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Plan for Today isec.tugraz.at M

= Presentation of Homework

= LTL Model Checking
= Recap /Overview
= Basics of Automata Theory
= LTL Model-Checking Algorithm




Homework Task 6a: f; = -EG(start — EX (error)) isec.tugraz.at M

Start
Close
Error

1. Check start, error = [[start]]y = {2,5,6,7}, [[error]]y = {2,5}
2. Check fl(l) = EX error = || fl)}]M ={1,2,5}
3. Check fl(Q) = start — fl(l) = ] 1(2)“M ={1,2,3,4,5}

4. Check ¥ =EG 2 = [[f¥)lx = {1,2,3,4,5}

5. Check f1 = -f® = [[Allm = {6,7}



Homework Task 6b: f, = EF( E(start U close) A EG close) sectverazat ®

Start
Close
Error

[[close]|ar = {3,4,5,6,7}

(3) — p(2) (1) (3) _
1. Check start, close — [[start]|y = {2,5,6,7} 4. Check f3™ = 37 A fo — [[f2 |l =1{3,4,6,7}

_ (3) _
2. Check fi" = BG close = [[f{"]]ar = {3,4,6,7} 5. Check f, = EF f; = [[fo]ln ={1,2,3,4,5,6,7}

3. Check f(2) = E (start U close) = [ 52)]]M = {2,3,4,5,6,7} As Sy C [[f2]]m, M = f2 holds.



Plan for Today isec.tugraz.at M

= Presentation of Homework

= LTL Model Checking
= Recap /Overview
= Basics of Automata Theory
= LTL Model-Checking Algorithm




Recap - LTL/CTL/CTL* isec.tugraz.at M

LTL

GFo,— F ¢,

G(¢,—~ F ¢,)

or resp.
AG(¢, — AF ¢,)

Implicit A
quantifier




Recap - Temporal Operators

* Temporal operators
= Describe properties along a given path

= AP: a set of atomic propositions, p,q € AP

= Next: Xp
= Globally: Gp
= Eventually: Fp
= Until: pUq
= Release: pRq
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isec.tugraz.at H

PRq ... “preleases q”: g hasto hold until p holds.

However, p is not required to hold eventually.



RECap -LTL - Syntax isec.tugraz.at W

= State formulas
= Ag where g is a path formula

= Path formulas
=p € AP

" 91, 91V 92 91N G2 Xg1, Ggi1, g1Ugz gi1Rg;
where g,and g, are path formulas




Model Checking of LTL isec.tugraz.at

= Given a Kripke structure M and a LTL formula ¢:
Does M &= ¢?




Model Checking of LTL isec.tugraz.at

= Given a Kripke structure M and a LTL formula ¢:
Does M &= ¢?

= Automata-based Algorithm

Construct @

Construct a Buchi automaton S_o

Translate M to an automaton A.

Construct the automaton B with L(B) = L(A) N L(S_,)
fLB)=0=>MEq@

fLB)+D=>MHEe@. Awordv -w® € L(B)is acounterexample
—> atrace in M that does not satisfy @

S A o




Plan for Today isec.tugraz.at M

= LTL Model Checking

= Recap/Overview
» Basics of Automata Theory
* Finite automata on finite words (Regular automata)

» Finite automata on infinite words (Blichi automata)
= Definitions: Automata, word, run, language
= Deterministic vs non-deterministic automata
= |ntersection of automata
= Checking emptiness of automata

» Kripke structures to automata

= LTL Model-Checking Algorithm




Definitions
DFAs and NFAs

Finite Automata on Finite Words - Regular Automata NFAS to DFAS

(Subset Constr)
Complement
Intersection of NFAs

Bettina Konighofer



Finite Automata on Finite Words - Regular Automata

" A=(X,Q,4,Q°F)
= Yisthefinite alphabet
= (Qisthefinite set of states
= AC QxXxQisthetransition relation
= (QVisthesetofinitial states
= Fisthe set of accepting states

Bettina Konighofer

=  Definitions
= DFAs and NFAs
= NFAs to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs




= DFAs and NFAs

Finite Automata on Finite Words - Regular Automata | oo

(Subset Constr)
= Complement
= |ntersection of NFAs

" A=(X,Q,4,Q°F)
= Yisthefinite alphabet
= (Qisthefinite set of states
= AC QxXxQisthetransition relation
= (QVisthesetofinitial states
= Fisthe set of accepting states

Bettina Konighofer



= DFAs and NFAs

Finite Automata on Finite Words - Regular Automata | oo

(Subset Constr)

= Complement
= |ntersection of NFAs

= ¥ ={a, b}

* Q=1{q1, 92}

" A=1{(q1,a,91),(q1,b,92),(q2,a,91),(q2,b,q3)}
* Q° = {¢1}

" F = {q4}

Bettina Konighofer



Words and Runs on Finite Automata

= Aword v is a sequence in X" of length |v|
= Arun pis a pathin the automaton A.

Bettina Konighofer

= DFAs and NFAs
= NFAs to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs




= DFAs and NFAs

Words and Runs on Finite Automata = NFASs to DFAs

(Subset Constr)

= Complement
= |ntersection of NFAs

= Aword v is a sequence in 2~ of length |v|
= Arun p is a path in the automaton A.

= Givenawordv = a,, a,, ..., a, and automaton A
= >Arunp = q,q,, -..q, of Aisasequence of states s.t.

" qoc Q°
T
el e

" Vi:0<i<n-—-1: (q9;,a;:19;+1) €A
g T O

Bettina Konighofer a b



= DFAs and NFAs

Accepting Words / Runs [ Language of Finite Automata | 1

(Subset Constr)

= Complement
= |ntersection of NFAs

Bettina Konighofer



D]-= [ D
= DFAs and NFAs

Accepting Words / Runs [ Language of Finite Automata | 1

(Subset Constr)

= Complement
= |ntersection of NFAs

= Arunp = ¢, q, ..q,isaccepting= q, < F

Bettina Konighofer



= DFAs and NFAs

Accepting Words / Runs [ Language of Finite Automata | 1

(Subset Constr)

= Complement
= |ntersection of NFAs

" Arunp = q,q, ...q, isaccepting=q, € F

= Aacceptsawordv = a,,a,,..,0,, &
if there is a corresponding accepting run p

Bettina Konighofer



Accepting Words / Runs | Language of Finite Automata |

(Subset Constr)

= Complement
= |ntersection of NFAs

" Arunp = q,q, ...q, isaccepting=q, € F

= Aacceptsawordv = a,,a,,..,0,, &
if there is a corresponding accepting run p

= L(A) € X...Language of A, is the set of words v that A accepts.
= Languages accepted by finite automata are reqular languages.

H/\
P




Accepting Words / Runs | Language of Finite Automata |

(Subset Constr)

= Complement
= |ntersection of NFAs

" Arunp = q,q, ...q, isaccepting=q, € F

= Aacceptsawordv = a,,a,,..,0,, &
if there is a corresponding accepting run p

= L(A) € X...Language of A, is the set of words v that <A accepts.
= Languages accepted by finite automata are reqular languages.

%? What is L(cﬂ) ? /\
a




Accepting Words / Runs | Language of Finite Automata |

(Subset Constr)

= Complement
= |ntersection of NFAs

" Arunp = q,q, ...q, isaccepting=q, € F

= Aacceptsawordv = a,,a,,..,0,, &
if there is a corresponding accepting run p

= L(A) € X...Language of A, is the set of words v that <A accepts.
= Languages accepted by finite automata are reqular languages.

= Whatis L(A) ? L T
= L(A)={empty word} U {all words that end with a} H
={e}uia,b}a
o T
a b




DFAs and NFAs

Task: Build a Regular Automata NFAs to DFAS

(Subset Constr)

Complement
Intersection of NFAs

= Build an automaton that accepts all and only those strings that contain 001.

Bettina Konighofer



= Definitions
= DFAs and NFAs

Task: Build a Regular Automata + NFAS to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= Build an automaton that accepts all and only those strings that contain 001.

Bettina Konighofer



Deterministic and Non-Deterministic Automata

Bettina Konighofer

Definitions
DFAs and NFAs
NFAs to DFAs

(Subset Constr)
Complement
Intersection of NFAs




= DFAs and NFAs

Deterministic and Non-Deterministic Automata = NFAsto DFAs

(Subset Constr)

e .. = Complement
= Deterministic Finite Automata (DFA)Z = Intersection of NFAs

= A isdeterministicif Ais afunction (one output for each input).
" 1Q% =1
" Vge Q,Vae X:|A(g,a)| <1

= Det. automata have exactly one run for each word.




Deterministic and Non-Deterministic Automata e NFAS to DFAS

(Subset Constr)

e .. = Complement
= Deterministic Finite Automata (DFA)Z = Intersection of NFAs

= Aisdeterministicif A is a function (one output for each input).
" 1@l = 1
" Vge Q,Vae X:|A(g,a)| <1

= Det. automata have exactly one run for each word.

= Non-deterministic Finite Automata (NFA):
= Can havetransitions (q,a,q'),(q,a,q"") € Aand q"” # q'
= Can have e-transitions (transitions without a letter)

\ _
L) O




= Definitions
= DFAs and NFAs

Language of an NFA + NFASto DFAS

(Subset Constr)
= Complement
= |ntersection of NFAs

= An NFA accepts all words that have a run that ends in an accepting state

Bettina Konighofer



= Definitions
= DFAs and NFAs

Language of an NFA +  NFAsto DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= An NFA accepts all words that have a run that ends in an accepting state

= Whatis the language of this automaton?

L(A) ={all words that end with a}

\
. O
a,b o a
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NFA on Finite Words to DFA

Any non-deterministic finite automata on finite words can be
translated into an equivalent deterministic automaton.

= DFAs and NFAs

= NFAs to DFAs

(Subset Constr)

= Complement
= |ntersection of NFAs

NEA A Equivalent DFA A’

T~ T~ a
: O =
a 04
a,b b b
Bettina Konighofer



= DFAs and NFAs

Algorithm: NFA to finite words to DFA + NFAs to DFAs

(Subset Constr)

= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)

NEA A Equivalent DFA A’

\ — R
S e O SO S &
d, b b < b a
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= DFAs and NFAs

Algorithm: NFA to finite words to DFA + NFAs to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ = (%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

NEA A Equivalent DFA A’

\ — R
S e O SO S &
d, b b < b a
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= DFAs and NFAs

Algorithm: NFA to finite words to DFA + NFAs to DFAs

(Subset Constr)

= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ = (%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

= Each statein A’ corresponds to the set of states in A
that is reached after reading an input sequence

= A P(Q) XX > P(Q)where (Qq,a,Q;) € A" ifQ; = Ugeo,{q'|(q a,q') € A}

NEA A Equivalent DFA A’

\ — R
S e O SO S &
d, b b < b a
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= DFAs and NFAs

Algorithm: NFA to finite words to DFA + NFAs to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ = (%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

= Each statein A’ corresponds to the set of states in A
that is reached after reading an input sequence

= A P(Q) XX > P(Q)where (Qq,a,Q;) € A" ifQ; = Ugeo,{q'|(q a,q') € A}

= Example:
({so },b,{sg }) € A’ since (sy,b,sg) € A

NEA A Equivalent DFA A’

Bettina Konighofer



= DFAs and NFAs

Algorithm: NFA to finite words to DFA + NFAs to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ = (%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

= Each statein A’ corresponds to the set of states in A
that is reached after reading an input sequence

= A P(Q) XX > P(Q)where (Qq,a,Q;) € A" ifQ; = Ugeo,{q'|(q a,q') € A}

= Example:
({so },a,{sg,s1}) € A’ since (sy,a,sy) € Aand (sq,a,s1) € A

NEA A Equivalent DFA A’

Bettina Konighofer



= DFAs and NFAs

Algorithm: NFA to finite words to DFA + NFAs to DFAs

(Subset Constr)

= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ = (%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

= Each statein A’ corresponds to the set of states in A
that is reached after reading an input sequence

= A P(Q) XX > P(Q)where (Qq,a,Q;) € A" ifQ; = Ugeo,{q'|(q a,q') € A}

= Example:
({so },a,{sg,s1}) € A’ since (sy,a,sy) € Aand (sq,a,s1) € A

NEA A Equivalent DFA A’

T~ 3 T~ a
. () RO== D>
a,b CQ i Cb b b ?

Bettina Konighofer



= DFAs and NFAs

Algorithm: NFA to finite words to DFA + NFAs to DFAs

(Subset Constr)

= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ = (%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

= Each statein A’ corresponds to the set of states in A
that is reached after reading an input sequence

= A P(Q) XX > P(Q)where (Qq,a,Q;) € A" ifQ; = Ugeo,{q'|(q a,q') € A}

= Example:
({s0,51}, b, {sg }) € A" since (sy, b, Sp) € A

NEA A Equivalent DFA A’

T~ T~ a
@) Tt
a,b b b
Bettina Konighofer




= DFAs and NFAs

Algorithm: NFA to finite words to DFA + NFAs to DFAs

(Subset Constr)

= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ = (%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

= Each statein A’ corresponds to the set of states in A
that is reached after reading an input sequence

= A P(Q) XX > P(Q)where (Qq,a,Q;) € A" ifQ; = Ugeo,{q'|(q a,q') € A}

= Example:
({so, 51}, a,{sg,Ss1}) € A" since (sy,a,s9) € A and (sy,a,s1) € Aand(sy,a,s1) € A

NEA A Equivalent DFA A’

T~ 3 T~ a
. () RO== D>
a,b CQ i Cb b b ?

Bettina Konighofer



= DFAs and NFAs

Example 1/2: NFA to finite words to DFA « NFAs to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ =(%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

"= A P(Q) XX - P(Q)where(Qq,a,Q;) € A" ifQ; = Uge,{q9'l(q,a,q') € A}
= F'={Q'|Q'nF + ¢}

NFA A | Equivalent DFA A’?

Bettina Konighofer



= DFAs and NFAs

Example 1/2: NFA to finite words to DFA « NFAs to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ =(%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

"= A P(Q) XX - P(Q)where(Qq,a,Q;) € A" ifQ; = Uge,{q9'l(q,a,q') € A}
= F'={Q'|Q'nF + ¢}

NFA A Equivalent DFA A’?

y a poroN-C
a,bab b a bba
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= Definitions
= DFAs and NFAs

Example 2/2: NFA to finite words to DFA - NFAs to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ =(%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

" A:P(Q) x X - P(Q) where (Q1,a,Q2) € 4 ifQ; = Uyeq,(q'I(q.a,4') € 4}
= F'={Q'|Q'nF # 0}

NFA A Equivalent DFA A’?

Bettina Konighofer



= Definitions
= DFAs and NFAs

Example 2/2: NFA to finite words to DFA - NFAs to DFAs

(Subset Constr)
= Complement
= |ntersection of NFAs

= Subset-Construction (exponential blow-up)
" NFA: A =(X,Q,A4,Q°F)
= DFA: A’ =(%, P(Q),A’,{Q%,F) with P(Q)...powerset of Q

" A:P(Q) x X - P(Q) where (Q1,a,Q2) € 4 ifQ; = Uyeq,(q'I(q.a,4') € 4}
= F'={Q'|Q'nF # 0}

NFA A Equivalent DFA A’?

Bettina Konighofer



= DFAs and NFAs

Complement of DFAs « NFAs to DFAS

(Subset Constr)
= Complement
= |ntersection of NFAs

= The complement automaton A accepts exactly those words that are rejected by A

A A

b b
IeCENBOVECONHE Oy
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= DFAs and NFAs

Complement of DFAs « NFAs to DFAS
(Subset Constr)
= Complement
= |ntersection of NFAs

= The complement automaton A accepts exactly those words that are rejected by A

= Algorithm: Construction of A
= Substitution of accepting and non-accepting states

A A

b b
IeCENBOVECONHE Oy

Bettina Konighofer



= DFAs and NFAs

Example: Complement of NFAs * NFAsto DFAs

(Subset Constr)

= Complement

= NFA A accepts words that end with 001 S
W = Is A’ the compelent A of A?

[0 0 1
A’ ©
Bettina Konighofer



= DFAs and NFAs

Example: Complement of NFAs * NFAsto DFAs

(Subset Constr)

= Complement

= NFA A accepts words that end with 001 S
= |s A’ the compelent A of A?

*

[N

A TEE B NG
A GG N

NO! The language of this automaton s {0,1}*

Bettina Konighofer



= DFAs and NFAs

Algorithm: Complement of NFAs * NFAs to DFAS

(Subset Constr)
= Complement
= |ntersection of NFAs

= The complement automaton A accepts exactly those words that are rejected by A
% = Algorithm to construct A ?

Bettina Konighofer



= DFAs and NFAs

Algorithm: Complement of NFAs * NFAs to DFAS

(Subset Constr)
= Complement
= |ntersection of NFAs

= The complement automaton A accepts exactly those words that are rejected by A

= Algorithm to construct A ?
1. Convert NFA to DFA (make NFA deterministic)
2. Substitution of accepting and non-accepting states

Bettina Konighofer



Definitions
DFAs and NFAs

Intersection of NFAs NFAS to DFAS

(Subset Constr)
Complement
Intersection of NFAs

Bettina Konighofer



= Definitions
= DFAs and NFAs

Intersection of NFAs - NFAs to DFAS

(Subset Constr)
= Complement
= |Intersection of NFAs

= Theintersection of two languages L, and L,isL, N L, = {w|we L, andwe L, }

= Algorithm: Compute Product Automaton A = A, x A, s.t. L(A) = L(A;) N L(A,)

Bettina Konighofer



= Definitions
= DFAs and NFAs

Intersection of NFAs - NFAs to DFAS

(Subset Constr)
= Complement
= Intersection of NFAs

= Theintersection of two languages L, and L,isL, N L, = {w|we L, andwe L, }

= Algorithm: Compute Product Automaton A = A, x A, s.t. L(A) = L(A;) N L(A,)
" Q=01X%X0Q;
. A((Ch: q2), a) = (A1(q1,a),0,(q2,a))
" Q°=0Q) % Q3
" (91,92) EF & qu€ Fiandq; € F,

Bettina Konighofer



= DFAs and NFAs

Intersection of NFAs - NFAs to DFAS

(Subset Constr)
= Complement
= |Intersection of NFAs

= Algorithm: Compute Product Automaton A = A, X A, s.t. L(A) = L(A,) N L(A,)

b
a, Oy L
4 \

Bettina Konighofer



= DFAs and NFAs

Intersection of NFAs - NFAs to DFAS

(Subset Constr)
= Complement
= |Intersection of NFAs

= Algorithm: Compute Product Automaton A = A, X A, s.t. L(A) = L(A,) N L(A,)
= Q =0, X0, > States: (Sg,t,), (Sest1), (S1,to), (S,t;)
= 00 =0Q? x Q) > Initial state: (s,,t,)

A=A, x A,

a b
Jlla b @

Bettina Konighofer



= DFAs and NFAs

Intersection of NFAs - NFAs to DFAS

(Subset Constr)
= Complement
= |Intersection of NFAs

= Algorithm: Compute Product Automaton A = A, X A, s.t. L(A) = L(A,) N L(A,)
" A((Ch, CIZ)» Cl) — (Al (ql) Cl), AZ (qZJ a))

b
a Oy s
A Z :
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= DFAs and NFAs

Intersection of NFAs - NFAs to DFAS

(Subset Constr)
= Complement
= |Intersection of NFAs

= Algorithm: Compute Product Automaton A = A, X A, s.t. L(A) = L(A,) N L(A,)
" A((Ch, CIZ)» Cl) — (Al (ql) Cl), AZ (qZJ a))

A=A, x A,

a b

A, a b @ S, {[0
a

Az b b| |a

Sl,tl
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= DFAs and NFAs

Intersection of NFAs - NFAs to DFAS

(Subset Constr)
= Complement
= |Intersection of NFAs

= Algorithm: Compute Product Automaton A = A, X A, s.t. L(A) = L(A,) N L(A,)
" (91,92) €EF & qu€ Fiand q; € F,

A=A, x A,

b
a Oy s
A Z b [

Sl,tl

Bettina Konighofer



Plan for Today isec.tugraz.at M

= LTL Model Checking

= Recap/Overview
» Basics of Automata Theory

= Finite automata on infinite words (Biichi automata)
= Definitions: Automata, word, run, language
= Deterministic vs non-deterministic automata
= |ntersection of automata
= Checking emptiness of automata

» Kripke structures to automata

= LTL Model-Checking Algorithm




= Det/Nondet. Blichi

Automata on Infinite Words - Complementation

= |ntersection Buchi
» Emptiness Buchi

= We are interested in reactive systems
= Designed to not hold during normal execution

= Runs are infinite sequences
* Words are v € X“, where w denotes infinitely many (i.e., |v| = o)

= Languages accepted by finite automata on infinite words are called w-regular languages.

= Biichi Automata - Simplest automata over infinite words




= Definitions
= Det/Nondet. Blichi

BﬁChi A“tomata = Complementation

= |ntersection Bulichi
» Emptiness Buchi

B =(X,Q,4,Q°F)
= Yisthefinite alphabet
= (Qisthefinite set of states
= ACQxXxQisthetransition relation
= (QVisthesetofinitial states
= Fisthe set of accepting states

a
Wl e
b
a b

n Bettina Konighofer



= Definitions
= Det/Nondet. Blichi

Accepting Words / Runs [ Language of Buichi Automata | @t

= |ntersection Bulichi

» Emptiness Buchi

" B=(X,Q.A,Q°F)

a
W e
b
a b

Bettina Konighofer



= Det/Nondet. Blichi

Accepting Words / Runs [ Language of Buichi Automata | @t

= |ntersection Bulichi

» Emptiness Buchi

" B=(X,Q.A,Q°F)

= Aninfinite run p is accepting & p visits an accepting state infinitely often.
* inf(p) ...setof statesin p that appear infinitely often
 inf(p)N F # @

a
W e
b
a b
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= Det/Nondet. Blichi

Accepting Words / Runs [ Language of Buichi Automata | @t

= |ntersection Bulichi
» Emptiness Buchi

" B=(X,Q.A,Q°F)

= Aninfinite run p is accepting & p visits an accepting state infinitely often.
* inf(p) ...setof statesin p that appear infinitely often
 inf(p)N F # @

= L(B) € X is the set of all infinite words that B accepts

a
W e
b
a b
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= Det/Nondet. Blichi

Accepting Words / Runs [ Language of Buichi Automata | @t

= |ntersection Bulichi

» Emptiness Buchi

" B=(X,Q.A,Q°F)

= Aninfinite run p is accepting & p visits an accepting state infinitely often.
* inf(p) ...setof statesin p that appear infinitely often
 inf(p)N F # @

= L(B) € X is the set of all infinite words that B accepts

H Q What is the language of this automaton? (In LTL)
\/ _

a b b %o

Bettina Konighofer



= Det/Nondet. Biichi

Accepting Words / Runs [ Language of Buichi Automata | @t

= |ntersection Bulichi

» Emptiness Buchi

" B=(X,Q.A,Q°F)

= Aninfinite run p is accepting & p visits an accepting state infinitely often.
* inf(p) ...setof statesin p that appear infinitely often
 inf(p)N F # @

= L(B) € X is the set of all infinite words that B accepts

a
H Q What is the language of this automaton?
\/ . . . .
b L(B) ={words with infinitely many a}
a b 0

r
L(B)={a,b}*a)® orinlLTL: GF(a)




= Det/Nondet. Blichi

Deterministic /Non-Deterministic Buichi Automata +  Complementation

= |ntersection Buchi
» Emptiness Buchi

Deterministic Blichi automata are strictly less
expressive than nondeterministic Buchi automata.

= - not every nondeterministic Buchi automaton has an equivalent deterministic Blichi one.




= Det/Nondet. Biichi

Deterministic /Non-Deterministic Buichi Automata +  Complementation

= |ntersection Bulichi

» Emptiness Buchi

Deterministic Blichi automata are strictly less
expressive than nondeterministic Buchi automata.

= - not every nondeterministic Buchi automaton has an equivalent deterministic Blichi one.

= Proof Idea: (details see book)

b
= Non-det. Buchi automaton B B H@ ’
a,b b

= L(B)={words with a finitely many a}in LTL: FGb




= Det/Nondet. Blichi

Deterministic /Non-Deterministic Buichi Automata +  Complementation

= |ntersection Buchi
» Emptiness Buchi

Deterministic Blichi automata are strictly less
expressive than nondeterministic Buchi automata.

= - not every nondeterministic Buchi automaton has an equivalent deterministic Blichi one.

= Proof Idea: (details see book)

b
= Non-det. Buchiautomaton B B H@ ’
a,b b

= L(B)={words with a finitely many a}in LTL: FGb

* The proof shows that there is no deterministic Buchi automaton for “finitely many”




= Det/Nondet. Blichi

Deterministic /Non-Deterministic Buichi Automata = Complementation

= |ntersection Bulichi
» Emptiness Buchi

Deterministic Buchi automata are not closed under complementation.

= Why?
= Hint: Automata below

@

]

n Bettina Konighofer



Deterministic /Non-Deterministic Buichi Automata e

= |ntersection Bulichi

» Emptiness Buchi

Deterministic Buchi automata are not closed under complementation.

= Proof:
= Deterministic Blichi automaton A with £(A ) = {words with infinitely many a}.
= A accepts those words that are rejected by A 2> L(A) = {words with finitely many a}.

= - There there is no deterministic Blichi automaton for “finitely many”
(see Theorem before).




= Det/Nondet. Blichi

Deterministic /Non-Deterministic Buichi Automata = Complementation

= |ntersection Buchi
» Emptiness Buchi

Non-Deterministic Buichi automata are closed under complementation.

= The construction is very complicated.
= We will not discuss it here. Algorithms try to avoid it.

= Biichi showed an algorithm for complementation that
is double exponential in the size n of the automaton.

= Safra proved that it can be done by 20(1ogn)




= Definitions
= Det/Nondet. Blichi

Intersection of Blichi Automata * Complementation
= Intersection Biichi

» Emptiness Buchi

« What s L(eA) = L(-A,) N L(A,) ?

b

B, a B, b
/\ /\
a b b a a

Bettina Konighofer



= Definitions
= Det/Nondet. Blichi

Intersection of Blichi Automata - Complementation

= |Intersection Biichi

» Emptiness Buchi

» L(A,) N L(A,) = {words with infinitely many a and infinitely many b}

B, a B, b
/\ /\
a b b b a a

Bettina Konighofer



= Det/Nondet. Blichi

Intersection of Blichi Automata - Complementation

= |Intersection Biichi
» Emptiness Buchi

= L(A,) N L(A,) = {words with infinitely many a and infinitely many b}

= Astandard intersection does not work —automaton has no accepting states!

B, a B, b
/\ /\
a b b b a a

Bettina Konighofer



= Det/Nondet. Blichi

Intersection of Blichi Automata - Complementation

= |Intersection Biichi
» Emptiness Buchi

= L(A,) N L(A,) = {words with infinitely many a and infinitely many b}

= Astandard intersection does not work —automaton has no accepting states!
= Solution: Introduce counter!

B, a B, b
/\ /\
a b b b a a

Bettina Konighofer



= Det/Nondet. Blichi

Intersection of Blichi Automata - Complementation

= |Intersection Biichi
» Emptiness Buchi

= L(A,) N L(A,) = {words with infinitely many a and infinitely many b}

= Astandard intersection does not work —automaton has no accepting states!
= Solution: Introduce counter!

B, a B, b
/\ /\
a b b b a a

Bettina Konighofer



= Det/Nondet. Blichi

Algorithm: Intersection of Buichi Automata + Complementation

= |Intersection Biichi
» Emptiness Buchi

. Given Bl — (zanaAlananl) and Bz = (zanaAz,on,Fz)
= B=(X,Q,A,Q%F)s.t. L(B) = L(B,) N L(B,) is defined as follows:

Bettina Konighofer



= Det/Nondet. Blichi

Algorithm: Intersection of Buichi Automata + Complementation

= |Intersection Biichi

» Emptiness Buchi

= GivenB,=(2,Q,,4,,Q,°F,) and B,=(X2,Q,,4,,Q,°F,)
= B=(X,Q,A,Q%F)s.t. L(B) = L(B,) N L(B,) is defined as follows:

" Q=Q,xQ,x{0,1,2}
. QO:Qlo X Q20><{0}
" F=Q,xQ,x{2}

Bettina Konighofer



= Det/Nondet. Blichi

Algorithm: Intersection of Buichi Automata + Complementation

= |Intersection Biichi
» Emptiness Buchi

. Given Bl — (zanaAlleanl) and Bz = (Z)QzaAz,on,Fz)
= B=(X,Q,A,Q%F)s.t. L(B) = L(B,) N L(B,) is defined as follows:

" Q=Q,xQ,x{0,1,2}
. QO:Qlo X Q20><{0}
" F=Q,xQ,x{2}

- ((ql’qZ’X)’ a) (q,l’q,z)x,)) S A =
1. (g9,2,9’) € A; and (g,,a,q7,) € A, and
2. Ifx=0and q’,e F; then x’=1
If x=1and q’, € F, then x’=2
If x=2 then x’=0
Else, x’=x

Bettina Konighofer



= Det/Nondet. Biichi

Algorithm: Intersection of Buichi Automata + Complementation

= |ntersection Blichi
» Emptiness Buchi

= GivenB,=(2,Q,,4,,Q,°F,) and B,=(X2,Q,,4,,Q,°F,)
= B=(X,Q,A,Q%F)s.t. L(B) = L(B,) N L(B,) is defined as follows:

- {0,1, 2}
- {0}
- {2}
" ((q1,9,,%), 3, (@’1,9',X)) € A < Intuition:
1. (ql,a,q’l) e A and (qz,a,q’z) c A, and x=0 ... waiting for s € F,
2. Ifx=0and q’,e F, then x’=1 i 000 WEIITBITArS Q1T
If x=1and q’,€ F, then x’=2 If some s with x=2 is visited inf often,
If x=2 then x’=0 then states from F, and states from F,

Else, x’=x have been visited inf often.




= Det/Nondet. Biichi

Example: Intersection of Buichi Automata * Complementation
= |Intersection Buichi
= Compute B =(Z,Q,A,Q%F) s.t. L(B) = £L(B,) N L(B,) e

= First copy: waits fors € F,
= Second copy: waits fors € F,
= Third copy: all states are accepting

B, /G\ Q (ry, dy, 0)
ROy
a b b




= Det/Nondet. Biichi

Example: Intersection of Buichi Automata + Complementation

= |ntersection Blichi

» Compute B=(X,Q,A,Q%F)s.t. £L(B) = L(B,) N L(B,) - _Emptiness Bch!
= First copy: waits fors € F,
= Second copy: waits fors € F,
= Third copy: all states are accepting

B a
! @/\: : <r13 qla O>
\/’ \
a b b

a b
B, b (ry, dy 1>© Q (ry, dy, 0)
EORN S
T




= Det/Nondet. Biichi

Example: Intersection of Buichi Automata + Complementation

= |ntersection Blichi

» Compute B=(X,Q,A,Q%F)s.t. £L(B) = L(B,) N L(B,) - _Emptiness Bch!
= First copy: waits fors € F,
= Second copy: waits fors € F,
= Third copy: all states are accepting

B a
1 ‘/\ (ry, Gy, 0)
DEEAEEIE
b
L .
B b (ry, da, 1) Q (ry, dy, 0)
RO
b a aq




= Det/Nondet. Biichi

Example: Intersection of Biichi Automata + Complementation
. Inter§ection”Bii.chi
= Compute B=(%,Q,A,Q°F) s.t. L(B) = L(B,) N £L(B,) e

= First copy: waits fors € F,
= Second copy: waits fors € F,
= Third copy: all states are accepting

" T (1> G5, 0)
RoamoR S
a b b
B b (ry, da, 1) Q (ry,dy3, 0)
Yean R
’v @

(r A, 2)




= Det/Nondet. Biichi

Example: Intersection of Biichi Automata + Complementation
. Inter§ection”Bii.chi
= Compute B=(%,Q,A,Q°F) s.t. L(B) = L(B,) N £L(B,) e

= First copy: waits fors € F,
= Second copy: waits fors € F,
= Third copy: all states are accepting

By /_C’\ (ry, dy, 0)
H\/@ y y y b
o —
(ry, das 1) ) (ry, dy, 0)

&

(r A, 2)




= Det/Nondet. Biichi

Example: Intersection of Biichi Automata + Complementation
. Inter§ection”Bii.chi
= Compute B=(%,Q,A,Q°F) s.t. L(B) = L(B,) N £L(B,) e

= First copy: waits fors € F,
= Second copy: waits fors € F,
= Third copy: all states are accepting

‘B a
| @/\< / ! <r1, d1, 0)
\_/' b
a b b
‘B b <r1a d,, l> / <r23 di» O>
RO
b a a <r1, d,, O>

(r2 di, 2>
w6




= Det/Nondet. Biichi

Example: Intersection of Biichi Automata + Complementation
. Inter§ection”Bii.chi
= Compute B=(%,Q,A,Q°F) s.t. L(B) = L(B,) N £L(B,) e

= First copy: waits fors € F,
= Second copy: waits fors € F,
= Third copy: all states are accepting

B a
. ‘/\ <r1: d1s O>
,\/’; a / \
a b b

a
<r1, SPY 1> <r2’ A O>
B, /b\e
’\/ ! (11> G2, 0)
b a qa <r2a ql) 2> ! q2




= Det/Nondet. Blichi

Example: Intersection of Buichi Automata + Complementation

= |Intersection Biichi

» Emptiness Buchi

= Question

= |nevery interval we first wait for an s in F; and then wait foran s in F,.
_ = We ignore accepting states that don’t appear in this order.
% = Can we miss accepting pathsin B?

<rla ql’ O>
, a a b b
- s
(ry, dy 1) (ry, di, 0)

ﬂ (r2, Ay, 2) @

Bettina Konighofer b a

<r1a q2a O>




= Det/Nondet. Blichi

Example: Intersection of Buichi Automata + Complementation

= |Intersection Biichi
» Emptiness Buchi

= Question
= |n every interval we first wait for an s in F; and then wait foran s in F,.
= We ignore accepting states that don’t appear in this order.

= Can we miss accepting pathsin B?

= NO! An accepting path visits infinitely many s from F; and F..
- We can ignore finitely many accepting states in each interval

‘B a
a
b
a b b
(ry, A 1) (ry, 4y, 0)
b
@ (I, 4y 0)
n Bettina Konighofer b a <I’2, 91 2)




= Det/Nondet. Blichi

MOdel ChECking Of LTL = Complementation

= |Intersection Biichi

» Emptiness Buchi

= Given a Kripke structure M and a LTL formula ¢:
Does M &= ¢?

= Automata-based Algorithm

Construct-¢ /

Construct a Bichi automaton §_,

Translate M to an automaton A.

Construct the automaton B with L(B) = L(A) N L(S_,) /
fLB) =0=>MEq@ <4um

fLB)+D=>MHEe@. Awordv -w® € L(B)is acounterexample
—> atrace in M that does not satisfy ¢

n Bettina Konighofer
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= Det/Nondet. Blichi

Checking for Emptiness of L(B) + Complementation

= |ntersection Bulichi

= Emptiness Biichi

= Aninfinite run p is accepting < it visits an accepting state an infinitely often.
= inf(p) N F = 0

= L(B)=0ifthereisnoreachable accepting state on a cycle

Bettina Konighofer



Checking for Emptiness of £(B) . Complementation

= |ntersection Buchi
= Emptiness Biichi

= Aninfinite run p is accepting < it visits an accepting state an infinitely often.
" inf(p) N F + 0

= L(B)=0ifthereis noreachable accepting state on a cycle
= Algorithm to check Emptiness for Biichi Automata:

= L(B)is nonempty < The graph induced by B contains a path from an initial state
to a statet € F and a path from t back to itselr. @

rgolpe




= Det/Nondet. Blichi

Example: Checking for Emptiness of L(B) + Complementation
= |sthe language L(B) empty? %

= |ntersection Bulichi
= Emptiness Biichi

(ri, 43, 0)

(ry, dy 1) (ry, di, 0)

b

(ry A1, 2) @

<r13 q2a O>

Bettina Konighofer



= Det/Nondet. Blichi

Example: Checking for Emptiness of L(B) + Complementation

= |ntersection Bulichi
= Emptiness Biichi

= |sthe language L(B) empty?

= No: <r,,q;,2> is accepting and reachable from <r,,q,,0> and reachable from itself.

(ry, dy, 0)
a a b b
e
(ry, dy 1) (ry, q;, 0)

b

(ry A1, 2) @

<r13 q2a O>

Bettina Konighofer



= Det/Nondet. Blichi

MOdel ChECking Of LTL = Complementation

= |Intersection Biichi

» Emptiness Buchi

= Given a Kripke structure M and a LTL formula ¢:
Does M &= ¢?

= Automata-based Algorithm

Construct-¢ /

Construct a Bichi automaton §_,

Translate M to an automaton A. <=

Construct the automaton B with L(B) = L(A) N L(S_,) /
fLB)=0=>MEe@ ¢

fLB)+D=>MHEe@. Awordv -w® € L(B)is acounterexample /
—> atrace in M that does not satisfy ¢

Bettina Konighofer
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Plan for Today isec.tugraz.at M

= LTL Model Checking

= Recap/Overview
» Basics of Automata Theory
* Finite automata on finite words (Regular automata)

" Finite automata on infinite words (Blichi automata)
= Definitions: Automata, word, run, language
= Deterministic vs non-deterministic automata
" Intersection of automata
* Checking emptiness of automata

» Kripke structures to automata

= LTL Model-Checking Algorithm

n Bettina Konighofer



Kripke Structure to Blichi Automaton isec.tugraz.at

= Move labels to incoming transitions
= Push labels backwards

= All states are accepting

1P}

50 @/\\/@ 51
{P, 4}
{P,a} {4}
Ay s,

i

. L




Kripke Structure to Blichi Automaton isec.tugraz.at

= Move labels to incoming transitions
= Push labels backwards

= All states are accepting
= What about initial states?

X

o

1P}

50 @/\\/@ 51
0 51 {p,q}
\ / {P, 4} {9}
M: S Ay s,




Kripke Structure to Blichi Automaton isec.tugraz.at

= Move labels to incoming transitions
= Push labels backwards

= All states are accepting

P, 4} 1P}
1P}

50 @/\\/@ 51
0 51 {p,q}
\ / {P, 4} {9}
M: S Ay s,




Kripke Structure to Blichi Automaton isec.tugraz.at

= Algorithm:
= M=(S,S,, R,AP, L) = Ay = (X, SU{L}, A, {t}, SU{L}), where X = P(AP).

* (s,a,s)EA & (s,s') e Randa = L(s")
* (La,s)EA & seSjanda = L(s)

{P, q}

0 s, {p q)
/ {p,a} {d}
M: S2 c/lM




Model Checking of LTL isec.tugraz.at

= Given a Kripke structure M and a LTL formula ¢:
Does M &= ¢?

= Automata-based Algorithm

Construct-¢ /

Construct a Biichi automaton §_ , 4mm Next Week
Translate M to an automaton A. /

Construct the automaton B with L(B) = L(A) N L(S_,) /
fLB)=0=>MEe@ ¢

fLB)+D=>MHEe@. Awordv -w® € L(B)is acounterexample /
—> atrace in M that does not satisfy @

S A o




Plan for Today isec.tugraz.at M

= LTL Model Checking

= Recap/Overview
» Basics of Automata Theory
* Finite automata on finite words (Regular automata)
" Finite automata on infinite words (Blichi automata)
= Definitions: Automata, word, run, language
= Deterministic vs non-deterministic automata
* |ntersection of automata
* Checking emptiness of automata

= Kripke structures to automata

= LTL Model-Checking Algorithm

ilPll Bettina Konighofer




LTL MC when system A and spec S are given 'sectugrazat M
as Buichi Automata

= A satisfies S if L(A) € L(S)

* |sany behaviour of A allowed by § Runs satisfying A

Runs satisfying §

Wl Bettina Konighofer




LTL MC when system A and spec § are given isectugraz.at
as Buchi Automata

= A satisfies S if L(A) € L(S)

* |sany behaviour of A allowed by § Runs satisfying A

Runs satisfying §

= A does not satisfy S if L(A) & L(S) Counterexample

'4

Runs satisfying A

Runs satisfying §
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LTL MC when system A and spec § are given isec.tugraz.at M
as Buchi Automata

= A satisfies S if L(A) € L(S)

* |sany behaviour of A allowed by § Runs satisfying A

Runs satisfying §

= A does not satisfy S if L(A) & L(S) Counterexample

= LTL MC: B 4
= L(A) L LS) = LA)NL(S) 2D Runs satisfying A

Runs satisfying §

Wl Bettina Konighofer




LTL MC when system A and spec S are given as Biichi Automata sectugrazat ®

= Algorithm - Version 1

1. Compute complementofS > §

2. Construct the automaton B with L(B) = L(A) N L(S)
3. fL(B)=0 = A satisfies §
4

. Otherwise,aword v - w® € L(B) is a counterexample

Counterexample

'4

Runs satisfying A

Runs satisfying §

Il Bettina Konighofer




LTL MC when system A and spec S are given as Biichi Automata sectugrazat ®

= Algorithm - Version 1 very hard

1. Compute complementofS > § «

2. Construct the automaton B with L(B) = L(A) N L(S)
3. fL(B)=0 = A satisfies §
4

. Otherwise,aword v - w® € L(B) is a counterexample

Counterexample

'4

Runs satisfying A

Runs satisfying §

WAl Bettina Konighofer




LTL MC when system A and spec S are given as Biichi Automata sectugrazat ®

= Algorithm - Version 2
1. Construct =@
Construct Buchi Automaton §_,
Construct the automaton B with L(B) = L(A) N L(S)
If L(B) =0 = A satisfies S
Otherwise,aword v - w® € L(B) is a counterexample

A S

Counterexample

'4

Runs satisfying A

Runs satisfying §

Il Bettina Konighofer




LTL MC when system A and spec S are given as Biichi Automata sectugrazat ®

= Algorithm - Version 2

1. Construct —|fp | Next Week
Construct Buchi Automaton §_, L o

Construct the automaton B with L(B) = L(A) N L(S)
If L(B) =0 = A satisfies §
Otherwise,aword v - w® € L(B) is a counterexample

A S

Counterexample

'4

Runs satisfying A

Runs satisfying §

ILEl Bettina Konighofer
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