
REAL TIME MODEL-CHECKING
AND UPPAAL

FLORIAN LORBER

REAL TIME MODEL-CHECKING
AND UPPAAL

Florian Lorber
Silicon Austria Labs

(Slides from Aalborg University)

MODEL CHECKING
Bring me up to speed about what you know

Check whether a model fulfills certain properties

Does our robot behave like a human?

What kind of properties can you check?

What are the two biggest problems with model-checking?

3

4

PROPERTIES
Functional correctness

Does the system do what it is supposed to?

Reachability

Is it possible to end up in a certain state?

Can the robot set itself on fire?

Safety

Something bad can never happen

Will the robot never die?

Liveness

Something good will eventually happen

Will the robot recover?

Fairness

In cert. conditions, can an event occur repeatedly

Will the robot always recover?

5

STRENGTHS OF MODEL CHECKING

General verification technique

Partial verification is possible

Covers all traces

Sound and mathematical foundation

My highlights about model-checking from papers:

“No high degree of expertise needed”

“Learning curve is not steep”

6

WEAKNESSES

Not for data intensive applications

Decidability issues

Only the model is verified

State space explosion

7

MODELLING GAP

Any verification using model-based techniques is only as good as the
model of the system.

8

STATE SPACE EXPLOSION

Too many states to complete the verification

Concurrency, Data Variables, Complexity, …

Consequences:

Memory consumption

Computation time

Scalability

9

REAL TIME SYSTEMS

Systems with Soft and Hard Deadlines

Soft Deadline:

Some degree for flexibility

Missed deadline leads to degraded performance

Hard Deadline:

No exceptions

Missed deadline leads to catastrophic failures

E.g. Pacemaker, traffic control, etc.

10

REAL TIME SYSTEMS

Why does time warrant for each own lecture?

I want to enter state B 5 seconds after I enter state A

How many variables needed to keep track of the timing?

What if time I spend in state C does not count to the 5 seconds?

Consider discrete time

Time can count up in each state

Now imagine the state space with real variables

TIMED AUTOMATA
Extended final state machine

Labeled transitions

Clock variables

Measures continuous time

Time progresses in locations

There might be a time limit

Actions are instantaneous

Might only be enabled in certain times

Can reset clocks

Networks of timed automata

?!

Statespace?

Silicon Austria Labs GmbH 11

TIMED AUTOMATA - FORMAL
Set of clocks C

B(C) is the set of junctions of simple conditions

𝑥 <, ≤, =, ≥, > 𝑐

𝑥 − 𝑦 <, ≤, =, ≥, > 𝑐

𝑥, 𝑦 ∈ 𝐶, 𝑐 ∈ ℕ

Set of clock valuations v

Valuations map clocks to real values

𝑣 𝑥 → ℝ

Timed Automaton: TA = (𝐿, 𝑙0, 𝐶, 𝐴, 𝐸, 𝐼)

L: set of locations

𝑙0: initial location

C: set of clocks

A: set of actions

E: set of edges

𝐸 ⊆ 𝐿 × 𝐴 × 𝐵 𝐶 × 2𝐶 × 𝐿

𝐼 ∶ 𝐿 → 𝐵(𝐶)

Silicon Austria Labs GmbH 12

Semantics:

Clock valuations 𝑣

Map clocks to real values

𝑣 𝑥 → ℝ

𝑣0 𝑥 → 0 ∀𝑥 ∈ 𝐶

13

UPPAAL - OUTLINE

GUI

Modelling language

Simulator

Formal semantics

Query language

Reachability algorithm

GUI - DEMO

Automaton, Location, Edge, Synchronization, Guard,
Update, Select, Clocks, Channels, Environment, System

Declarations, Simulator

14

15

NOTATION

Location – a place in a single template or process

State – the state of the complete system including clock valuations and variable values

Edge – a step between two locations

Transition – a change of the global state of the system

16

INVARIANT

Something that must be true in a given location

If it is not true we must leave or else we deadlock

If it is not true we cannot enter the location

17

GUARD

A condition that must be true in order for a edge to be enabled

18

SYNCHRONIZATION

The label on which the edge synchronizes with another edge

If nothing is present

We call it a Tau τ / silent / epsilon ε transition

Can be taken alone

19

BROADCAST CHANNELS

One sender

Multiple receivers

All that can participate must participate

Note: Invariants after the input can block the execution of the complete broadcast

20

URGENT CHANNELS

Must synchronize on an urgent channel as soon as it is possible

Does not allow clock guards on edges that synchronize on urgent channels

Data guards on the receiver can be a problem

21

COMMITTED LOCATION

Time must not pass while this location is part of the global state

If there is any committed location among the locations in the global state then the next transition must
involve at least one committed location

22

URGENT LOCATION

Time must not pass while this location is part of the global state

23

INITIAL LOCATION

The location in which a given process starts

24

SYNCHRONOUS VALUE PASSING

25

MODELLING LANGUAGE

26

MODELING LANGUAGE

◼ Global and local definitions, and system declaration

◼ Types

−built-in types: int, int[min,max], bool, arrays

−typedef struct { … } name

−typedef built-in-type name
◼ Functions

−C-style syntax, no pointer, can load C libraries
◼ Select

−name : type
◼ Network of TA = instances of templates

−argument const type expression

−argument type& name

27

EXAMPLE: FREE PIZZA STOPWATCH

◼ Hit the stop button at exactly 10 seconds for pizza

◼ Two systems: watch and user

◼ Signals: Start, stop, tooLate, tooEarly, reward

◼ After the reward, the user shouts “freePizzzzza”
into the world

◼ Global variable for coins, 10 coins as reward
◼ Change model so that a pizza costs 20 coins
◼ You need to hit the button twice

◼ Use concrete and symbolic simulation
Youtube screenshot

28

SPECIFICATION LANGUAGE

29

LOGICAL SPECIFICATIONS

◼ Validation Properties

−Possibly: E<> P

◼ Safety Properties

−Invariant: A[] P

−Pos. Inv.: E[] P

◼ Liveness Properties

−Eventually: A<> P

−Leadsto: P → Q

◼ Bounded Liveness

−Leads to within: P →t Q

The expressions P and
Q must be type safe,
side effect free, and
evaluate to a boolean.

Only references to
integer variables,
constants, clocks, and
locations are allowed
(and arrays of these).

30

SYMBOLS

● ∃ = exists = there is one path

● Ɐ = forall = for all paths

● □ = Always = The whole path

● ◊ = Eventually = At some point along the path

31

LOGICAL SPECIFICATIONS

◼ Validation/Reachability
Properties

−Possibly: E<> P

◼ Safety Properties

−Invariant: A[] P

−Pos. Inv.: E[] P

◼ Liveness Properties

−Eventually: A<> P

−Leadsto: P → Q

◼ Bounded Liveness

−Leads to within: P →t Q

32

LOGICAL SPECIFICATIONS

◼ Validation Properties

−Possibly: E<> P

◼ Safety Properties

−Invariant: A[] P

−Pos. Inv.: E[] P

◼ Liveness Properties

−Eventually: A<> P

−Leadsto: P → Q

◼ Bounded Liveness

−Leads to within: P →t Q

33

LOGICAL SPECIFICATIONS

◼ Validation Properties

−Possibly: E<> P

◼ Safety Properties

−Invariant: A[] P

−Pos. Inv.: E[] P

◼ Liveness Properties

−Eventually: A<> P

−Leadsto: P → Q

◼ Bounded Liveness

−Leads to within: P →t Q

34

LOGICAL SPECIFICATIONS

◼ Validation Properties

−Possibly: E<> P

◼ Safety Properties

−Invariant: A[] P

−Pos. Inv.: E[] P

◼ Liveness Properties

−Eventually: A<> P

−Leadsto: P → Q

◼ Bounded Liveness

−Leads to within: P → t Q

 t

 t

35

STOPWATCH EXAMPLE

◼ Safety: Do debt allowed

−A[] coins >= 0

◼ Validation/Reachability: We do not cheat

−E<> coins =>10

◼ Try it out:

−Can you think of more queries?

−Make some queries that (should) fail

36

QUESTIONS

What is the difference between an urgent location and an urgent channel?

What is the difference between a committed and an urgent location?

What is the difference between location and a state? And why do we care?

How can I check if a model never reaches a certain state?

How to check for deadlock freeness?

37

UPPAAL VERIFICATION ENGINE

38

STATE-SPACE EXPLOSION
PROBLEM

10 (11) components with 2 states each

2^10 = 1024 states

2^11 = 2048 states

2 (3/9) components with 10 states each

10^2 = 100 states

10^3 = 1000 states

10^9 = 1000000000 states

39

ZONES - FROM INFINITE TO
FINITE

State
(n, x=3.2, y=2.5)

x

y

x

y

Symbolic state (set)

Zone:
conjunction of
x-y<=m,
x<=m,
x>=m

(n, 1  x  4, 1  y  3)

40

SYMBOLIC TRANSITIONS

n

m

x>3

y:=0

delays to

conjuncts to

projects to

x

y

1  x  4

1  y  3

x

y
1  x, 1  y

-2  x-y  3

x

y 3 < x, 1  y

-2  x-y  3

3 < x, y=0

x

y

Thus (n, 1  x  4, 1  y  3) →a (m,3 < x, y=0)

a

41

DIFFERENCE BOUND MATRICES

x2-x2<=0x2-x1<=1x2-x0<=5

x1-x2<=3x1-x1<=0x1-x0<=6

x0-x2<=-1x0-x1<=-2x0-x0<=0

xi-xj<=cij

x1

x2

Zone

42

DIFFERENCE BOUND MATRICES

x2-x2<=0x2-x1<=3x2-x0<=5

x1-x2<=3x1-x1<=0x1-x0<=6

x0-x2<=-1x0-x1<=-2x0-x0<=0

xi-xj<=cij

x1

x2 Canonical representation:

All constraints as tight as possible.

Needed for inclusion checking.

→ Unique DBM to represent a zone.

x2-x1<=5 ?

x2-x1<=4 ?

43

SYMBOLIC EXPLORATION

Reachable?

x

y

44

SYMBOLIC EXPLORATION

Reachable?

x

y

Delay

45

SYMBOLIC EXPLORATION

Reachable?

x

y

Left

46

SYMBOLIC EXPLORATION

Reachable?

x

y

Left

47

SYMBOLIC EXPLORATION

Reachable?

x

y

Delay

48

SYMBOLIC EXPLORATION

Reachable?

x

y

Left

49

SYMBOLIC EXPLORATION

Reachable?

x

y

Left

50

SYMBOLIC EXPLORATION

Reachable?

x

y

Delay

51

SYMBOLIC EXPLORATION

Reachable?

x

y

Down

52

DEMO

Search order,

Clock constraints in simulator

Diagnostic trace

53

FORWARD REACHABILITY
ALGORITHM

Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,Z)→(n’,Z’):

if for some (n’,Z’’) Z’ Z’’ continue
else add (n’,Z’) to Waiting
move (n,Z) to Passed

UNTIL Waiting = Ø
return false

Init -> Final ?

54

FORWARD REACHABILITY
ALGORITHM

Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,Z)→(n’,Z’):

if for some (n’,Z’’) Z’ Z’’ continue
else add (n’,Z’) to Waiting
move (n,Z) to Passed

UNTIL Waiting = Ø
return false

Init -> Final ?

55

FORWARD REACHABILITY
ALGORITHM

Passed

Waiting
Final?

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,Z)→(n’,Z’):

if for some (n’,Z’’) Z’ Z’’ continue
else add (n’,Z’) to Waiting
move (n,Z) to Passed

UNTIL Waiting = Ø
return false

Init -> Final ?

56

FORWARD REACHABILITY
ALGORITHM

Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,Z)→(n’,Z’):

if for some (n’,Z’’) Z’ Z’’ continue
else add (n’,Z’) to Waiting
move (n,Z) to Passed

UNTIL Waiting = Ø
return false

Init -> Final ?

57

FORWARD REACHABILITY
ALGORITHM

Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,Z)→(n’,Z’):

if for some (n’,Z’’) Z’ Z’’ continue
else add (n’,Z’) to Waiting
move (n,Z) to Passed

UNTIL Waiting = Ø
return false

Init -> Final ?

58

FORWARD REACHABILITY
ALGORITHM

Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,Z)→(n’,Z’):

if for some (n’,Z’’) Z’ Z’’ continue
else add (n’,Z’) to Waiting
move (n,Z) to Passed

UNTIL Waiting = Ø
return false

Init -> Final ?

59

FORWARD REACHABILITY
ALGORITHM

Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,Z)→(n’,Z’):

if for some (n’,Z’’) Z’ Z’’ continue
else add (n’,Z’) to Waiting
move (n,Z) to Passed

UNTIL Waiting = Ø
return false

Init -> Final ?

60

ZENONESS

◼ Problem: UPPAAL does not check for zenoness directly.

−A model has “zeno” behavior if it can take an
infinite amount of actions in finite time.

−That is usually not a desirable behavior in
practice.

−Zeno models may wrongly conclude that some
properties hold though they logically should not.

−Rarely taken into account.

◼ Solution: Add an observer automata and check for non-zenoness, i.e., that time will
always pass.

61

ZENONESS

x≤1 x≤1x=0

ZenoOK
Detect by
•adding the
observer:

Constant (10) can be anything
(>0), but choose it well w.r.t.
your model for efficiency.
Clocks ‘x’ are local.

•and check the property
ZenoCheck.A --> ZenoCheck.B

x ≥ 1x==1

62

VERIFICATION OPTIONS

63

VERIFICATION OPTIONS

Search Order

Depth First

Breadth First

State Space Reduction

None

Conservative

Aggressive

State Space Representation

DBM

Compact Form

Under Approximation

Over Approximation

Diagnostic Trace

Some

Shortest

Fastest

64

No Cycles: Passed list not needed for termination

However,
Passed list useful for
efficiency

STATE SPACE REDUCTION

65

Cycles:
Only symbolic states
involving loop-entry points
need to be saved on Passed list

STATE SPACE REDUCTION

66

TO STORE OR NOT TO STORE

Audio Protocol

117 statestotal

!

81 statesentrypoint

!

9 states

Behrmann, Larsen,
Pelanek 2003

Time OH
less than 10%

67

OVER-APPROXIMATION

CONVEX HULL

x

y

Convex Hull

1 3 5

1

3

5

TACAS04: An EXACT method performing

as well as Convex Hull has been

developed based on abstractions

taking max constants into account.

OVER-APPROXIMATION

68

UNDER-APPROXIMATION
BITSTATE HASHING

Passed

Waiting Final

Init

PW

69

UNDER-APPROXIMATION
BITSTATE HASHING

Passed

Waiting Final

Init

PW 1

0

1

0

0

1

Hash function

1 bit per

passed state

Under-approx.

Several states
may collide on
the same bit.

Inclusion check

only with

waiting states.

“Equality” with

passed.

Bit Array

70

MODELLING PATTERNS

71

VARIABLE REDUCTION

◼ Reduce size of state
space by explicitly
resetting variables when
they are not used!

◼ Automatically performed
for clock variables (active
clock reduction)

72

VARIABLE REDUCTION

◼ Railway controller

73

VARIABLE REDUCTION

74

x is only active in location S1

x>3x<5

x:=0

x:=0

S x is inactive at S if on all path
from S, x is always reset before
being tested.

Definition
x<7

CLOCK REDUCTION (AUTOMATIC)

75

THINGS YOU SHOULD KNOW BY
THE END OF TODAY

What is a Timed Automata?

How is time treated in a finite way?

Why do we need both committed and urgent locations?

How can I check if a model can reach a certain state?

PART 2: OTHER UPPAAL
BASED TOOLS

77

AGENDA

● TIMES

● Uppaal TIGA

● Uppaal CORA

● Uppaal PORT

● Uppaal cover

● Uppaal PRO

● Uppaal SMC (a.k.a. Uppaal 4.1.9)

● Uppaal Stratego

● Uppaal TRON

● ECDAR/Jecdar/Hecdar

78

WHY SO MANY TOOLS?

This is an academic tool

New experiments require new tools

No publications in merging tools

No funding to hire someone for tool maintenance

Some models may look similar, but cannot be combined

79

TIMES

2002

Disclaimer: I have never used this tool

Same underlying model checking engine

Very different modeling possibilities

Targeted at

Schedulability analysis

Generating optimal schedules

80

UPPAAL TIGA

TIGA = Timed Games

Two player games

Controllable and uncontrollable actions

Controller synthesis:

Model the environment + what a controller can do.

Generate the controller so that controller satisfies φ!

Generate the right code automatically.

2-player timed game:
environment moves vs. controller moves.

Timed Game Automata.

Plant
Continuous

Controller Program
Discrete

sensors

actuators

?

81

CONTROLLER SYNTHESIS/TGA

Given

System moves S,

Controller moves C,

and a property φ,

find

a strategy Sc s.t. Sc||S satisfies φ,

or prove there is no such strategy.

The controller continuously observes the system (all delays & moves are observable).

The controller can

wait (delay action),

take a controllable move, or

prevent delay by taking a controllable move

82

TIMED GAME AUTOMATA

Timed automata with controllable and uncontrollable transitions.

Reachability & safety games.

control: A<> TGA.goal

control: A[] not TGA.L4

Memoryless strategy:

state → action.

83

TGA – LET’S PLAY!

● control: A<> TGA.goal

x<1 : λ
x==1 : c

x<2 : λ
x≥2 : c

Strategy x≤1 : c

x<1 : λ
x==1 : c

Note: This is one strategy.
There are other solutions.

Reinforcement Learning

Time Bounded Reachability

(G,T)

TIGA

SMC

SMC

85

UPPAAL CORA
CORA = Cost Optimal Reachability Analysis

UPPAAL for Planning and Scheduling

Enables modeling LPTA

LPTA = Linearly priced timed automata

Can model e.g. energy consumption

Discrete costs on edges

Linear cost accumulating in locations

86

UPPAAL SMC

Statistical model checking

Now integrated in main UPPAAL

This is really simulation

A LOT of simulation

With a calculated confidence level

State space explosion not a (big) problem

Evaluation of other approaches

Very fast compared to testing

STOCHASTIC SEMANTICS OF TIMED AUTOMATA

Uniform

Exponential (rate)

DELAY

QUERIES
Qualitative Check (Hypothesis Testing)

Pr[time <= 500](<> Train(0).Cross) >= 0.5

Quantitative Check (Estimation)

Pr[time <= 500](<> Train(5).Cross) ?

Comparison Test

Pr[time <= 500](<> Train(5).Cross) >=
Pr[time <= 500](<> Train(0).Cross)

Pr[time <= 500](<> Train(5).Cross) ?

Pr[time <= 500](<> Train(0).Cross) ?

G
Timed Game

σ
Strategy

P
Stochastic

Priced

Timed Game

P| σ

φ

synthesis

abstraction

σ°
optimized

Strategy

G|σ
Timed Automata

P| σ°
Stochastic Priced

Timed Automata

minE(cost)

maxE(gain)

Uppaal TIGA
strategy NS = control: A<> goal

strategy NS = control: A[] safe

Statistical Learning

strategy DS = minE (cost) [<=10]: <> done under NS

strategy DS = maxE (gain) [<=10]: <> done under NS

Uppaal

E<> error under NS

A[] safe under NS

Uppaal SMC

simulate 5 [<=10]{e1, e2} under SS

Pr[<=10](<> error) under SS

E[<=10;100](max: cost) under SS

S
T

R
A

T
E

G
O

HOMEWORK:
PACMAN

Create a network of timed automata

Ghost and Pacman

3x3 grid, starting on opposite ends

Make the ghost edges not controllable

Both can stay at most 5 time units on the same field

Leaving a field can be done after a minimum of 2 time units

Queries:

Can Pacman and Ghost be on the same grid?

Will they always be on different grids?

Can you make a strategy that lets the Pacman always escape? => if so, simulate via concrete simulator

Allow pacman to stay for 50 instead of 5 time units, repeat the queries.

Add a second ghost template (parametrized?)

Hints: grid as locations or via variables? Either way, having a global variable with the current location makes the query a lot easier.

You can combine select field and function for guard

Use the demo folder of UPPAAL to figure out the right syntax of elements ;)
Silicon Austria Labs GmbH 92

SOME EXAMPLES

Grundfos pump controller

Train station

Brick Sorter

RT OS

Silicon Austria Labs GmbH 93

UNFOLD THE FUTURE

WWW.SILICON-AUSTRIA-LABS.COM

94

	Slide 1: Real Time Model-checking and UPPAAL
	Slide 2: Real Time Model-checking and UPPAAL
	Slide 3: Model Checking
	Slide 4: Properties
	Slide 5: Strengths of Model Checking
	Slide 6: Weaknesses
	Slide 7: Modelling Gap
	Slide 8: State Space explosion
	Slide 9: Real time Systems
	Slide 10: Real time Systems
	Slide 11: Timed AUTOMatA
	Slide 12: Timed AUTOMatA - formal
	Slide 13: UPPAAL - Outline
	Slide 14: GUI - demo
	Slide 15: Notation
	Slide 16: Invariant
	Slide 17: Guard
	Slide 18: Synchronization
	Slide 19: Broadcast channels
	Slide 20: Urgent channels
	Slide 21: Committed location
	Slide 22: Urgent location
	Slide 23: Initial location
	Slide 24: Synchronous Value Passing
	Slide 25: Modelling Language
	Slide 26: Modeling Language
	Slide 27: example: Free Pizza sTOPwatch
	Slide 28: Specification Language
	Slide 29: Logical Specifications
	Slide 30: Symbols
	Slide 31: Logical Specifications
	Slide 32: Logical Specifications
	Slide 33: Logical Specifications
	Slide 34: Logical Specifications
	Slide 35: Stopwatch Example
	Slide 36: Questions
	Slide 37: UPPAAL Verification Engine
	Slide 38: State-space explosion problem
	Slide 39: Zones - From infinite to finite
	Slide 40: Symbolic Transitions
	Slide 41: Difference Bound Matrices
	Slide 42: Difference Bound Matrices
	Slide 43: Symbolic Exploration
	Slide 44: Symbolic Exploration
	Slide 45: Symbolic Exploration
	Slide 46: Symbolic Exploration
	Slide 47: Symbolic Exploration
	Slide 48: Symbolic Exploration
	Slide 49: Symbolic Exploration
	Slide 50: Symbolic Exploration
	Slide 51: Symbolic Exploration
	Slide 52: DEMO
	Slide 53: Forward Reachability Algorithm
	Slide 54: Forward Reachability Algorithm
	Slide 55: Forward Reachability Algorithm
	Slide 56: Forward Reachability Algorithm
	Slide 57: Forward Reachability Algorithm
	Slide 58: Forward Reachability Algorithm
	Slide 59: Forward Reachability Algorithm
	Slide 60: Zenoness
	Slide 61: Zenoness
	Slide 62: Verification Options
	Slide 63: Verification Options
	Slide 64: State Space Reduction
	Slide 65: State Space Reduction
	Slide 66: To Store or Not To Store
	Slide 67: Over-approximation Convex Hull
	Slide 68: Under-approximation Bitstate Hashing
	Slide 69: Under-approximation Bitstate Hashing
	Slide 70: Modelling Patterns
	Slide 71: Variable Reduction
	Slide 72: Variable Reduction
	Slide 73: Variable Reduction
	Slide 74: Clock Reduction (Automatic)‏
	Slide 75: Things you should know by the end of today
	Slide 76: Part 2: Other Uppaal based tools
	Slide 77: Agenda
	Slide 78: Why so many tools?
	Slide 79: TIMES
	Slide 80: Uppaal TIGA
	Slide 81: Controller Synthesis/TGA
	Slide 82: Timed Game Automata
	Slide 83: TGA – Let’s Play!
	Slide 84
	Slide 85: Uppaal CORA
	Slide 86: Uppaal SMC
	Slide 87: Stochastic Semantics of Timed Automata
	Slide 88
	Slide 89: Queries
	Slide 90
	Slide 91
	Slide 92: Homework: Pacman
	Slide 93: Some examples
	Slide 94: Unfold the future

