==SAL >
== SILICON AUSTRIA LABS et

,':i;,-
Al <

A

— REAL TIME MODEL-CHECKING
| AND UPPAAL —

FLORIAN LORBER

= Kiimsechuts, tmwelt (ol % DasLand o o -) N = e ” 1A INNOVATION
AT o AT % E. fwf; 7 Steiermark = AR \erwork

REAL TIME MODEL-CHECKING
AND UPPAAL

Florian Lorber
Silicon Austria Labs

(Slides from Aalborg University)

MODEL CHECKING

o

—

—

—

o

Bring me up to speed about what you know

Check whether a model fulfills certain properties

—

— Does our robot behave like a human?

What kind of properties can you check?

What are the two biggest problems with model-checking?

== SAL

=== SILICON AUSTRIA LABS

AL

SILICON AUSTRIA LABS

PROPERTIES

Functional correctness

[
il

— Does the system do what it is supposed to?

— Reachability

—_—

— s it possible to end up in a certain state?

e

= Can the robot set itself on fire?

— Safety

e

— Something bad can never happen

e

= Will the robot never die?

= Liveness

= Something good will eventually happen

= W.ill the robot recover?

= Fairness

e

= In cert. conditions, can an event occur repeatedly

— Will the robot always recover?

STRENGTHS OF MODEL CHECKING =saL

ILICON AUSTRIA LABS

I
|

— General verification technique

— Partial verification is possible

— Covers all traces

— Sound and mathematical foundation

— My highlights about model-checking from papers:

—

— “No high degree of expertise needed”

—

— “Learning curve is not steep”

WEAKNESSES

111}

AL

SILICON AUSTRIA LABS

—
—_—
—
—
——
—

— Not for data intensive applications

— Decidability issues

— Only the model is verified

— State space explosion

MODELLING GAP v

— Any verification using model-based techniques is only as good as the
model of the system.

STATE SPACE EXPLOSION = s

eI«

il

Too many states to complete the verification

I\

Concurrency, Data Variables, Complexity, ...

il

Consequences:

\\|

Memory consumption

\\|

Computation time

Il

Scalability

REAL TIME SYSTEMS = s

— Systems with Soft and Hard Deadlines

— Soft Deadline:

—

— Some degree for flexibility

—

— Missed deadline leads to degraded performance

— Hard Deadline:
— No exceptions
— Missed deadline leads to catastrophic failures

— E.qg. Pacemaker, traffic control, etc.

REAL TIME SYSTEMS

— Why does time warrant for each own lecture?

— | want to enter state B 5 seconds after | enter state A
— How many variables needed to keep track of the timing?

—

— What if time | spend in state C does not count to the 5 seconds?

— Consider discrete time

— Time can count up in each state

— Now imagine the state space with real variables

t+1

== SAL

=== SILICON AUSTRIA LABS

t+1

TIMED AUTOMATA

—
—
—_—

Extended final state machine

——

— Labeled transitions

—

— Clock variables

——

— Measures continuous time

Time progresses in locations
— There might be a time limit

Actions are instantaneous

— Might only be enabled in certain times
— Can reset clocks

Networks of timed automata

—
—
— Y

Statespace?

Silicon Austria Labs GmbH

== SAL

== SILICON AUSTRIA LABS

x>10
RECOVERING INITIAL
. recovered! .
extinguishFire! getStupidIdea?
X=0
playingWithFire?
X=0
X< 20
ON FIRE . .
EXPERIMENTING
X=20
buringTooMuch!
getStupidIdea!
DEATH
recovered?

TIMED AUTOMATA - FORMAL

— Set of clocks C — Semantics:

—_—

— B(C) is the set of junctions of simple conditions

= 155,52, >8cC - .
{ } — Clock valuations v

= x—-y{<,=2,>)c
— Map clocks to real values

— x,yeEC(C,c€eN _
= v(x)->R

— Set of clock valuations v
— Valuations map clocks to real values = vo(x) > 0vVx€eC

= v(x) >R

— Timed Automaton: TA = (L, 1,,C,A,E,)
— L: set of locations

— C: set of clocks
— A: set of actions
— E: set of edges

= ECLXAXB(C)x2°xL
= [:L - B(C)

1s the transition relation such that:

2

— (l’
- (l,
u' = [r— Olu, and v € I(l),

2

Silicon Austria Labs GmbH

== SAL

=== SILICON AUSTRIA LABS

Definition 2 (Semantics of TA). Let (L,ly,C, A, E, I) be a timed automaton.
= ly:initial location The semantics is defined as a labelled transition system (S, sq, —), where S C Lx
R is the set of states, s = (lp, ug) is the initial state, and —C S x {R=qUA} xS

) L (Lu+d) ifv¥d :0<d <d = u+d €I(l), and
) 5 (I u) if there exists e = (I,a,g,7,1') € E s.t. u € g,

12

UPPAAL - OUTLINE = sAL

=== SILICON AUSTRIA LABS

= GUI

— Modelling language
— Simulator

— Formal semantics
— Query language

— Reachability algorithm

13

I
5
-~

[
|

——= SILICON AUSTRIA LABS

[

GUI - DEMO

Automaton, Location, Edge, Synchronization, Guard,
Update, Select, Clocks, Channels, Environment, System
Declarations, Simulator

14

N OTAT I O N '—_:—T—.:_-—E; gﬁDII\TAUSTRIA LABS

—

— Location — a place in a single template or process

—

— State — the state of the complete system including clock valuations and variable values

— Edge — a step between two locations

—_—

— Transition — a change of the global state of the system

15

INVARIANT

Something that must be true in a given location

—
—
—_—

—
—_—
—_—

—
—
—

If it is not true we must leave or else we deadlock

If it is not true we cannot enter the location

== SAL

== SILICON AUSTRIA LABS

16

111]]

AL

SILICON AUSTRIA LABS

{{lll\\\

GUARD

A condition that must be true in order for a edge to be enabled

17

SYNCHRONIZATION = s

The label on which the edge synchronizes with another edge

Il

il

If nothing is present
— We call it a Tau 1/ silent / epsilon € transition

— Can be taken alone

18

BROADCAST CHANNELS = s

— One sender
— Multiple receivers
— All that can participate must participate
— Note: Invariants after the input can block the execution of the complete broadcast

: UPPAAL

File Edit View Tools Options Help

Rl=8) 2 B @ - =

l/Editnr I Simulator | ConcreteSimulator | Verifier | Yggdrasil |
1 J-"J-" PEBCE glﬂbal deczﬁrﬁfiﬂﬂﬂ hEn’"E.
] Project E
[Declarations :
o & Template ‘broadcast chan a;
[system declarations

19

URGENT CHANNELS = s

— Must synchronize on an urgent channel as soon as it is possible

— Does not allow clock guards on edges that synchronize on urgent channels

—

— Data guards on the receiver can be a problem

: UPPAAL

File Edit View Tools Options Help

Bla® 2 B @ |~

~ Editor " Simulator | ConcreteSimulator | Verifier | Yggdrasil |
! J'IJ‘J'IJ‘ PEECE glﬂbal declaratiﬂns helr-e-
1 Project E
[Declarations :
o & Template “urgent chan a;
[system declarations

20

COMMITTED LOCATION = s

— Time must not pass while this location is part of the global state

— If there is any committed location among the locations in the global state then the next transition must
involve at least one committed location

...

21

111}

AL

SILICON AUSTRIA LABS

{{lll\\\

URGENT LOCATION

— Time must not pass while this location is part of the global state

...

22

AL

SILICON AUSTRIA LABS

I
il

INITIAL LOCATION

— The location in which a given process starts

23

SYNCHRONOUS VALUE PASSING

Unconditional Conditional
O O

% c! c? c! c?
g var := out In ;= var, var := out In ;= var,
d var := 0 var := 0
—
oy i/
O () () cond(in)
. c! c? c! c?
vl var ;= out in :=var var ;= out in ;= var,
? var := out
Q \
E C @5 condl(var) é:) cond2(in)
% d? d! d? d!
45 1n = var, var = out 1n = var,
E var ;=0 var ;=0
= y /
h O |O O

[
il

AL

SILICON AUSTRIA LABS

24

|
i
2
=P -

F

Il
\\!I

MODELLING LANGUAGE

MODELING LANGUAGE

m Global and local definitions, and system declaration

111}

AL

SILICON AUSTRIA LABS

{{III\\\

m Types

~built-in types: int, intfmin,max], bool, arrays
-typedef struct { ... } name

-typedef built-in-type name

m Functions

-C-style syntax, no pointer, can load C libraries

m Select

-name : type

m Network of TA = instances of templates

-argument const type expression
-argument type& name

26

EXAMPLE: FREE PIZZA STOPWATCH

m Hit the stop button at exactly 10 seconds for pizza _, gl

m Two systems: watch and user
m Signals: Start, stop, tooLate, tooEarly, reward

m After the reward, the user shouts “freePizzzzza”

Into the world

m Global variable for coins, 10 coins as reward
m Change model so that a pizza costs 20 coins
m You need to hit the button twice

Use concrete and symbolic simulation

<

THE PERFECT
MOMENT

Youtube screenshot

27

\
Il
£\
5B

F

Il
\\!I

SPECIFICATION LANGUAGE

LOGICAL SPECIFICATIONS

m \alidation Properties
-Possibly: E<>P

m Safety Properties
~Invariant: A[] P
-Pos. Inv.: E[] P

m Liveness Properties
-Eventually: A<>P
~Leadsto: P->0

m Bounded Liveness
-Leads to within: P 2>_ Q

— The expressions P and
Q must be type safe,
side effect free, and
evaluate to a boolean.

— Only references to
Integer variables,
constants, clocks, and
locations are allowed
(and arrays of these).

SY M B O L S '—_:—T—E gﬁDIN-AUSTRIA LABS

LU
Il

exists = there is one path

V = forall = for all paths

O
Il

Always = The whole path

¢ = Eventually = At some point along the path

30

LOGICAL SPECIFICATIONS = saL

m Validation/Reachability
Properties

-Possibly: E<>P

E<>p

31

LOGICAL SPECIFICATIONS =saL

=== SILICON AUSTRIA LABS

©

6

m Safety Properties
~Invariant: A[] P
-Pos. Inv.: E[]] P

©

El]lp

32

LOGICAL SPECIFICATIONS

111}

AL

SILICON AUSTRIA LABS

{{III\\\

m Liveness Properties
~-Eventually: A<> P
~Leadsto: P->0

33

LOGICAL SPECIFICATIONS

m Bounded Liveness
-Leads to within: P = _ Q

34

STOPWATCH EXAMPLE

m Safety: Do debt allowed

~A[] coins >=0

AL

SILICON AUSTRIA LABS

[
il

m Validation/Reachability: We do not cheat

_E<> coins =>10

m Tryitout:

-Can you think of more queries?
-Make some queries that (should) fall

35

QUESTIONS .

=== SILICON AUSTRIA LABS

— What is the difference between an urgent location and an urgent channel?
— What is the difference between a committed and an urgent location?

— What is the difference between location and a state? And why do we care?
— How can | check if a model never reaches a certain state?

— How to check for deadlock freeness?

36

UPPAAL VERIFICATION ENGINE

STATE-SPACE EXPLOSION =saL
PROBLEM

— 10 (11) components with 2 states each
— 2710 = 1024 states
— 21 = 2048 states

— 2 (3/9) components with 10 states each
— 1072 = 100 states
— 1073 = 1000 states
— 1079 = 1000000000 states

H

38

ZONES - FROM INFINITE TO
FINITE

State Symbolic state (set)
(N, x=3.2, y=2.5) (n, 1<x<4,1<y<3)

Zone:

conjunction of
y A y A X-y<=m,
X<=m,
X>=m

XV
Xv

[
il

AL

SILICON AUSTRIA LABS

39

SYMBOLIC TRANSITIONS — e W

l<x=<4 1<x,1<y
y 1<y<3 Y 2<xy<3
delays to
N
x
X

X

y y
C conjuncts to
d

X

projects to

Thus (n, 1<x<4,1<y<3) 5% (m,3 < x, y=0)

40

DIFFERENCE BOUND MATRICES sa.,....

Xo-Xg<=0 [Xg=X;<=-2 |XyX;<=-1

X1 %X<=6 |X;-x;<=0 [X;-X,<=3 xi-xj< =(:ij

X5 X<=5 |X5-X;<=1 |X,-%,<=0

N

Zone

41

DIFFERENCE BOUND MATRICES

Xo-Xg<=0 [Xg=X;<=-2 |Xy-X;<=-1

X1=Xg<=6 |X;-%X;<=0 [X{-X,<=3

X5 Xp<=5 |X5-X;<=3 |X,-%,<=0
A

X2'XI1< =5 ?

Xi-Xj < = Cu

Canonical representation:
All constraints as tight as possible.

Needed for inclusion checking.
— Unique DBM to represent a zone.

== SAL

=== SILICON AUSTRIA LABS

42

SYMBOLIC EXPLORATION = s

y:=0 x:=0 y

y{:z X<=2

y<=2, x>=4 r—— >

e

Reachable?

43

AL

SILICON AUSTRIA LABS

SYMBOLIC EXPLORATION

[
il

y:=0 e x:=0 v 1
y<= W=
y{:zlx}:4 >
X
- ©

Reachable?

44

SYMBOLIC EXPLORATION = s

y:=0 0 x:=0 y

y<= =" /
y{:zl }{}:4 1]] 1 >

e

Reachable?

45

SYMBOLIC EXPLORATION = s

y:=0 0 x:=0 y

y<= <=2 . :
y<=2, x>=4 — >

e

Reachable?

46

AL

SILICON AUSTRIA LABS

SYMBOLIC EXPLORATION

[
il

y:=0 0 x:=0 y
y<= <<=
y<=2, x>=4
X
-0

Reachable?

a7

SYMBOLIC EXPLORATION = s

y:=0 0 x:=0 y
y-:::: =" _

y<=2, x>=4

Reachable?

SYMBOLIC EXPLORATION — e W

= =0

y.=0 0 X y
y-:::: =" _
y<=2, x>=4 L—>

X

Reachable?

AL

SILICON AUSTRIA LABS

SYMBOLIC EXPLORATION

[
il

y:=0 0 x:=0 y
y<= <<=
y<=2, x>=4
X
-0

Reachable?

50

SYMBOLIC EXPLORATION =0

LO

y-::::z X<=2

y<=2, x>=4

L1

DEMO ==sAL
=== SILICON AUSTRIA LABS

Search order,
Clock constraints in simulator
Diagnostic trace

52

FORWARD REACHABILITY
ALGORITHM

Init -> Final ?

/ O\ INITIAL Passed := @;

ﬁNaiting \ Final Waiting := {{Nno 20

REPEAT

UNTIL Waiting =0
return false

\\C)Init Passey /

FORWARD REACHABILITY

ALGORITHM

Init -> Final ?

d

o)

Final

.

INITIAL Passed := (;
Waiting := {(n,,Z,)}

REPEAT
pick (n,Z) in Waiting

UNTIL Waiting =0
return false

== SAL
==— SILICON AUS

FORWARD REACHABILITY

ALGORITHM

Init -> Final ?

d

/

INITIAL Passed := @;
Waiting := {(n,,Z,)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true

UNTIL Waiting =0
return false

[
il

SAL
SILICON AUSTRIA LAB

FORWARD REACHABILITY -
ALGORITHM = Sovsaues

Init -> Final ?

/ O\ INITIAL Passed = O;

ﬁNaiting \ Final Waiting := (o 20

REPEAT
pick (n,Z) in Waiting
O O if (n,Z) = Final return true
for all (n,2)—>(n",Z"):
O if for some (n’,Z"") Z'c Z" continue

Q O Q UNTIL Waiting =0

O return false

\©Init Passed /

56

FORWARD REACHABILITY o
ALGORITHM = Sovsmiaues

Init -> Final ?

/ O\ INITIAL Passed := @;

ﬁNaiting \ Final Waiting := (o 20

REPEAT
Q\./C> pick (n,Z) in Waiting
OO O O if (n,Z) = Final return true
for all (n,2)—>(n",Z"):
O O if for some (n’,Z"") Z'c Z" continue
O O 0 else add (n’,Z") to Waiting

O O OO UNTIL Waiting =0

return false

\©Init Passey /

57

FORWARD REACHABILITY -
ALGORITHM = Sovsaues

Init -> Final ?

/ O\ INITIAL Passed := @,

Waiting := {(ny,Z,)}
ﬁNaiting \ Final
Q O REPEAT
pick (n,Z) in Waiting
OOOO O if (n,Z) = Final return true
for all (n,2)—>(n",Z"):
O O if for some (n’,Z"") Z'c Z" continue
O O else add (n".Z') to Waiting
O move (n,Z) to Passed
O O OO UNTIL Waiting =0
return false

\©Init Passed /

58

FORWARD REACHABILITY -
ALGORITHM v

Init -> Final ?

/ O\ INITIAL Passed := @,

Waiting := {(ny,Z,)}
ﬁNaiting \ Final
Q O REPEAT
pick (n,Z) in Waiting
OOOO O if (n,Z) = Final return true
for all (n,2)—>(n",Z"):
O O if for some (n’,Z"") Z'c Z" continue
O O else add (n".Z') to Waiting
O move (n,Z) to Passed
O O OO UNTIL Waiting =0
return false

\©Init Passed /

59

ZENONESS

m Problem: UPPAAL does not check for zenoness directly.

~A model has “zeno” behavior If it can take an
Infinite amount of actions in finite time.

-That is usually not a desirable behavior In
practice.

-Zeno models may wrongly conclude that some
properties hold though they logically should not.

-Rarely taken into account.

m Solution: Add an observer automata and check for non-zenoness, i.e., that time will
always pass.

ZENONESS = sAL

=== SILICON AUSTRIA LABS

ZenoCheck

x==10
x=0

OK
Detect by A B
x==1 'Cldding the @
@ observer: x<=10

x<1 x=0 x<l Constant (10) can be anything
(>0), but choose it well w.r.t.
your model for efficiency.
Clocks 'x' are local.

-and check the property
ZenoCheck.A --> ZenoCheck.B

61

|
Il
2
5B

F

Il
\\!I

VERIFICATION OPTIONS

AL

SILICON AUSTRIA LABS

VERIFICATION OPTIONS

[
il

Search Order

i [:/Documents and Settings,kgl/Desktop,/KIM/UPPAAL/UPPA Depth First
File Edit Yiew Tools | Options Help Breadth First
Search Order 3 ~ i
J Boa [e e o > State Space Reduction
Editn::rl Simulator Werifiel State Space Representation P None
_ Diagnostic Trace b Conservative

bl Extrapolation b Aggressive

re—— ' F State Space Representation

E[] ({ bodenk =: o peuse odenC =

E<> { (bodenk > 5] || (bodenB > 5) || [bodenC > ¢ DBM

E<> not deadlock Compact For—m

Under Approximation
Over Approximation
Diagnostic Trace
Some

Shortest

Fastest

63

STATE SPACE REDUCTION — e W

However,
Passed list useful for
pa efficiency

O+ 0+—0+0«0¢

No Cycles: Passed list not needed for termination

64

STATE SPACE REDUCTION — e W

Cycles:
Only symbolic states
involving loop-entry points
need to be saved on Passed list

65

TO STORE OR NOT TO STORE =SsAL

]
) Behrmann, Larsen,
) Pelanek 2003

m {ar)
117 states,,, m
! ﬂ L
81 states, iy point m z
!
O states w % o
% \ é{ -
Time OH A
less than 10% | I - m’ﬁ:) T m
@
g%ﬁa @ 5 Audio Protocol

OVER-APPROXIMATION —
=——= SILICON AUSTRIA LABS

TACASO04: An EXACT method performing

as well as Convex Hull has been

developed based on abstractions

taking max constants into account.

67

[
il

UNDER-APPROXIMATION
BITSTATE HASHING

/ PW Q\
ﬁNaiting \ Final

\\ Init Passed /

SAL
SILICON AUSTRIA LABS

== SAL

UNDER-APPROXIMATION == e
BITSTATE HASHING T

/ PW O\

(Waiting "\ Final
Several states

st ; oy

1 bit per
passed state

Under-approx.

O |~ |O |+

N\

'% Inclusion check
o © o \ only with

° 0 waiting states.

\" Init Passey \ “Equality” with
\ / 1 passed.

Bit Array

69

|
Il
2
P

F

Il
\\!I

MODELLING PATTERNS

VARIABLE REDUCTION

m Reduce size of state
space by explicitly
resetting variables when
they are not used!

= Automatically performed
for clock variables (active
clock reduction)

== SAL

=== SILICON AUSTRIA LABS

/S Remove the front slamsnt of the gusaus
fvoicd degueue ()
{
int 1 = 0;
len == 1;
while (i < len)
{
list[i] = list[i + 1];
i++;

} .w

71

VARIABLE REDUCTION = s

m Railway controller

72

SAL

—= SILICON AUSTRIA LABS

VARIABLE REDUCTION

section Id go(int tId){

int pos=position[tId];

bool dir=direction[tId];

if(pos==0 and dir==0) {crash=true; return pos;}

if (pos==0 and dir==1) {if(config Of Points[0]==0) {
if (occupied[1]==0){

occupied[1l]1=1-;

)

[

occupied[0]=0;
return 1;
} elze |
crash = true;
return pos;}
} elze |
if(occupied[2]==0){
occupied[2]=1;
occupied[0]1=0;
return 2;
} else |
crash = true;
return pos;}

}
if(pos==1 and dir==0) {if(occupied[0]==0){
occupied[0]=1;

occupied[1]=0;

return 0;

} elze |

73

CLOCK REDUCTION (AUTOMATIC) =sa, ...

X is only active in location S1

Definition
S X is inactive at S if on all path
O from S, x is always reset before
/ g being tested.
x:=0
X:=0

X< \ x>3

74

THINGS YOU SHOULD KNOW BY
[HE END OF TODAY

111}

AL

SILICON AUSTRIA LABS

{{lll\\\

— What is a Timed Automata?

— How is time treated in a finite way?

— Why do we need both committed and urgent locations?

— How can | check if a model can reach a certain state?

75

PART 2: OTHER UPPAAL
BASED TOOLS

I
il

P
ﬁ
o -
b

AGENDA = saL

TIMES o
Uppaal TIGA

Uppaal CORA

Uppaal PORT

Uppaal cover

Uppaal PRO

Uppaal SMC (a.k.a. Uppaal 4.1.9)

Uppaal Stratego

Uppaal TRON

ECDAR/Jecdar/Hecdar

77

WHY SO MANY TOOLS? = s

This is an academic tool

New experiments require new tools

No publications in merging tools

No funding to hire someone for tool maintenance

Some models may look similar, but cannot be combined

78

TIMES

2002

Disclaimer: | have never used this tool
Same underlying model checking engine
— Very different modeling possibilities
Targeted at

—

— Schedulability analysis

—

— Generating optimal schedules

1)

= SAL

== SILICON AUSTRIA LABS

r
€57 C:\Program Files\Timestool\demo sporadicPeriodic\Controlled+Periodic. xml - Times Tool

Fie Run Options Window Help

|]

(9]

= T S (| oo s screouer pemonc Tasws

PERIODIC_TASKS. START->START

SCHEDULER: RUN_task_A-=ARRIVED task_B

PERIODIC_TASKS: START->START
SCHEDULER:

PERIOOIC_TASKS: START->START

SCHEDULER: RUN_task_A-=ARRIVED task_D

=

Automaton_A.x = 0
Automaton A.y = 0
Aitomaton A.¥ = Automaton K.
i=4

auver = 0

n=0

“ <|m > b
¥_nmamww

SBrver SOrYer e

| | Clocks | Discrete variakies | Utikzntion
Connected to [0cal server (server.axa)

5 WCRT Analysis (%]
Worst Case Response Tines 1
SATISFIED Mee | c | wert | D
— |1 1 3 [
| tazk B 5 8 m o
Ok 'Bt'-wf,w:HT fask_C 10 20 5
— s 2
o e
bask_A
bask_C
4] .|"l_
ing)

79

UPPAAL TIGA

TIGA = Timed Games

—

— Two player games

—

— Controllable and uncontrollable actions

Controller synthesis:

— Model the environment + what a controller can do.

—

— Generate the controller so that controller satisfies ¢!

—

— Generate the right code automatically.

2-player timed game:
environment moves vs. controller moves.
] Timed Game Automata.

Plant

Continuous

Sensors
A

==

== SAL

=== SILICON AUSTRIA LABS

actuators

_,_A

Controller Program

Discrete

80

CONTROLLER SYNTHESIS/TGA =sa.,......

—

Given

e

— System moves S,

—

— Controller moves C,

— and a property o,

find

— a strategy Sc s.t. Sc||S satisfies o,

or prove there is no such strategy.

The controller continuously observes the system (all delays & moves are observable).
The controller can

— wait (delay action),

— take a controllable move, or

— prevent delay by taking a controllable move

81

TIMED GAME AUTOMATA

|

|

|

Timed automata with controllable and uncontrollable transitions.

Reachability & safety games.
— control: A<> TGA.goal
— control: A[] not TGA.L4
Memoryless strategy:

— state - action.

==SAL
=== SILICON AUSTRIA LABS
LO
x<=2 .__ __}{;1__ _>.
y L4
/ X==
x<1)/
’
x=0 ,’
, L1 goal
i
\\ y==7).
I‘x x<1 |
. I
\ |
h I
Moo
Yo
" |
L2 x<=1

L3

82

TGA — LET’S PLAY! L
LO
I:A<>TGAgoal Yoo ___ =

y L4
/ X==
/ :":“:1 ,.rf
x<1l 1A x=0 /
X== . C 0 L1 goal
1' e
'1-.., }{:‘}:2 -
X<2 P A / ‘ox<l |
X=>2 . C H\ :
"lx\ :
I
Strategy |xs1 ¢ — 8) |
L2 x<=1
x<1 A
X== . C

Note: This is one stram L3

There are other solutions.

83

L

ON AUSTRIA LABS

Ut = U(oP) Time Bounded Reachalbility
- (G,T)
22:2':;, ---------- >[Simulation '4*
I1
\ i
maxBest --------- >[Filtering]
l—lf
¥
P -----pe--- >[Learning]
uc’ - e
L h=UE)| i Zonification [
it or z
evalRuns [Determinization] = ﬂ“’
maxNoBetter det (ﬂc r)
maxlterations ---j---------oooooo-- Evaluation } 1 . >
maxResets et(up)

UPPAAL CORA

CORA = Cost Optimal Reachability Analysis
— UPPAAL for Planning and Scheduling
Enables modeling LPTA

— LPTA = Linearly priced timed automata
— Can model e.g. energy consumption

— Discrete costs on edges

— Linear cost accumulating in locations

'cost

— = [

== SAL

=== SILICON AUSTRIA LABS

earliest landing time

target (cruise) landing time
latest landing time

early cost rate

late cost rate

late penalty

UPPAAL SMC

—_—

—

—

—_—

—

Statistical model checking
Now integrated in main UPPAAL
This is really simulation

—

— A LOT of simulation

—

— With a calculated confidence level

State space explosion not a (big) problem
Evaluation of other approaches

Very fast compared to testing

[
il

SILICON AUSTRIA LABS

DELAY

{23 Prltime<=6)i<> P.END} T

53 331, 2011 50908

Uniform

Plot Composer
} 5 Frequency histogram

Pata set: courk

Gmat SO b oo Woteper | @] ohoker | 9 e s 9]

bl densiy

a0
{23 Frequency histogram

Frequency histogram

3 Probabity denst: st
3 Frequency histogram 340

* ot E

* e B

%3 Cumatve distibution mehct | 550
& 331, 2011 50021 e
210)

22

GRS

men &

I orobabiity
] count
[_EXd

B B ECT EEE
DG!FD @QE?\Q LY B
>=D END
x<=5
[EE

Galfl 2¢ A28 R@-iwe

x>=2

END

533 Jen3, 2011 5

Exponential (rate)

Plot Compaser

ata set: oot

praw: Color: [l shape: v | Srcke:

v mox Bas v

o

Frequency histogram

um
3 Fraquency histogram

|7, count

® nem
i {2 Cursudstve dstrbution wth ¢t

i {3 Prabebity density

23 Cumulsbie dstriution

= 3 Frequency histogram
® cnt

 men
& 3 Curmudative dstriaion wth o
13 Jen 31, 2011 S:10:21 PM

£ Protiabiy densiy

23 Cumudstive detriution

=3 Frequency histogrem
* cnt

mem
Cursuiative dstrbution vth o
31, 2011 S16:355M
Brabebiky density
Cumudative dstrbation
Frequency histooram

n

vaale
oousw

urk

i) Curmuiztve dtrbution wth o

S BHHESHBHEE

03 06 09

30033 35 38

a2

45 48 5.1

S+

57

Il robabity
] count
I count

SAL

SILICON AUSTRIA LABS

) C:/Documents and Settings/ke\Deskiop/DESKTOP FEB 2007/UPPAAL/uppaal-4.1.4/demolirai... [= (8K

r| Simulator || Verifier|

File Edit Wew Tools Options Help

LaB@ 2¢ Aa4a K@= >w

Mame: |Train Pararmeters: |c0nst id_tid

(1 +id) : N*N

X>=3
leave[id]!

Safe @:»{

appr[id]!
x=0

Appr
x<=20

x<=10
stop[id]?

go[id]?
x=0

Stop

Cross
x<=5

x>=7
x=0

Start
x<=15

&) C:/Documents and Settings/kelDesktop/DESKTOP FEB 2007/UPPAAL fuppaal-4.1.4ide... [= |[B][X]

[
il

File Edit Yew Tools Options Help
Da@ ¢ Aaa R@=< e
Editor | v || verifier |
~
Train{0) Train(1) Train(2) Train(3)
e s ol Y., i e y, b= g y, B
=, @ 2 = @ v, @ » v, @ | |
S A A
Train(4) Train(5) Gate
- L _—— L L 2
b . 3 g -
; ; @
~ N A
LS L pia A
A
Train{0) Train{1) Train{2) Train{3) Train{d) Train{a) Gate
stopltaili] =~
apprE]
@JE] Stopping
staptaill)] |
[stan] [Stop [oce v

SAL

SILICON AUSTRIA LABS

111}

SAL

SILICON AUSTRIA LABS

QUERIES

— Qualitative Check (Hypothesis Testing) e—
—Pr[time <= 500](<> Train(0).Cross) >= 0.5

—
—_—
—
—
——
—

— Quantitative Check (Estimation)
— Pr[time <= 500](<> Train(5).Cross) ?

— Comparison Test

— Pr[time <= 500](<> Train(5).Cross) >=
Pr[time <= 500](<> Train(0).Cross)

Plo 0 po
|- Probability density

- Prltime <=500]; <> Train(0}, Crass) 7
i =-3 Jan 31, 2011 9:09:02 PM

Set of data sets: | Cumulative distribution

Runs: 5903 in total, 5903 displayed, O remaining,
Prabability sums: 1 displayed, O remaining,
Mean: 94,4763,

=3 Probability density
i |’ \l Train(0)
mean

cumulative
S mean

-2 Frequency histogram

:) Cumulative distribution with confidence
=9 Prtime <= 500]¢ <> Train(5), Cross) 7

(=3 Jan 31, 2011 9:09:02 P

[=-) Probability density

= |7, Train(s)

® mean

2 Cumulative distribution

{1 Frequency histogram

23 Cumulative distribution with confidence

Probability density

Pr[time <= 500](<> Train(5).Cross) ?

Pr[time <= 500](<> Train(0).Cross) ?

Il Train0)
B TrainS)

Ehnnshnt

ol
10 20 30 40 50 &0 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 3: click to view
1

Plot Composer

) Probability density

= Prltime <= 500]{ <> Train(0},Crass) ?

E!E) Jan 31, 2011 9:09:02 PM

=12 Prohahility density

® Train{0)

#® mean

{5 Cumulstive distribution

E] Frequency histogram

{3 Cumulative distribution with confidence

: Qy\ﬁupper 92% bound
upper 954, hound

lowser 95% bound

lower 99% bound
#* mean
=2 Prltime <= 500]{ <> Train(5},Crass) ?

E!E) Jan 31, 2011 9:09:02 PM

=23 Probability density

L L% Train(s)
#® mean
{5 Cumulstive distribution
E] Frequency histogram
=9 Cumulative distribution with confidence
Y upper 99%: bound
P \i upper 95% bound
| 1, cumulative probabilicy
| _‘L loweer 95% bound
lower 99% bound
#* mean

Data set: |cumu|atwe probability

Diraw: Color: [l shape:

Probability density

0.30 7
i
0.25 "
0.20 H
0.15
0.10 #

0.05

- cumulative probability
=1 lower 95% bound
F=3 upper 95% bound
=1 lower 95% bound
F=3 upper 95% bound
EH cumulative probability

10 30 50 70 90 110 130

150 170 190 210 230 250
1

270 290 310 330 350 370 390

[
il

SAL

SILICON AUSTRIA LABS

STRATEGO

Uppaal TIGA Uppaal j AL
strategy NS = control: A<> goal E<>error under NS L “ON AUSTRIA LABS
strategy NS = control: A[] safe A[] safe under NS
G] P i o© Glo
Timed Game synthesis Timed Automata

abstraction

minE(cost) P I GO

Stochastic Priced

4 Uppaal SMC L N

simulate 5 [<=10]{el, e2} under SS
strategy DS = minE (cost) [<=10]: <> done under NS Pr[<=10](<> error) under SS

strategy DS = maxE (gain) [<=10]: <> done under NS/ kE[<=1O;1OO](max: cost) under SS

Stochastic FEEEs
Priced

maxE(gain)

Statistical Learning

>

J

AL

SILICON AUSTRIA LABS

[
il

HOMEWORK:
PACMAN

— Create a network of timed automata

— Ghost and Pacman

— 3x3 grid, starting on opposite ends

— Make the ghost edges not controllable

— Both can stay at most 5 time units on the same field

— Leaving a field can be done after a minimum of 2 time units

— Queries:

— Can Pacman and Ghost be on the same grid?

= Will they always be on different grids?

— Can you make a strategy that lets the Pacman always escape? => if so, simulate via concrete simulator

= Allow pacman to stay for 50 instead of 5 time units, repeat the queries.
— Add a second ghost template (parametrized?)

— Hints: grid as locations or via variables? Either way, having a global variable with the current location makes the query a lot easier.
— You can combine select field and function for guard

— Use the demo folder of UPPAAL to figure out the right syntax of elements ;)
Silicon Austria Labs GmbH 92

SOME EXAMPLES = s

il

Grundfos pump controller

I\

Train station

il

Brick Sorter

I\

RT OS

Silicon Austria Labs GmbH 93

HE FUTURE

v
T
"
=
<
Z
O
O
=
<
=
=
=

	Slide 1: Real Time Model-checking and UPPAAL
	Slide 2: Real Time Model-checking and UPPAAL
	Slide 3: Model Checking
	Slide 4: Properties
	Slide 5: Strengths of Model Checking
	Slide 6: Weaknesses
	Slide 7: Modelling Gap
	Slide 8: State Space explosion
	Slide 9: Real time Systems
	Slide 10: Real time Systems
	Slide 11: Timed AUTOMatA
	Slide 12: Timed AUTOMatA - formal
	Slide 13: UPPAAL - Outline
	Slide 14: GUI - demo
	Slide 15: Notation
	Slide 16: Invariant
	Slide 17: Guard
	Slide 18: Synchronization
	Slide 19: Broadcast channels
	Slide 20: Urgent channels
	Slide 21: Committed location
	Slide 22: Urgent location
	Slide 23: Initial location
	Slide 24: Synchronous Value Passing
	Slide 25: Modelling Language
	Slide 26: Modeling Language
	Slide 27: example: Free Pizza sTOPwatch
	Slide 28: Specification Language
	Slide 29: Logical Specifications
	Slide 30: Symbols
	Slide 31: Logical Specifications
	Slide 32: Logical Specifications
	Slide 33: Logical Specifications
	Slide 34: Logical Specifications
	Slide 35: Stopwatch Example
	Slide 36: Questions
	Slide 37: UPPAAL Verification Engine
	Slide 38: State-space explosion problem
	Slide 39: Zones - From infinite to finite
	Slide 40: Symbolic Transitions
	Slide 41: Difference Bound Matrices
	Slide 42: Difference Bound Matrices
	Slide 43: Symbolic Exploration
	Slide 44: Symbolic Exploration
	Slide 45: Symbolic Exploration
	Slide 46: Symbolic Exploration
	Slide 47: Symbolic Exploration
	Slide 48: Symbolic Exploration
	Slide 49: Symbolic Exploration
	Slide 50: Symbolic Exploration
	Slide 51: Symbolic Exploration
	Slide 52: DEMO
	Slide 53: Forward Reachability Algorithm
	Slide 54: Forward Reachability Algorithm
	Slide 55: Forward Reachability Algorithm
	Slide 56: Forward Reachability Algorithm
	Slide 57: Forward Reachability Algorithm
	Slide 58: Forward Reachability Algorithm
	Slide 59: Forward Reachability Algorithm
	Slide 60: Zenoness
	Slide 61: Zenoness
	Slide 62: Verification Options
	Slide 63: Verification Options
	Slide 64: State Space Reduction
	Slide 65: State Space Reduction
	Slide 66: To Store or Not To Store
	Slide 67: Over-approximation Convex Hull
	Slide 68: Under-approximation Bitstate Hashing
	Slide 69: Under-approximation Bitstate Hashing
	Slide 70: Modelling Patterns
	Slide 71: Variable Reduction
	Slide 72: Variable Reduction
	Slide 73: Variable Reduction
	Slide 74: Clock Reduction (Automatic)‏
	Slide 75: Things you should know by the end of today
	Slide 76: Part 2: Other Uppaal based tools
	Slide 77: Agenda
	Slide 78: Why so many tools?
	Slide 79: TIMES
	Slide 80: Uppaal TIGA
	Slide 81: Controller Synthesis/TGA
	Slide 82: Timed Game Automata
	Slide 83: TGA – Let’s Play!
	Slide 84
	Slide 85: Uppaal CORA
	Slide 86: Uppaal SMC
	Slide 87: Stochastic Semantics of Timed Automata
	Slide 88
	Slide 89: Queries
	Slide 90
	Slide 91
	Slide 92: Homework: Pacman
	Slide 93: Some examples
	Slide 94: Unfold the future

