==SAL >
== SILICON AUSTRIA LABS et

,':i;,-
Al <

A

— REAL TIME MODEL-CHECKING
| AND UPPAAL —

FLORIAN LORBER

= Kiimsechuts, tmwelt (ol % DasLand o o - ) N = e ” 1A INNOVATION
AT o AT % E. fwf; 7 Steiermark = AR \erwork




REAL TIME MODEL-CHECKING
AND UPPAAL

Florian Lorber
Silicon Austria Labs

(Slides from Aalborg University)




MODEL CHECKING

o

—

—

—

o

Bring me up to speed about what you know

Check whether a model fulfills certain properties

—

— Does our robot behave like a human?

What kind of properties can you check?

What are the two biggest problems with model-checking?
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PROPERTIES

Functional correctness

[
il

— Does the system do what it is supposed to?

— Reachability

—_—

— s it possible to end up in a certain state?

e

= Can the robot set itself on fire?

— Safety

e

— Something bad can never happen

e

= Will the robot never die?

= Liveness

= Something good will eventually happen

= W.ill the robot recover?

= Fairness

e

= In cert. conditions, can an event occur repeatedly

— Will the robot always recover?



STRENGTHS OF MODEL CHECKING =saL

ILICON AUSTRIA LABS

I
|

— General verification technique

— Partial verification is possible

— Covers all traces

— Sound and mathematical foundation

— My highlights about model-checking from papers:

—

— “No high degree of expertise needed”

—

— “Learning curve is not steep”




WEAKNESSES
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—
—_—
—
—
——
—

— Not for data intensive applications

— Decidability issues

— Only the model is verified

— State space explosion




MODELLING GAP v

— Any verification using model-based techniques is only as good as the
model of the system.




STATE SPACE EXPLOSION = s

eI«

il

Too many states to complete the verification

I\

Concurrency, Data Variables, Complexity, ...

il

Consequences:

\\|

Memory consumption

\\|

Computation time

Il

Scalability




REAL TIME SYSTEMS = s

— Systems with Soft and Hard Deadlines

— Soft Deadline:

—

— Some degree for flexibility

—

— Missed deadline leads to degraded performance

— Hard Deadline:
— No exceptions
— Missed deadline leads to catastrophic failures

— E.qg. Pacemaker, traffic control, etc.




REAL TIME SYSTEMS

— Why does time warrant for each own lecture?

— | want to enter state B 5 seconds after | enter state A
— How many variables needed to keep track of the timing?

—

— What if time | spend in state C does not count to the 5 seconds?

— Consider discrete time

— Time can count up in each state

— Now imagine the state space with real variables

t+1
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TIMED AUTOMATA

—
—
—_—

Extended final state machine

——

— Labeled transitions

—

— Clock variables

——

— Measures continuous time

Time progresses in locations
— There might be a time limit

Actions are instantaneous

— Might only be enabled in certain times
— Can reset clocks

Networks of timed automata

—
—
— Y

Statespace?

Silicon Austria Labs GmbH
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x>10
RECOVERING INITIAL
. recovered! .
extinguishFire! getStupidIdea?
X=0
playingWithFire?
X=0
X< 20
ON FIRE . .
EXPERIMENTING
X=20
buringTooMuch!
getStupidIdea!
DEATH
recovered?



TIMED AUTOMATA - FORMAL

— Set of clocks C — Semantics:

—_—

— B(C) is the set of junctions of simple conditions

= 155,52, >8cC - .
{ } — Clock valuations v

= x—-y{<,=2,>)c
— Map clocks to real values

— x,yeEC(C,c€eN _
= v(x)->R

— Set of clock valuations v
— Valuations map clocks to real values = vo(x) > 0vVx€eC

= v(x) >R

— Timed Automaton: TA = (L, 1,,C,A,E, )
— L: set of locations

— C: set of clocks
— A: set of actions
— E: set of edges

= ECLXAXB(C)x2°xL
= [:L - B(C)

1s the transition relation such that:

2

— (l’
- (l,
u' = [r— Olu, and v € I(l),

2

Silicon Austria Labs GmbH
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Definition 2 (Semantics of TA). Let (L,ly,C, A, E, I) be a timed automaton.
= ly:initial location The semantics is defined as a labelled transition system (S, sq, —), where S C Lx
R is the set of states, s = (lp, ug) is the initial state, and —C S x {R=qUA} xS

) L (Lu+d) ifv¥d :0<d <d = u+d €I(l), and
) 5 (I u) if there exists e = (I,a,g,7,1') € E s.t. u € g,

12



UPPAAL - OUTLINE = sAL
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= GUI

— Modelling language
— Simulator

— Formal semantics
— Query language

— Reachability algorithm

13
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[

GUI - DEMO

Automaton, Location, Edge, Synchronization, Guard,
Update, Select, Clocks, Channels, Environment, System
Declarations, Simulator

14



N OTAT I O N '—_:—T—.:_-—E; gﬁDII\TAUSTRIA LABS

—

— Location — a place in a single template or process

—

— State — the state of the complete system including clock valuations and variable values

— Edge — a step between two locations

—_—

— Transition — a change of the global state of the system

15



INVARIANT

Something that must be true in a given location

—
—
—_—

—
—_—
—_—

—
—
—

If it is not true we must leave or else we deadlock

If it is not true we cannot enter the location

== SAL

== SILICON AUSTRIA LABS
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GUARD

A condition that must be true in order for a edge to be enabled

17



SYNCHRONIZATION = s

The label on which the edge synchronizes with another edge

Il

il

If nothing is present
— We call it a Tau 1/ silent / epsilon € transition

— Can be taken alone

18



BROADCAST CHANNELS = s

— One sender
— Multiple receivers
— All that can participate must participate
— Note: Invariants after the input can block the execution of the complete broadcast

: UPPAAL

File Edit View Tools Options Help

Rl=8) 2 B @ - =

l/Editnr I Simulator | ConcreteSimulator | Verifier | Yggdrasil |
1 J-"J-" PEBCE glﬂbal deczﬁrﬁfiﬂﬂﬂ hEn’"E.
] Project E
[ Declarations :
o & Template ‘broadcast chan a;
[ system declarations

19



URGENT CHANNELS = s

— Must synchronize on an urgent channel as soon as it is possible

— Does not allow clock guards on edges that synchronize on urgent channels

—

— Data guards on the receiver can be a problem

: UPPAAL

File Edit View Tools Options Help

Bla® 2 B @ |~

~ Editor " Simulator | ConcreteSimulator | Verifier | Yggdrasil |
! J'IJ‘J'IJ‘ PEECE glﬂbal declaratiﬂns helr-e-
1 Project E
[ Declarations :
o & Template “urgent chan a;
[ system declarations

20




COMMITTED LOCATION = s

— Time must not pass while this location is part of the global state

— If there is any committed location among the locations in the global state then the next transition must
involve at least one committed location

...........................................

21
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URGENT LOCATION

— Time must not pass while this location is part of the global state

...............................................

22
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INITIAL LOCATION

— The location in which a given process starts

23



SYNCHRONOUS VALUE PASSING

Unconditional Conditional
O O

% c! c? c! c?
g var := out In ;= var, var := out In ;= var,
d var := 0 var := 0
—
oy i/
O ( ) ( ) cond(in)
. c! c? c! c?
vl var ;= out in :=var var ;= out in ;= var,
? var := out
Q \
E C @5 condl(var) é:) cond2(in)
% d? d! d? d!
45 1n = var, var = out 1n = var,
E var ;=0 var ;=0
= y /
h O |O O

[
il
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MODELING LANGUAGE

m Global and local definitions, and system declaration

111}
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{{III\\\

m Types

~built-in types: int, intfmin,max], bool, arrays
-typedef struct { ... } name

-typedef built-in-type name

m Functions

-C-style syntax, no pointer, can load C libraries

m Select

-name : type

m  Network of TA = instances of templates

-argument const type expression
-argument type& name

26



EXAMPLE: FREE PIZZA STOPWATCH

m Hit the stop button at exactly 10 seconds for pizza _, gl

m Two systems: watch and user
m Signals: Start, stop, tooLate, tooEarly, reward

m After the reward, the user shouts “freePizzzzza”

Into the world

m Global variable for coins, 10 coins as reward
m Change model so that a pizza costs 20 coins
m You need to hit the button twice

Use concrete and symbolic simulation

<

THE PERFECT
MOMENT

Youtube screenshot

27



\
Il
£\
5B

F

Il
\\!I

SPECIFICATION LANGUAGE



LOGICAL SPECIFICATIONS

m \alidation Properties
-Possibly: E<>P

m Safety Properties
~Invariant: A[] P
-Pos. Inv.: E[] P

m Liveness Properties
-Eventually: A<>P
~Leadsto: P->0

m Bounded Liveness
-Leads to within: P 2>_ Q

— The expressions P and
Q must be type safe,
side effect free, and
evaluate to a boolean.

— Only references to
Integer variables,
constants, clocks, and
locations are allowed
(and arrays of these).




SY M B O L S '—_:—T—E gﬁDIN-AUSTRIA LABS

LU
Il

exists = there is one path

V = forall = for all paths

O
Il

Always = The whole path

¢ = Eventually = At some point along the path

30



LOGICAL SPECIFICATIONS = saL

m Validation/Reachability
Properties

-Possibly: E<>P

E<>p

31



LOGICAL SPECIFICATIONS =saL
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©

6

m Safety Properties
~Invariant: A[] P
-Pos. Inv.: E[]] P

©

El]lp

32



LOGICAL SPECIFICATIONS
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m Liveness Properties
~-Eventually: A<> P
~Leadsto: P->0

33



LOGICAL SPECIFICATIONS

m Bounded Liveness
-Leads to within: P = _ Q

34



STOPWATCH EXAMPLE

m Safety: Do debt allowed

~A[] coins >=0

AL
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[
il

m Validation/Reachability: We do not cheat

_E<> coins =>10

m Tryitout:

-Can you think of more queries?
-Make some queries that (should) fall

35



QUESTIONS .

=== SILICON AUSTRIA LABS

— What is the difference between an urgent location and an urgent channel?
— What is the difference between a committed and an urgent location?

— What is the difference between location and a state? And why do we care?
— How can | check if a model never reaches a certain state?

— How to check for deadlock freeness?

36
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STATE-SPACE EXPLOSION =saL
PROBLEM

— 10 (11) components with 2 states each
— 2710 = 1024 states
— 21 = 2048 states

— 2 (3/9) components with 10 states each
— 1072 = 100 states
— 1073 = 1000 states
— 1079 = 1000000000 states

H

38



ZONES - FROM INFINITE TO
FINITE

State Symbolic state (set)
(N, x=3.2, y=2.5) (n, 1<x<4,1<y<3)

Zone:

conjunction of
y A y A X-y<=m,
X<=m,
X>=m

XV
Xv

[
il
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SYMBOLIC TRANSITIONS — e W

l<x=<4 1<x,1<y
y 1<y<3 Y 2<xy<3
delays to
N
x
X

X

y y
C conjuncts to
d

X

projects to

Thus (n, 1<x<4,1<y<3) 5% (m,3 < x, y=0)

40



DIFFERENCE BOUND MATRICES  sa.,....

Xo-Xg<=0 [Xg=X;<=-2 |XyX;<=-1

X1 %X<=6 |X;-x;<=0 [X;-X,<=3 xi-xj< =(:ij

X5 X<=5 |X5-X;<=1 |X,-%,<=0

N

Zone

41



DIFFERENCE BOUND MATRICES

Xo-Xg<=0 [Xg=X;<=-2 |Xy-X;<=-1

X1=Xg<=6 |X;-%X;<=0 [X{-X,<=3

X5 Xp<=5 |X5-X;<=3 |X,-%,<=0
A

X2'XI1< =5 ?

Xi-Xj < = Cu

Canonical representation:
All constraints as tight as possible.

Needed for inclusion checking.
— Unique DBM to represent a zone.

== SAL
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SYMBOLIC EXPLORATION = s

y:=0 x:=0 y

y{:z X<=2

y<=2, x>=4 r—— >

e

Reachable?

43
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SYMBOLIC EXPLORATION

[
il

y:=0 e x:=0 v 1
y<= W=
y{:zlx}:4 >
X
- ©

Reachable?

44



SYMBOLIC EXPLORATION = s

y:=0 0 x:=0 y

y<= =" /
y{:zl }{}:4 1 ] ] 1 >

e

Reachable?

45



SYMBOLIC EXPLORATION = s

y:=0 0 x:=0 y

y<= <=2 . :
y<=2, x>=4 — >

e

Reachable?

46



AL

SILICON AUSTRIA LABS

SYMBOLIC EXPLORATION

[
il

y:=0 0 x:=0 y
y<= <<=
y<=2, x>=4
X
-0

Reachable?

a7



SYMBOLIC EXPLORATION = s

y:=0 0 x:=0 y
y-:::: =" _

y<=2, x>=4

Reachable?



SYMBOLIC EXPLORATION — e W

= =0

y.=0 0 X y
y-:::: =" _
y<=2, x>=4 L—>

X

Reachable?
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SYMBOLIC EXPLORATION

[
il

y:=0 0 x:=0 y
y<= <<=
y<=2, x>=4
X
-0

Reachable?

50



SYMBOLIC EXPLORATION =0

LO

y-::::z X<=2

y<=2, x>=4

L1



DEMO ==sAL
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Search order,
Clock constraints in simulator
Diagnostic trace

52



FORWARD REACHABILITY
ALGORITHM

Init -> Final ?

/ O\ INITIAL Passed := @;

ﬁNaiting \ Final Waiting := {{Nno 20

REPEAT

UNTIL Waiting =0
return false

\\C)Init Passey /




FORWARD REACHABILITY

ALGORITHM

Init -> Final ?

d

o)

Final

.

INITIAL Passed := (;
Waiting := {(n,,Z,)}

REPEAT
pick (n,Z) in Waiting

UNTIL Waiting =0
return false

== SAL
==— SILICON AUS



FORWARD REACHABILITY

ALGORITHM

Init -> Final ?

d

/

INITIAL Passed := @;
Waiting := {(n,,Z,)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true

UNTIL Waiting =0
return false

[
il

SAL
SILICON AUSTRIA LAB



FORWARD REACHABILITY -
ALGORITHM = Sovsaues

Init -> Final ?

/ O\ INITIAL Passed = O;

ﬁNaiting \ Final Waiting := (o 20

REPEAT
pick (n,Z) in Waiting
O O if (n,Z) = Final return true
for all (n,2)—>(n",Z"):
O if for some (n’,Z"") Z'c Z" continue

Q O Q UNTIL Waiting =0

O return false

\©Init Passed /
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FORWARD REACHABILITY o
ALGORITHM = Sovsmiaues

Init -> Final ?

/ O\ INITIAL Passed := @;

ﬁNaiting \ Final Waiting := (o 20

REPEAT
Q\./C> pick (n,Z) in Waiting
OO O O if (n,Z) = Final return true
for all (n,2)—>(n",Z"):
O O if for some (n’,Z"") Z'c Z" continue
O O 0 else add (n’,Z") to Waiting

O O OO UNTIL Waiting =0

return false

\©Init Passey /
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FORWARD REACHABILITY -
ALGORITHM = Sovsaues

Init -> Final ?

/ O\ INITIAL Passed := @,

Waiting := {(ny,Z,)}
ﬁNaiting \ Final
Q O REPEAT
pick (n,Z) in Waiting
OOOO O if (n,Z) = Final return true
for all (n,2)—>(n",Z"):
O O if for some (n’,Z"") Z'c Z" continue
O O else add (n".Z') to Waiting
O move (n,Z) to Passed
O O OO UNTIL Waiting =0
return false

\©Init Passed /

58



FORWARD REACHABILITY -
ALGORITHM v

Init -> Final ?

/ O\ INITIAL Passed := @,

Waiting := {(ny,Z,)}
ﬁNaiting \ Final
Q O REPEAT
pick (n,Z) in Waiting
OOOO O if (n,Z) = Final return true
for all (n,2)—>(n",Z"):
O O if for some (n’,Z"") Z'c Z" continue
O O else add (n".Z') to Waiting
O move (n,Z) to Passed
O O OO UNTIL Waiting =0
return false

\©Init Passed /

59



ZENONESS

m  Problem: UPPAAL does not check for zenoness directly.

~A model has “zeno” behavior If it can take an
Infinite amount of actions in finite time.

-That is usually not a desirable behavior In
practice.

-Zeno models may wrongly conclude that some
properties hold though they logically should not.

-Rarely taken into account.

m  Solution: Add an observer automata and check for non-zenoness, i.e., that time will
always pass.



ZENONESS = sAL
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ZenoCheck

x==10
x=0

OK
Detect by A B
x==1 'Cldding the @
@ observer: x<=10

x<1 x=0 x<l Constant (10) can be anything
(>0), but choose it well w.r.t.
your model for efficiency.
Clocks 'x' are local.

-and check the property
ZenoCheck.A --> ZenoCheck.B

61
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VERIFICATION OPTIONS

[
il

Search Order

i [:/Documents and Settings,kgl/Desktop,/KIM/UPPAAL/UPPA Depth First
File Edit Yiew Tools | Options Help Breadth First
Search Order 3 ~ i
J Boa [ e e o > State Space Reduction
Editn::rl Simulator  Werifiel  State Space Representation P None
_ Diagnostic Trace b Conservative

bl Extrapolation b Aggressive

re—— ' F State Space Representation

E[] ({ bodenk =: o peuse odenC =

E<> { (bodenk > 5] || (bodenB > 5) || [bodenC > ¢ DBM

E<> not deadlock Compact For—m

Under Approximation
Over Approximation
Diagnostic Trace
Some

Shortest

Fastest

63



STATE SPACE REDUCTION — e W

However,
Passed list useful for
pa efficiency

O+ 0+—0+0«0¢

No Cycles: Passed list not needed for termination

64



STATE SPACE REDUCTION — e W

Cycles:
Only symbolic states
involving loop-entry points
need to be saved on Passed list

65



TO STORE OR NOT TO STORE =SsAL

]
) Behrmann, Larsen,
) Pelanek 2003

m {ar)
117 states,,, m
! ﬂ L
81 states, iy point m z
!
O states w % o
% \ é{ -
Time OH A
less than 10% | I - m’ﬁ: ) T m
@
g%ﬁa @ 5 Audio Protocol




OVER-APPROXIMATION —
=——= SILICON AUSTRIA LABS

TACASO04: An EXACT method performing

as well as Convex Hull has been

developed based on abstractions

taking max constants into account.

67
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UNDER-APPROXIMATION
BITSTATE HASHING

/ PW Q\
ﬁNaiting \ Final

\\ Init Passed /

SAL
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== SAL

UNDER-APPROXIMATION == e
BITSTATE HASHING T

/ PW O\

(Waiting "\ Final
Several states

st ; oy

1 bit per
passed state

Under-approx.

O |~ |O |+

N\

'% Inclusion check
o © o \ only with

° 0 waiting states.

\" Init Passey \ “Equality” with
\ / 1 passed.

Bit Array

69
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VARIABLE REDUCTION

m Reduce size of state
space by explicitly
resetting variables when
they are not used!

= Automatically performed
for clock variables (active
clock reduction)

== SAL

=== SILICON AUSTRIA LABS

/S Remove the front slamsnt of the gusaus
fvoicd degueue ()
{
int 1 = 0;
len == 1;
while (i < len)
{
list[i] = list[i + 1];
i++;

} .w

71



VARIABLE REDUCTION = s

m Railway controller

72



SAL

—= SILICON AUSTRIA LABS

VARIABLE REDUCTION

section Id go(int tId){

int pos=position[tId];

bool dir=direction[tId];

if(pos==0 and dir==0) {crash=true; return pos;}

if (pos==0 and dir==1) {if(config Of Points[0]==0) {
if (occupied[1]==0){

occupied[1l]1=1-;

)

[

occupied[0]=0;
return 1;
} elze |
crash = true;
return pos;}
} elze |
if(occupied[2]==0){
occupied[2]=1;
occupied[0]1=0;
return 2;
} else |
crash = true;
return pos;}

}
if(pos==1 and dir==0) {if(occupied[0]==0){
occupied[0]=1;

occupied[1]=0;

return 0;

} elze |

73



CLOCK REDUCTION (AUTOMATIC) =sa, ...

X is only active in location S1

Definition
S X is inactive at S if on all path
O from S, x is always reset before
/ g being tested.
x:=0
X:=0

X< \ x>3

74



THINGS YOU SHOULD KNOW BY
[HE END OF TODAY

111}
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— What is a Timed Automata?

— How is time treated in a finite way?

— Why do we need both committed and urgent locations?

— How can | check if a model can reach a certain state?

75



PART 2: OTHER UPPAAL
BASED TOOLS
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AGENDA = saL

TIMES o
Uppaal TIGA

Uppaal CORA

Uppaal PORT

Uppaal cover

Uppaal PRO

Uppaal SMC (a.k.a. Uppaal 4.1.9)

Uppaal Stratego

Uppaal TRON

ECDAR/Jecdar/Hecdar

77



WHY SO MANY TOOLS? = s

This is an academic tool

New experiments require new tools

No publications in merging tools

No funding to hire someone for tool maintenance

Some models may look similar, but cannot be combined

78



TIMES

2002

Disclaimer: | have never used this tool
Same underlying model checking engine
— Very different modeling possibilities
Targeted at

—

— Schedulability analysis

—

— Generating optimal schedules

1)

= SAL

== SILICON AUSTRIA LABS

r
€57 C:\Program Files\Timestool\demo sporadicPeriodic\Controlled+Periodic. xml - Times Tool

Fie Run Options Window Help

|]

(9]

= T S (| oo s screouer pemonc Tasws

PERIODIC_TASKS. START->START

SCHEDULER: RUN_task_A-=ARRIVED task_B

PERIODIC_TASKS: START->START
SCHEDULER:

PERIOOIC_TASKS: START->START

SCHEDULER: RUN_task_A-=ARRIVED task_D

=

Automaton_A.x = 0
Automaton A.y = 0
Aitomaton A.¥ = Automaton K.
i=4

auver = 0

n=0

“ <|m > b
¥_nmamww

SBrver  SOrYer e

| | Clocks | Discrete variakies | Utikzntion
Connected to [0cal server (server.axa)

5 WCRT Analysis (%]
Worst Case Response Tines 1
SATISFIED Mee | c | wert | D
— |1 1 3 [
| tazk B 5 8 m o
Ok 'Bt'-wf,w:HT fask_C 10 20 5
— s 2
o e
bask_A
bask_C
4] .|"l_
ing)
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UPPAAL TIGA

TIGA = Timed Games

—

— Two player games

—

— Controllable and uncontrollable actions

Controller synthesis:

— Model the environment + what a controller can do.

—

— Generate the controller so that controller satisfies ¢!

—

— Generate the right code automatically.

2-player timed game:
environment moves vs. controller moves.
] Timed Game Automata.

Plant

Continuous

Sensors
A

==

== SAL

=== SILICON AUSTRIA LABS

actuators

_,_A

Controller Program

Discrete

80



CONTROLLER SYNTHESIS/TGA =sa.,......

—

Given

e

— System moves S,

—

— Controller moves C,

— and a property o,

find

— a strategy Sc s.t. Sc||S satisfies o,

or prove there is no such strategy.

The controller continuously observes the system (all delays & moves are observable).
The controller can

— wait (delay action),

— take a controllable move, or

— prevent delay by taking a controllable move
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TIMED GAME AUTOMATA

|

|

|

Timed automata with controllable and uncontrollable transitions.

Reachability & safety games.
— control: A<> TGA.goal
— control: A[] not TGA.L4
Memoryless strategy:

— state - action.

==SAL
=== SILICON AUSTRIA LABS
LO
x<=2 .__ __}{;1__ _>.
y L4
/ X==
x<1 )/
’
x=0 ,’
, L1 goal
i
\\ y==7 ).
I‘x x<1 |
. I
\ |
h I
Moo
Yo
" |
L2 x<=1

L3
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TGA — LET’S PLAY! L
LO
I:A<>TGAgoal Yoo ___ =

y L4
/ X==
/ :":“:1 ,.rf
x<1l 1A x=0 /
X== . C 0 L1 goal
1' e
'1-.., }{:‘}:2 -
X<2 P A / ‘ox<l |
X=>2 . C H\ :
"lx\ :
I
Strategy |xs1 ¢ — 8) |
L2 x<=1
x<1 A
X== . C

Note: This is one stram L3

There are other solutions.
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Ut = U(oP) Time Bounded Reachalbility
- (G,T)
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¥
P -----pe--- >[ Learning ]
uc’ - e
L h=UE)| i Zonification [
it or z
evalRuns [ Determinization ] = ﬂ“’
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UPPAAL CORA

CORA = Cost Optimal Reachability Analysis
— UPPAAL for Planning and Scheduling
Enables modeling LPTA

— LPTA = Linearly priced timed automata
— Can model e.g. energy consumption

— Discrete costs on edges

— Linear cost accumulating in locations

'cost

— = [

== SAL

=== SILICON AUSTRIA LABS

earliest landing time

target (cruise) landing time
latest landing time

early cost rate

late cost rate

late penalty



UPPAAL SMC

—_—

—

—

—_—

—

Statistical model checking
Now integrated in main UPPAAL
This is really simulation

—

— A LOT of simulation

—

— With a calculated confidence level

State space explosion not a (big) problem
Evaluation of other approaches

Very fast compared to testing

[
il
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) C:/Documents and Settings/ke\Deskiop/DESKTOP FEB 2007/UPPAAL/uppaal-4.1.4/demolirai... [= (8K

r| Simulator || Verifier|

File Edit Wew Tools Options Help
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X>=3
leave[id]!

Safe @:»{

appr[id]!
x=0

Appr
x<=20

x<=10
stop[id]?

go[id]?
x=0

Stop

Cross
x<=5

x>=7
x=0

Start
x<=15

&) C:/Documents and Settings/kelDesktop/DESKTOP FEB 2007/UPPAAL fuppaal-4.1.4ide... [= |[B][X]

[
il

File Edit Yew Tools Options Help
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QUERIES

— Qualitative Check (Hypothesis Testing) e—
—Pr[time <= 500](<> Train(0).Cross) >= 0.5

—
—_—
—
—
——
—

— Quantitative Check (Estimation)
— Pr[time <= 500](<> Train(5).Cross) ?

— Comparison Test

— Pr[time <= 500](<> Train(5).Cross) >=
Pr[time <= 500](<> Train(0).Cross)
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STRATEGO

Uppaal TIGA Uppaal j AL
strategy NS = control: A<> goal E<>error under NS L “ON AUSTRIA LABS
strategy NS = control: A[] safe A[] safe under NS
G ] P i o© Glo
Timed Game synthesis Timed Automata

abstraction

minE(cost) P I GO

Stochastic Priced

4 Uppaal SMC L N

simulate 5 [<=10]{el, e2} under SS
strategy DS = minE (cost) [<=10]: <> done under NS Pr[<=10](<> error) under SS

strategy DS = maxE (gain) [<=10]: <> done under NS/ kE[<=1O;1OO](max: cost) under SS

Stochastic FEEEs
Priced

maxE(gain )

Statistical Learning

>

J
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HOMEWORK:
PACMAN

— Create a network of timed automata

— Ghost and Pacman

— 3x3 grid, starting on opposite ends

— Make the ghost edges not controllable

— Both can stay at most 5 time units on the same field

— Leaving a field can be done after a minimum of 2 time units

— Queries:

— Can Pacman and Ghost be on the same grid?

= Will they always be on different grids?

— Can you make a strategy that lets the Pacman always escape? => if so, simulate via concrete simulator

= Allow pacman to stay for 50 instead of 5 time units, repeat the queries.
— Add a second ghost template (parametrized?)

— Hints: grid as locations or via variables? Either way, having a global variable with the current location makes the query a lot easier.
— You can combine select field and function for guard

— Use the demo folder of UPPAAL to figure out the right syntax of elements ;)
Silicon Austria Labs GmbH 92



SOME EXAMPLES = s

il

Grundfos pump controller

I\

Train station

il

Brick Sorter

I\

RT OS
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