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MODEL CHECKING
Bring me up to speed about what you know

Check whether a model fulfills certain properties

Does our robot behave like a human?

What kind of properties can you check?

What are the two biggest problems with model-checking?

3



4

PROPERTIES
Functional correctness

Does the system do what it is supposed to?

Reachability

Is it possible to end up in a certain state?

Can the robot set itself on fire?

Safety

Something bad can never happen

Will the robot never die?

Liveness

Something good will eventually happen

Will the robot recover?

Fairness

In cert. conditions, can an event occur repeatedly

Will the robot always recover?
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STRENGTHS OF MODEL CHECKING

General verification technique

Partial verification is possible

Covers all traces

Sound and mathematical foundation

My highlights about model-checking from papers:

“No high degree of expertise needed”

“Learning curve is not steep”
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WEAKNESSES

Not for data intensive applications

Decidability issues

Only the model is verified

State space explosion
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MODELLING GAP

Any verification using model-based techniques is only as good as the 
model of the system.
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STATE SPACE EXPLOSION

Too many states to complete the verification

Concurrency, Data Variables, Complexity, …

Consequences:

Memory consumption

Computation time

Scalability
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REAL TIME SYSTEMS

Systems with Soft and Hard Deadlines

Soft Deadline:

Some degree for flexibility

Missed deadline leads to degraded performance

Hard Deadline:

No exceptions

Missed deadline leads to catastrophic failures

E.g. Pacemaker, traffic control, etc.
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REAL TIME SYSTEMS

Why does time warrant for each own lecture?

I want to enter state B 5 seconds after I enter state A

How many variables needed to keep track of the timing?

What if time I spend in state C does not count to the 5 seconds?

Consider discrete time

Time can count up in each state

Now imagine the state space with real variables



TIMED AUTOMATA
Extended final state machine

Labeled transitions

Clock variables

Measures continuous time 

Time progresses in locations

There might be a time limit

Actions are instantaneous

Might only be enabled in certain times

Can reset clocks

Networks of timed automata

?!

Statespace?

Silicon Austria Labs GmbH 11



TIMED AUTOMATA - FORMAL
Set of clocks C

B(C) is the set of junctions of simple conditions

𝑥 <, ≤, =, ≥, >  𝑐

𝑥 − 𝑦 <, ≤, =, ≥, >  𝑐

𝑥, 𝑦 ∈ 𝐶, 𝑐 ∈ ℕ

Set of clock valuations v

Valuations map clocks to real values

𝑣 𝑥 → ℝ

Timed Automaton: TA = (𝐿, 𝑙0, 𝐶, 𝐴, 𝐸, 𝐼)

L: set of locations

𝑙0: initial location

C: set of clocks

A: set of actions

E: set of edges

𝐸 ⊆ 𝐿 × 𝐴 × 𝐵 𝐶 × 2𝐶 × 𝐿

𝐼 ∶ 𝐿 → 𝐵(𝐶)

Silicon Austria Labs GmbH 12

Semantics:

Clock valuations 𝑣

Map clocks to real values

𝑣 𝑥 → ℝ

𝑣0 𝑥 → 0 ∀𝑥 ∈ 𝐶
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UPPAAL - OUTLINE

GUI

Modelling language

Simulator

Formal semantics

Query language

Reachability algorithm



GUI - DEMO

Automaton, Location, Edge, Synchronization, Guard, 
Update, Select, Clocks, Channels, Environment, System 

Declarations, Simulator
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NOTATION

Location – a place in a single template or process

State – the state of the complete system including clock valuations and variable values

Edge – a step between two locations

Transition – a change of the global state of the system



16

INVARIANT

Something that must be true in a given location

If it is not true we must leave or else we deadlock

If it is not true we cannot enter the location
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GUARD

A condition that must be true in order for a edge to be enabled
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SYNCHRONIZATION

The label on which the edge synchronizes with another edge

If nothing is present

We call it a Tau τ / silent / epsilon ε transition

Can be taken alone
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BROADCAST CHANNELS

One sender

Multiple receivers

All that can participate must participate

Note: Invariants after the input can block the execution of the complete broadcast
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URGENT CHANNELS

Must synchronize on an urgent channel as soon as it is possible

Does not allow clock guards on edges that synchronize on urgent channels

Data guards on the receiver can be a problem
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COMMITTED LOCATION

Time must not pass while this location is part of the global state

If there is any committed location among the locations in the global state then the next transition must 
involve at least one committed location
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URGENT LOCATION

Time must not pass while this location is part of the global state
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INITIAL LOCATION

The location in which a given process starts
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SYNCHRONOUS VALUE PASSING
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MODELLING LANGUAGE
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MODELING LANGUAGE

◼ Global and local definitions, and system declaration

◼ Types

−built-in types: int, int[min,max], bool, arrays

−typedef struct { … } name

−typedef built-in-type name
◼ Functions

−C-style syntax, no pointer, can load C libraries
◼ Select

−name : type
◼ Network of TA = instances of templates

−argument const type expression

−argument type& name
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EXAMPLE: FREE PIZZA STOPWATCH

◼ Hit the stop button at exactly 10 seconds for pizza

◼ Two systems: watch and user

◼ Signals: Start, stop, tooLate, tooEarly, reward

◼ After the reward, the user shouts “freePizzzzza” 
into the world

◼ Global variable for coins, 10 coins as reward
◼ Change model so that a pizza costs 20 coins
◼ You need to hit the button twice

◼ Use concrete and symbolic simulation
Youtube screenshot
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SPECIFICATION LANGUAGE
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LOGICAL SPECIFICATIONS

◼ Validation Properties

−Possibly: E<> P

◼ Safety Properties

−Invariant: A[] P

−Pos. Inv.: E[] P

◼ Liveness Properties

−Eventually: A<> P

−Leadsto: P → Q

◼ Bounded Liveness

−Leads to within: P →t Q

The expressions  P  and 
Q  must be type safe, 
side effect free, and 
evaluate to a boolean.

Only references to 
integer variables, 
constants, clocks, and 
locations are allowed 
(and arrays of these).
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SYMBOLS

● ∃ = exists = there is one path

● Ɐ = forall = for all paths

● □ = Always = The whole path

● ◊ = Eventually = At some point along the path
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LOGICAL SPECIFICATIONS

◼ Validation/Reachability 
Properties

−Possibly: E<> P

◼ Safety Properties

−Invariant: A[] P

−Pos. Inv.: E[] P

◼ Liveness Properties

−Eventually: A<> P

−Leadsto: P → Q

◼ Bounded Liveness

−Leads to within: P →t Q
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LOGICAL SPECIFICATIONS

◼ Validation Properties

−Possibly: E<> P

◼ Safety Properties

−Invariant: A[] P

−Pos. Inv.: E[] P

◼ Liveness Properties

−Eventually: A<> P

−Leadsto: P → Q

◼ Bounded Liveness

−Leads to within: P → t Q

 t

 t
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STOPWATCH EXAMPLE

◼ Safety: Do debt allowed

−A[] coins >= 0

◼ Validation/Reachability: We do not cheat

−E<> coins =>10

◼ Try it out:

−Can you think of more queries?

−Make some queries that (should) fail
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QUESTIONS

What is the difference between an urgent location and an urgent channel?

What is the difference between a committed and an urgent location?

What is the difference between location and a state? And why do we care?

How can I check if a model never reaches a certain state?

How to check for deadlock freeness?
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UPPAAL VERIFICATION ENGINE
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STATE-SPACE EXPLOSION 
PROBLEM

10 (11) components with 2 states each

2^10 = 1024 states

2^11 = 2048 states

2 (3/9) components with 10 states each

10^2 = 100 states

10^3 = 1000 states

10^9 = 1000000000 states
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ZONES - FROM INFINITE TO 
FINITE

State
(n, x=3.2, y=2.5 )

x

y

x

y

Symbolic state (set)

Zone:
conjunction of
x-y<=m,
x<=m,
x>=m

(n, 1  x  4, 1  y  3)
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SYMBOLIC TRANSITIONS

n

m

x>3

y:=0

delays to

conjuncts to

projects to

x

y

1  x  4

1  y  3

x

y
1  x, 1  y

-2  x-y  3

x

y 3 < x, 1  y

-2  x-y  3

3 < x, y=0

x

y

Thus  (n, 1  x  4, 1  y  3)  →a (m,3 < x, y=0)

a
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DIFFERENCE BOUND MATRICES

x2-x2<=0x2-x1<=1x2-x0<=5

x1-x2<=3x1-x1<=0x1-x0<=6

x0-x2<=-1x0-x1<=-2x0-x0<=0

xi-xj<=cij

x1

x2

Zone



42

DIFFERENCE BOUND MATRICES

x2-x2<=0x2-x1<=3x2-x0<=5

x1-x2<=3x1-x1<=0x1-x0<=6

x0-x2<=-1x0-x1<=-2x0-x0<=0

xi-xj<=cij

x1

x2 Canonical representation:

All constraints as tight as possible.

Needed for inclusion checking.

→ Unique DBM to represent a zone.

x2-x1<=5 ?

x2-x1<=4 ?
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SYMBOLIC EXPLORATION

Reachable?

x

y
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SYMBOLIC EXPLORATION

Reachable?

x

y

Delay
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SYMBOLIC EXPLORATION

Reachable?

x

y

Left
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SYMBOLIC EXPLORATION
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SYMBOLIC EXPLORATION

Reachable?

x

y

Delay
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SYMBOLIC EXPLORATION

Reachable?

x

y

Down
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DEMO

Search order,

Clock constraints in simulator

Diagnostic trace
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FORWARD REACHABILITY 
ALGORITHM

Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,Z)→(n’,Z’):

if for some (n’,Z’’) Z’ Z’’ continue
else add (n’,Z’) to Waiting
move (n,Z) to Passed

UNTIL Waiting = Ø
return false

Init -> Final ?
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ZENONESS

◼ Problem: UPPAAL does not check for zenoness directly.

−A model has “zeno” behavior if it can take an 
infinite amount of actions in finite time.

−That is usually not a desirable behavior in 
practice.

−Zeno models may wrongly conclude that some 
properties hold though they logically should not.

−Rarely taken into account.

◼ Solution: Add an observer automata and check for non-zenoness, i.e., that time will 
always pass.



61

ZENONESS

x≤1 x≤1x=0

ZenoOK
Detect by
•adding the
observer:

Constant (10) can be anything
(>0), but choose it well w.r.t.
your model for efficiency.
Clocks ‘x’ are local.

•and check the property
ZenoCheck.A --> ZenoCheck.B

x ≥ 1x==1
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VERIFICATION OPTIONS
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VERIFICATION OPTIONS

Search Order

Depth First

Breadth First

State Space Reduction

None

Conservative

Aggressive

State Space Representation

DBM

Compact Form

Under Approximation

Over Approximation

Diagnostic Trace

Some

Shortest

Fastest
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No Cycles:  Passed list not needed for termination

However,
Passed list useful for
efficiency

STATE SPACE REDUCTION
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Cycles:
Only symbolic states
involving loop-entry points
need to be saved on Passed list

STATE SPACE REDUCTION
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TO STORE OR NOT TO STORE

Audio Protocol

117 statestotal

!

81 statesentrypoint

!

9 states

Behrmann, Larsen, 
Pelanek 2003

Time OH
less than 10%
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OVER-APPROXIMATION

CONVEX HULL

x

y

Convex Hull

1 3 5

1

3

5

TACAS04: An EXACT method performing

as well as Convex Hull has been

developed based on abstractions

taking max constants into account.

OVER-APPROXIMATION
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UNDER-APPROXIMATION
BITSTATE HASHING

Passed

Waiting Final

Init

PW



69

UNDER-APPROXIMATION
BITSTATE HASHING

Passed

Waiting Final

Init

PW 1

0

1

0

0

1

Hash function

1 bit per

passed state

Under-approx.

Several states
may collide on
the same bit.

Inclusion check

only with

waiting states.

“Equality” with

passed.

Bit Array
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MODELLING PATTERNS
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VARIABLE REDUCTION

◼ Reduce size of state 
space by explicitly 
resetting variables when 
they are not used!

◼ Automatically performed 
for clock variables (active 
clock reduction)
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VARIABLE REDUCTION

◼ Railway controller
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VARIABLE REDUCTION
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x is only active in location S1

x>3x<5

x:=0

x:=0

S x is inactive at S if on all path 
from S, x is always reset before 
being tested.

Definition
x<7

CLOCK REDUCTION (AUTOMATIC)
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THINGS YOU SHOULD KNOW BY 
THE END OF TODAY

What is a Timed Automata?

How is time treated in a finite way?

Why do we need both committed and urgent locations?

How can I check if a model can reach a certain state?



PART 2: OTHER UPPAAL
BASED TOOLS
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AGENDA

● TIMES

● Uppaal TIGA

● Uppaal CORA

● Uppaal PORT

● Uppaal cover

● Uppaal PRO

● Uppaal SMC (a.k.a. Uppaal 4.1.9)

● Uppaal Stratego

● Uppaal TRON

● ECDAR/Jecdar/Hecdar
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WHY SO MANY TOOLS?

This is an academic tool

New experiments require new tools

No publications in merging tools

No funding to hire someone for tool maintenance

Some models may look similar, but cannot be combined
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TIMES

2002

Disclaimer: I have never used this tool

Same underlying model checking engine

Very different modeling possibilities

Targeted at

Schedulability analysis

Generating optimal schedules
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UPPAAL TIGA

TIGA = Timed Games

Two player games

Controllable and uncontrollable actions

Controller synthesis:

Model the environment + what a controller can do.

Generate the controller so that controller satisfies φ!

Generate the right code automatically.

2-player timed game:
environment moves vs. controller moves.

Timed Game Automata.

Plant
Continuous

Controller Program
Discrete

sensors

actuators

?
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CONTROLLER SYNTHESIS/TGA

Given

System moves S,

Controller moves C,

and a property φ,

find

a strategy Sc s.t. Sc||S satisfies φ,

or prove there is no such strategy.

The controller continuously observes the system (all delays & moves are observable).

The controller can

wait (delay action),

take a controllable move, or

prevent delay by taking a controllable move
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TIMED GAME AUTOMATA

Timed automata with controllable and uncontrollable transitions.

Reachability & safety games.

control: A<> TGA.goal

control: A[] not TGA.L4

Memoryless strategy:

state → action.
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TGA – LET’S PLAY!

● control: A<> TGA.goal

x<1 : λ
x==1 : c

x<2 : λ
x≥2 : c

Strategy x≤1 : c

x<1 : λ
x==1 : c

Note: This is one strategy.
There are other solutions.



Reinforcement Learning

Time Bounded Reachability

(G,T)

TIGA

SMC

SMC
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UPPAAL CORA
CORA = Cost Optimal Reachability Analysis

UPPAAL for Planning and Scheduling

Enables modeling LPTA

LPTA = Linearly priced timed automata

Can model e.g. energy consumption

Discrete costs on edges

Linear cost accumulating in locations
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UPPAAL SMC

Statistical model checking

Now integrated in main UPPAAL

This is really simulation

A LOT of simulation

With a calculated confidence level

State space explosion not a (big) problem

Evaluation of other approaches

Very fast compared to testing



STOCHASTIC SEMANTICS OF TIMED AUTOMATA

Uniform

Exponential (rate)

DELAY





QUERIES
Qualitative Check (Hypothesis Testing)

Pr[time <= 500](<> Train(0).Cross) >= 0.5

Quantitative Check (Estimation)

Pr[time <= 500](<> Train(5).Cross) ?

Comparison Test

Pr[time <= 500](<> Train(5).Cross) >=
Pr[time <= 500](<> Train(0).Cross)



Pr[time <= 500](<> Train(5).Cross) ?

Pr[time <= 500](<> Train(0).Cross) ?



G
Timed Game

σ
Strategy

P
Stochastic

Priced

Timed Game

P| σ

φ

synthesis

abstraction

σ°
optimized

Strategy

G|σ
Timed Automata

P| σ°
Stochastic Priced

Timed Automata

minE(cost)

maxE(gain )

Uppaal TIGA
strategy NS = control: A<> goal

strategy NS = control: A[] safe

Statistical Learning

strategy DS = minE (cost) [<=10]: <> done under NS

strategy DS = maxE (gain) [<=10]: <> done under NS

Uppaal

E<> error under NS

A[] safe under NS

Uppaal SMC

simulate 5 [<=10]{e1, e2} under SS

Pr[<=10](<> error) under SS

E[<=10;100](max: cost) under SS

S
T

R
A

T
E

G
O



HOMEWORK:
PACMAN

Create a network of timed automata

Ghost and Pacman

3x3 grid, starting on opposite ends

Make the ghost edges not controllable

Both can stay at most 5 time units on the same field

Leaving a field can be done after a minimum of 2 time units

Queries:

Can Pacman and Ghost be on the same grid?

Will they always be on different grids?

Can you make a strategy that lets the Pacman always escape? => if so, simulate via concrete simulator

Allow pacman to stay for 50 instead of 5 time units, repeat the queries.

Add a second ghost template (parametrized?)

Hints: grid as locations or via variables? Either way, having a global variable with the current location makes the query a lot easier.

You can combine select field and function for guard

Use the demo folder of UPPAAL to figure out the right syntax of elements ;)
Silicon Austria Labs GmbH 92



SOME EXAMPLES

Grundfos pump controller

Train station

Brick Sorter

RT OS

Silicon Austria Labs GmbH 93



UNFOLD THE FUTURE

WWW.SILICON-AUSTRIA-LABS.COM
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