A} with $\mathcal{L}(\mathcal{A}) = \{\text{words with } \text{infinitely many a}\}$.
 - $\overline{\mathcal{A}}$ accepts those words that are rejected by $\mathcal{A} \to \mathcal{L}(\overline{\mathcal{A}}) = \{\text{words with finitely many a}\}.$
 - There there is no **deterministic** Büchi automaton for "**finitely many**" (see Theorem before). □

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

Non-Deterministic Büchi automata are closed under complementation.

- The construction is very complicated.
 - We will not discuss it here. Algorithms try to avoid it.
- **Büchi** showed an algorithm for complementation that is **double exponential** in the size *n* of the automaton.
- **Safra** proved that it can be done by $2^{O(n \log n)}$

Intersection of Büchi Automata

• What is $L(\mathcal{A}) = L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$?

- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

• $L(\mathcal{A}_1) \cap L(\mathcal{A}_2) = \{\text{words with infinitely many } a \text{ and infinitely many } b\}$

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi
- $L(\mathcal{A}_1) \cap L(\mathcal{A}_2) = \{\text{words with infinitely many } a \text{ and infinitely many } b\}$
- A standard intersection does not work –automaton has no accepting states!

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi
- $L(\mathcal{A}_1) \cap L(\mathcal{A}_2) = \{\text{words with infinitely many } a \text{ and infinitely many } b\}$
- A standard intersection does not work –automaton has no accepting states!
- Solution: Introduce counter!

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi
- $L(\mathcal{A}_1) \cap L(\mathcal{A}_2) = \{\text{words with infinitely many } a \text{ and infinitely many } b\}$
- A standard intersection does not work –automaton has no accepting states!
- Solution: Introduce counter!

- Given $\mathcal{B}_1 = (\mathbf{\Sigma}, \mathbf{Q}_1, \mathbf{\Delta}_1, \mathbf{Q}_1^0, \mathbf{F}_1)$ and $\mathcal{B}_2 = (\mathbf{\Sigma}, \mathbf{Q}_2, \mathbf{\Delta}_2, \mathbf{Q}_2^0, \mathbf{F}_2)$
- $\mathcal{B} = (\Sigma, \mathbb{Q}, \Delta, \mathbb{Q}^0, \mathbb{F})$ s.t. $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$ is defined as follows:

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

- Given $\mathcal{B}_1 = (\mathbf{\Sigma}, \mathbf{Q}_1, \mathbf{\Delta}_1, \mathbf{Q}_1^0, \mathbf{F}_1)$ and $\mathcal{B}_2 = (\mathbf{\Sigma}, \mathbf{Q}_2, \mathbf{\Delta}_2, \mathbf{Q}_2^0, \mathbf{F}_2)$
- $\mathcal{B} = (\Sigma, \mathbb{Q}, \Delta, \mathbb{Q}^0, \mathbb{F})$ s.t. $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$ is defined as follows:
 - $Q = Q_1 \times Q_2 \times \{0, 1, 2\}$
 - $\mathbf{Q}^{0} = \mathbf{Q}_{1}^{0} \times \mathbf{Q}_{2}^{0} \times \{\mathbf{0}\}$
 - $F = \mathbf{Q}_1 \times \mathbf{Q}_2 \times \{\mathbf{2}\}$

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

- Given $\mathcal{B}_1 = (\Sigma, \mathbf{Q}_1, \Delta_1, \mathbf{Q}_1^0, \mathbf{F}_1)$ and $\mathcal{B}_2 = (\Sigma, \mathbf{Q}_2, \Delta_2, \mathbf{Q}_2^0, \mathbf{F}_2)$
- $\mathcal{B} = (\Sigma, \mathbb{Q}, \Delta, \mathbb{Q}^0, \mathbb{F})$ s.t. $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$ is defined as follows:
 - $Q = Q_1 \times Q_2 \times \{0, 1, 2\}$
 - $\mathbf{Q}^{0} = \mathbf{Q}_{1}^{0} \times \mathbf{Q}_{2}^{0} \times \{\mathbf{0}\}$
 - $F = \mathbf{Q}_1 \times \mathbf{Q}_2 \times \{2\}$
 - $((q_1,q_2,x), a, (q'_1,q'_2,x')) \in \Delta \Leftrightarrow$
 - 1. $(q_1,a,q_1) \in \Delta_1$ and $(q_2,a,q_2) \in \Delta_2$ and
 - 2. If x=0 and $q'_1 \in \mathbf{F}_1$ then x'=1If x=1 and $q'_2 \in \mathbf{F}_2$ then x'=2If x=2 then x'=0Else, x'=x

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

- Given $\mathcal{B}_1 = (\Sigma, \mathbf{Q}_1, \Delta_1, \mathbf{Q}_1^0, \mathbf{F}_1)$ and $\mathcal{B}_2 = (\Sigma, \mathbf{Q}_2, \Delta_2, \mathbf{Q}_2^0, \mathbf{F}_2)$
- $\mathcal{B} = (\Sigma, \mathbb{Q}, \Delta, \mathbb{Q}^0, \mathbb{F})$ s.t. $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$ is defined as follows:
 - $\mathbf{Q} = \mathbf{Q}_1 \times \mathbf{Q}_2 \times \{\mathbf{0}, \mathbf{1}, \mathbf{2}\}$
 - $\mathbf{Q}^{0} = \mathbf{Q}_{1}^{0} \times \mathbf{Q}_{2}^{0} \times \{\mathbf{0}\}$
 - $F = \mathbf{Q}_1 \times \mathbf{Q}_2 \times \{\mathbf{2}\}$
 - $((q_1,q_2,x), a, (q'_1,q'_2,x')) \in \Delta \Leftrightarrow$
 - 1. $(q_1,a,q_1) \in \Delta_1$ and $(q_2,a,q_2) \in \Delta_2$ and
 - 2. If x=0 and $q'_1 \in \mathbf{F}_1$ then x'=1If x=1 and $q'_2 \in \mathbf{F}_2$ then x'=2If x=2 then x'=0Else, x'=x

Intuition:

```
x=0 ... waiting for s \in \mathbf{F}_1
x=1 ... waiting for s \in \mathbf{F}_2
```

If some s with x=2 is visited inf often, then states from \mathbf{F}_1 and states from \mathbf{F}_2 have been visited inf often.

- Compute $\mathcal{B} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$ s.t. $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$
 - First copy: waits for $s \in \mathbf{F}_1$
 - Second copy: waits for $s \in \mathbb{F}_2$
 - Third copy: all states are accepting

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

- Compute $\mathcal{B} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$ s.t. $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$
 - First copy: waits for $s \in \mathbf{F}_1$
 - Second copy: waits for $s \in \mathbb{F}_2$
 - Third copy: all states are accepting

Definitions

Det/Nondet. Büchi

Complementation **Intersection Büchi**

- Compute $\mathcal{B} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$ s.t. $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$
 - First copy: waits for $s \in \mathbf{F}_1$
 - Second copy: waits for $s \in \mathbb{F}_2$
 - Third copy: all states are accepting

Definitions

Det/Nondet. Büchi

Complementation **Intersection Büchi**

- Compute $\mathcal{B} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$ s.t. $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$
 - First copy: waits for $s \in \mathbf{F}_1$
 - Second copy: waits for $s \in \mathbb{F}_2$
 - Third copy: all states are accepting

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

- Compute $\mathcal{B} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$ s.t. $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$
 - First copy: waits for $s \in \mathbf{F}_1$
 - Second copy: waits for $s \in \mathbb{F}_2$
 - Third copy: all states are accepting

Definitions

Det/Nondet. Büchi

Complementation **Intersection Büchi**

- Compute $\mathcal{B} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$ s.t. $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$
 - First copy: waits for $s \in \mathbf{F}_1$
 - Second copy: waits for $s \in \mathbb{F}_2$
 - Third copy: all states are accepting

Det/Nondet. Büchi

Definitions

- Complementation
- Intersection Büchi
- Emptiness Büchi

- Compute $\mathcal{B} = (\Sigma, \mathbf{Q}, \Delta, \mathbf{Q}^0, \mathbf{F})$ s.t. $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$
 - First copy: waits for $s \in \mathbf{F}_1$
 - Second copy: waits for $s \in \mathbb{F}_2$
 - Third copy: all states are accepting

Bettina Könighofer

Definitions

Det/Nondet. Büchi

Complementation **Intersection Büchi**

- Question
 - In every interval we first wait for an s in \mathbf{F}_1 and then wait for an s in \mathbf{F}_2 .
 - We ignore accepting states that don't appear in this order.
 - Can we miss accepting paths in B?

Definitions

Det/Nondet. Büchi

Complementation

Intersection Büchi

- Question
 - In every interval we first wait for an s in \mathbf{F}_1 and then wait for an s in \mathbf{F}_2 .
 - We ignore accepting states that don't appear in this order.
 - Can we miss accepting paths in B?
 - NO! An accepting path visits infinitely many s from F₁ and F₂.
 → We can ignore finitely many accepting states in each interval

Definitions

Det/Nondet. Büchi

Complementation

Intersection Büchi

Model Checking of LTL

• Given a Kripke structure M and a LTL formula φ : Does $M \models \varphi$?

Automata-based Algorithm

- 1. Construct $\neg \varphi$
- 2. Construct a Büchi automaton $S_{\neg \varphi}$
- 3. Translate M to an automaton A.
- 4. Construct the automaton \mathcal{B} with $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{S}_{\neg \varphi})$
- 5. If $\mathcal{L}(\mathcal{B}) = \emptyset \Rightarrow M \models \varphi$
- 6. If $\mathcal{L}(\mathcal{B}) \neq \emptyset \Rightarrow M \not\models \varphi$. A word $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ is a **counterexample** \rightarrow a trace in M that does not satisfy φ

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

Checking for Emptiness of $\mathcal{L}(\mathcal{B})$

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi
- An infinite run ρ is accepting \Leftrightarrow it visits an accepting state an infinitely often.
 - $\inf(\rho) \cap F \neq \emptyset$
- $\mathcal{L}(\mathcal{B}) = \emptyset$ if there is **no reachable accepting state** on a **cycle**

Checking for Emptiness of $\mathcal{L}(\mathcal{B})$

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi
- An infinite run ρ is accepting \Leftrightarrow it visits an accepting state an infinitely often.
 - $\inf(\rho) \cap F \neq \emptyset$
- $\mathcal{L}(\mathcal{B}) = \emptyset$ if there is **no reachable accepting state** on a **cycle**
- Algorithm to check Emptiness for Büchi Automata:

• $\mathcal{L}(\mathcal{B})$ is nonempty \Leftrightarrow The graph induced by \mathcal{B} contains a path from an initial state to a state $\mathbf{t} \in \mathbf{F}$ and a path from \mathbf{t} back to itself.

Example: Checking for Emptiness of $\mathcal{L}(\mathcal{B})$

■ Is the language £(**B**) empty?

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

Example: Checking for Emptiness of $\mathcal{L}(\mathcal{B})$

- Definitions
- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

- Is the language $\mathcal{L}(\mathcal{B})$ empty?
- No: $\langle r_2, q_1, 2 \rangle$ is accepting and reachable from $\langle r_1, q_1, 0 \rangle$ and reachable from itself.

Model Checking of LTL

• Given a Kripke structure M and a LTL formula φ : Does $M \models \varphi$?

Automata-based Algorithm

- 1. Construct $\neg \varphi$
- 2. Construct a Büchi automaton $S_{\neg \varphi}$
- 3. Translate M to an automaton A.
- 4. Construct the automaton \mathcal{B} with $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{S}_{\neg \varphi})$
- 5. If $\mathcal{L}(\mathcal{B}) = \emptyset \Rightarrow M \models \varphi$
- 6. If $\mathcal{L}(\mathcal{B}) \neq \emptyset \Rightarrow M \not\models \varphi$. A word $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ is a **counterexample** \rightarrow a trace in M that does not satisfy φ

- Det/Nondet. Büchi
- Complementation
- Intersection Büchi
- Emptiness Büchi

Plan for Today

- LTL Model Checking
 - Recap / Overview
 - Basics of Automata Theory
 - Finite automata on finite words (Regular automata)
 - Finite automata on infinite words (Büchi automata)
 - Definitions: Automata, word, run, language
 - Deterministic vs non-deterministic automata
 - Intersection of automata
 - Checking emptiness of automata
 - Kripke structures to automata
 - LTL Model-Checking Algorithm

- Move labels to incoming transitions
 - Push labels backwards
- All states are accepting

- Move labels to incoming transitions
 - Push labels backwards
- All states are accepting
- What about initial states?

- Move labels to incoming transitions
 - Push labels backwards
- All states are accepting

- Algorithm:
- $\mathbf{M} = (\mathbf{S}, \mathbf{S}_0, \mathbf{R}, \mathbf{AP}, \mathbf{L}) \Rightarrow \mathcal{A}_{\mathbf{M}} = (\mathbf{\Sigma}, \mathbf{S} \cup \{\mathbf{t}\}, \mathbf{\Delta}, \{\mathbf{t}\}, \mathbf{S} \cup \{\mathbf{t}\})$, where $\mathbf{\Sigma} = \mathbf{P}(\mathbf{AP})$.
 - $(s, a, s') \in \Delta \Leftrightarrow (s, s') \in R \text{ and } a = L(s')$
 - $(\iota, a, s) \in \Delta \iff s \in S_0 \text{ and } a = L(s)$

Model Checking of LTL

• Given a Kripke structure M and a LTL formula φ : Does $M \models \varphi$?

Automata-based Algorithm

- 1. Construct $\neg \varphi$
- 2. Construct a Büchi automaton $S_{\neg \phi}$ Next Week
- 3. Translate M to an automaton A.
- 4. Construct the automaton **B** with $\mathcal{L}(\mathbf{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\mathcal{S}_{\neg \varphi})$
- 5. If $\mathcal{L}(\mathcal{B}) = \emptyset \Rightarrow M \models \varphi$
- 6. If $\mathcal{L}(\mathcal{B}) \neq \emptyset \Rightarrow M \not\models \varphi$. A word $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ is a **counterexample** \rightarrow a trace in M that does not satisfy φ

Plan for Today

LTL Model Checking

- Recap / Overview
- Basics of Automata Theory
 - Finite automata on finite words (Regular automata)
 - Finite automata on infinite words (Büchi automata)
 - Definitions: Automata, word, run, language
 - Deterministic vs non-deterministic automata
 - Intersection of automata
 - Checking emptiness of automata
 - Kripke structures to automata
- LTL Model-Checking Algorithm

- \mathcal{A} satisfies \mathcal{S} if $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{S})$
 - Is any behaviour of A allowed by S

Runs satisfying ${\cal A}$ Runs satisfying ${\cal S}$

- \mathcal{A} satisfies \mathcal{S} if $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{S})$
 - Is any behaviour of A allowed by S

• \mathcal{A} does **not** satisfy \mathcal{S} if $\mathcal{L}(\mathcal{A}) \nsubseteq \mathcal{L}(\mathcal{S})$

Runs satisfying ${\cal A}$ Runs satisfying ${\cal S}$

Counterexample

Runs satisfying ${\mathcal A}$

- \mathcal{A} satisfies \mathcal{S} if $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{S})$
 - Is any behaviour of A allowed by S

- \mathcal{A} does **not** satisfy \mathcal{S} if $\mathcal{L}(\mathcal{A}) \nsubseteq \mathcal{L}(\mathcal{S})$
- LTL MC:
 - $\mathcal{L}(\mathcal{A}) \nsubseteq \mathcal{L}(\mathcal{S}) \equiv \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\overline{\mathcal{S}}) \neq \emptyset$

Runs satisfying ${\cal A}$ Runs satisfying ${\cal S}$

Counterexample

Runs satisfying ${\mathcal A}$

isec.tugraz.at

Algorithm – Version 1

- 1. Compute complement of $S \rightarrow \overline{S}$
- 2. Construct the automaton \mathcal{B} with $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\overline{\mathcal{S}})$
- 3. If $\mathcal{L}(\mathcal{B}) = \emptyset \Rightarrow \mathcal{A}$ satisfies \mathcal{S}
- 4. Otherwise, a word $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ is a counterexample

LTL MC when system *A* and spec *S* are given as Büchi Automata isec.tugraz.at ■

very hard

Algorithm – Version 1

- 1. Compute complement of $S \rightarrow \overline{S}$
- 2. Construct the automaton \mathcal{B} with $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\overline{\mathcal{S}})$
- 3. If $\mathcal{L}(\mathcal{B}) = \emptyset \Rightarrow \mathcal{A}$ satisfies \mathcal{S}
- 4. Otherwise, a word $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ is a counterexample

isec.tugraz.at

Algorithm – Version 2

- 1. Construct $\neg \varphi$
- 2. Construct Büchi Automaton $S_{\neg \varphi}$
- 3. Construct the automaton \mathcal{B} with $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\overline{\mathcal{S}})$
- 4. If $\mathcal{L}(\mathcal{B}) = \emptyset \Rightarrow \mathcal{A}$ satisfies \mathcal{S}
- 5. Otherwise, a word $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ is a counterexample

Counterexample

Runs satisfying $\mathcal A$

Next Week

isec.tugraz.at

Algorithm – Version 2

- 1. Construct $\neg \varphi$
- 2. Construct Büchi Automaton $S_{\neg \varphi}$
- 3. Construct the automaton \mathcal{B} with $\mathcal{L}(\mathcal{B}) = \mathcal{L}(\mathcal{A}) \cap \mathcal{L}(\overline{\mathcal{S}})$
- 4. If $\mathcal{L}(\mathcal{B}) = \emptyset \Rightarrow \mathcal{A}$ satisfies \mathcal{S}
- 5. Otherwise, a word $v \cdot w^{\omega} \in \mathcal{L}(\mathcal{B})$ is a counterexample

Counterexample

Runs satisfying ${\cal A}$ Runs satisfying ${\cal S}$

