ISEC flaTU

iI0S Application Security

Mobile Security 2025

Florian Draschbacher
florian.draschbacher@tugraz.at

Some slides based on material by Johannes Feichtner

Outline

e App Internals

— Application Format
— Sandbox
— Code Signing

e App Distribution

e App-Level Security oniOS
e i0S Malware & Jailbreaking

e App Analysis on iOS

Malware With Screen Reading Code Found in iOS Apps for the First Time

Wednesday February 5, 2025 11:47 am PST by Juli Clover

Malware that includes code for reading the contents of screenshots has been found in suspicious
App Store apps for the first time, according to a report from Kaspersky.

Dubbed "SparkCat," the malware includes OCR capabilities for sussing out sensitive information
that an iPhone user has taken a screenshot of. The apps that Kaspersky discovered are aimed at
locating recovery phrases for crypto wallets, which would allow attackers to steal bitcoin and other
cryptocurrency.

The apps include a malicious module that uses an OCR plug-in created with Google's ML Kit library
to recognize text found inside images on an iPhone. When a relevant image of a crypto wallet is
located, it is sent to a server accessed by the attacker.

Source: https//www macrumaors.com

What?

Apps requested access to photo library
e Tried to find screenshots
e Used OCR to extract text
e Looked for
— crypto wallet credentials
— Other passwords
e Sentinfo back to server

Problems?

e Users agree on access to photo library
for different purposes

— Requested for in-app “chat support”
e Even App Store review process did not
detect the malware

T

Grazm

ISEC

https://www.macrumors.com/2025/02/05/ocr-malware-app-store/

Application Security

Even on a perfectly hardened platform
e Malicious applications may compromise sensitive data
e Insecure applications can open doors to attackers!

iOS platform limits potential attack surface to a minimum
e Code Signing
e Sandboxing

App developers need to
e Submit applications to Apple for review before publishing
e Follow security guidelines

Application Security

From Apple’'s Developer Documentation:

“The most important thing to understand about security is that it is not a bullet point item.
You cannot bolt it on at the end of the development process. You must consciously design
security into your app or service from the very beginning, and make it a conscious part of the

entire process from design through implementation, testing, and release.”

The App's responsibility for securing data

Your app
fe Y Y
Trusted data
Check validity and
: read data safely
Potentially
untrusted data I
and services
Authenticate recipient and (3)
use secure channel
Q J ‘
. \

I ¥ boundary of trust

Source: apple com |SEC -EU

razm

https://developer.apple.com/library/archive/documentation/Security/Conceptual/Security_Overview/Introduction/Introduction.html

App Internals

App Files

e Distributed in (“iOS App Store Package”)
e ZIP archive with all code + resources

$ unzip SuperPassword.ipa -d mobsecdemo
$ 1s -R mobsecdemo/

/Payload/SuperPassword.app/ App itself + static resources

-> SuperPassword Binary executable (ARM-compiled code)

-> Info.plist Bundle ID, version number, app name to display

-> MainWindow.nib Default interface to load when app is started

-> Settings.bundle App-specific preferences for system settings

-> _CodeSignature Signatures of resource files

-> further resources Language files, images, sounds, more GUI layouts (nib)
/iTunesArtwork 512x512 pixel PNG image -> app icon
/iTunesMetadata.plist Developer name + ID, bundle identifier,

copyright information, etc.

1VkWV -
T Grazm

FairPlay DRM o e asn oy 01"

e The executable binary inside the IPA file is DRM-protected
— Encrypted using Apple’s FairPlay DRM scheme

e At runtime, it is transparenly decrypted by the kernel
— Apple Protect Pager: Transparenly decrypts file when mapping into memory
— FairPlay DRM system is heavily obfuscated and only partly reverse-engineered

e Encryption is carried out by Apple, and only affects some distribution ways
— Most notably: App Store distribution

e DRM can be removed by using a Jailbroken device
— Dump the application’s memory at runtime

Sources: J_Levin *0S Internals’, Junzhi [1 et al - "Plav with Fire: Uncover FairPlay DRM and Obfuscation for Fun and Profit”

http://newosxbook.com/index.php
https://github.com/pwn0rz/fairplay_research/blob/master/slides/bh20-arsenal-fairplay.pdf

I __TEXT Segment
i0S Executables TEXT Segnen
e Binaries are in Mach-0 format (once decrypted) l

e Contains segments of one or multiple sections __text Section

— Header Executable Code

= Architecture

__DATA Segment

» Load Commands e
e Virtual Memory Layout __objc_

e Libraries Runtime Info

e Encryption

— Data _DATA_CONST B39
= Executable code __const

= Read / write data Read-Only Data

= Objective C runtime information
» Code Signature __LINKEDIT segment m

Dyld Information .
Code Signature

Source: J_Levin *08S Internals’, ISEC

T

Grazm

http://newosxbook.com/index.php

App Installation

e The application and its data are spread across multiple file system locations

— /private/var/mobile/Containers/Bundle/Application/<APP UUID>/
= Extracted IPA contents

— /private/var/mobile/Containers/Data/Application/<CONTAINER UUID>/
= User-generated app data. Container UUID changes with every new launch.

= Subfolder ,Library“: Cookies, caches, preferences, configuration files (plist)
= Subfolder ,tmp"“: Temp files for current app launch only (not persisted)
= Subfolder ,Documents”: Visible through iTunes File Sharing and Files app (if enabled)

— /private/var/mobile/Containers/Shared/AppGroup/<APP UUID>/
= To share with other apps & extensions of same app group

T

Grazm

Source: J_Levin *08S Internals’, ISEC

http://newosxbook.com/index.php

Application
Sandbox

e oy

Application Sandbox

e |solate apps from each other and the system
— Restricts resource access and system integration of third-party applications
— App must hold Entitlements for advanced interactions with system
— Apps may request access to some system-wide data by asking user permission

e Limits file system access to app’s container
— /var/mobile/Containers

e Disallows most system calls
— Prevent sandbox escape

Source: J_Levin *0S Internals’

http://newosxbook.com/index.php

Recall: Mandatory Access Control (MACF)

e Various hooks scattered throughout syscall implementations in kernel

e Hooks call out to Policy Modules for checking if operation permitted

e Foundation for central iOS security features

— Code Signing Policy Module: AppleMobileFilelntegrity.kext
— Sandbox Policy Module: Sandbox.kext

Source: J_Levin *0S Internals’

Picture: Google / Apache 2.0

https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html
http://newosxbook.com/index.php

Sandbox.kext

MACF Policy Module that implements the application sandbox

e Can be configured through Profiles
— Compiled from proprietary Sandbox Profile Language (SBPL)
— Specifies what is allowed and what not
— i0S only supports profiles hard-coded into the kernel extension

— Dynamically extended
= Depending on user-granted access (e.g. Media Library)
= Depending on app entitlements

e Profiles enforced in hooks of > 100 system calls

Source: J_Levin *0S Internals’

http://newosxbook.com/index.php

Code Signing

ISECHiaTU

Code Signing

All code executed on iOS must be signed
e Protects the integrity of applications

e Ensures that Apple had a chance to screen developer and/or application
e Signature also contains and protects app entitlements

e Exceptions for some Apple apps

— Holding a special entitlement (discussed later)
— E.g. Javascript JIT in Safari

e Exceptions for apps controlled by a debugger
— Development!

Source: J_Levin *08S Internals’,

http://newosxbook.com/index.php

Entitlements

e Define degree to which application can integrate and interact with system
e Enforced by kernel and system before sensitive operations
e Granted by Apple to the developer for a specific app

e More than 6200 entitlements defined throughout subsystems on iOS 18
— Only a fraction are officially documented and allowed to normal third-party apps

9TO5Mac v ODf : o Q THE VERGE TECHSPOT 2 0Q

. TECH SCIENCE MORE TRENDING FEATURES REVIEWS THEBEST DOWNLOADS VIDEO
Exclusives Store Guides ~ Mac ~ iPhone ~ »

Pr— A I I t .d SOFTWARE APFLE
tpp e nowlets S;me Vi tzo Apple granted Uber's iOS app an
Apps can request access fo more streaming apps Dypass the entitlement that allowed it to record
RAM with iOS 15 entitlement, App Store cut uSers' screens
gxqeedlng normal SySTem memaory Amazon Prime Video was the latest to enter into The feature is now being removed
|Im|1.s the program earﬁer today By Rob Thubron October 6, 2017, 11:24 AM
Benjamin Mayo - Jun. 25th 2021 313 am PT W By Nick Statt | @nickstatt | Apr 1, 2020, 7:29pm EDT -
Source: 9tobmac com Source: theverge com Source: techspot.com
Sources: J._Levin:*QS Internals’, newosxbook.com ISEC T

Grazm

http://newosxbook.com/index.php
http://newosxbook.com/ent.jl?osVer=iOS15.2&p=possess
https://www.techspot.com/news/71289-apple-granted-uber-ios-app-entitlement-allowed-record.html
https://www.theverge.com/2020/4/1/21203630/apple-amazon-prime-video-ios-app-store-cut-exempt-program-deal
https://9to5mac.com/2021/06/25/apps-can-request-access-to-more-ram-with-ios-15-entitlement-exceeding-normal-system-memory-limits/

Code Signatures

e [Two parts

— Application Seal: _CodeSignature/CodeResources: Hashes of all resources
— Embedded Signature: Actual code signature

The Embedded Signature
e Storedin __ LINKEDIT segment of the MACH-O binary
e Consists of Codesigning Blobs:
— Entitlements Blob: List of app’s entitlements
— Requirements Blob: Specify rules for validating the app signature

— Code Directory Blob: Hash of code pages, App Seal and Codesigning Blobs
— Signature Blob: Signs all these hashes

Sources: J Levin *0S Internals’, Umang Raghuvanshi: "A Deep Dive into I0S Code Signing” ISEC#I&!.

http://newosxbook.com/index.php
https://blog.umangis.me/a-deep-dive-into-ios-code-signing/

Code Signatures

Code Signature forms a signed tree of hashes, rooted at Apple CA certificate

| J - | |

Code Page n Info.plist CodeResources

Code Page 1

Code Directory

Signature Blob
App Store Deployment

Apple iPhone OS Application Signing

Apple Root CA T

Grazm

ISEC

Code Signature Enforcement

But how is it implemented?

Before starting a process (in the exec system call)
e Kernel extracts the Code Signature from the binary
e Stores it in special Unified Buffer Cache

On page faults
e Handler checks whether page belongs to a code-signed object

e Requests MACF policies to validate the signature of the page
— AppleMobileFileIntegrity.kext!

Source: J_Levin *0S [nternals’

http://newosxbook.com/index.php

AppleMobileFilelntegrity.kext (AMFI)

e Basic validation of Code Signature format and hashes

e Check CodeDirectory Hash (CDHash) against Trust Cache
— Preinstalled system applications

e Third-party apps: pass to user-space amfid daemon
— Don't parse complex signature format in kernel

e Also hooks into mmap and mprotect system calls
— Ensure requested memory protections do not allow execution

Source: J_Levin *0S [nternals’

http://newosxbook.com/index.php

AMFI Userspace Daemon (amfid)

e Enforces rules from Requirements Blob

e |nspects certificate chain in the Signature Blob
— Complex PKI parsing

e Queries installed Provisioning Profiles
— To complete chain from Developer Certificate to Apple CA

e This is the weakest point in Code Signing Enforcement
— Most jailbreaks manipulate amfid to circumvent code signing

Source: J_Levin *0S [nternals’

http://newosxbook.com/index.php

Entitlements Vulnerability ¢rcnic papers

e A vulnerability in i0S <13.5 enabled apps to gain arbitrary entitlements
e Exploited differences between XML parsers in kernel and user space

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertylList-1.0.dtd">
<plist version="1.0">

<dict>

<I-- these aren't the droids you're looking for --> User Space (amfid):

S

<key>platform-application</key> No entitlements

<true/>

<key>com.apple.private.security.no-container</key> .

<true/> Kernel (AMFI.kext):

<key>task for_pid-allow</key> task_for_pid-allow: true

jrue/: platform-application: true
</dict> com.apple.private.security.no-container: true
</plist>

T

Grazm

Source: blog siguzacom ISEC

https://blog.siguza.net/psychicpaper/

App Distribution

Application Sideloading (Only in EU!)

e The EU’s Digital Markets Act (DMA) forced Apple to allow app sideloading
— Install apps from sources other than Apple App Store (web sites, 3rd party stores)
— Apple’'s DMA compliance still is questionable

e 3rd Party App Stores
— Operators pay a fee of 0.5€ per app store installation / update
— Developers pay a Core Technology Fee of 0.5€ per app installation / update
= For apps that generate some revenue
— Distributed apps still need to be notarized by Apple

e Web Distribution
— Core Technology Fee and Notarization required

Source: applecom

https://developer.apple.com/support/dma-and-apps-in-the-eu

Distribution Options

e Apple tightly restricts the possibilities for installing software on iOS
— Jailbroken devices: Code signing usually disabled

Distribution Developer Account Notarization / Review Devices

App Store (Apple or 3rd party) or Web | Paid (995/yr) Yes All

TestFlight Paid (995/yr) Yes (if public beta test) Limited

Enterprise Enterprise (*) (2095/yr) No All that have Provisioning Profile
Development / Ad-Hoc Free No Limited, Preregistered

(*) Eligible only companies of more than 100 employees, for in-house distribution of proprietary software

T

Grazm

Source: applecom |SEC

https://developer.apple.com/distribute/

Provisioning Profiles

e Apps that do not go through a notarization process cannot be signed by Apple
— Developers sign them using a Development Certificate issued by Apple

e How to restrict the power of this development certificate?
— Restrict it to certain application, devices, entitlements

e How?
— Provisioning Profiles

Source: J_Levin *0S Internals’

http://newosxbook.com/index.php

Provisioning Profile

e Link between developer certificate and Apple CA
— Must be installed on the device (may be embedded in IPA)

— Only needed for development and enterprise distribution
= Others: Signed by Apple after review

e (Contains:
— Application Identifier: Dev. Certificate can only sign specified app
— Device UDIDs: Profile may only be installed on specified devices
— Entitlement Restrictions: The entitlements a signed app may have at most
— Developer Certificate: The corresponding private part signs the application

e Signed and issued by Apple

Source: J_Levin *0S Internals’ |SEC ﬁ-lgg_

http://newosxbook.com/index.php

Provisioning Profile (oot) o [e |

[Code Page 1] [Code Page n] [Info.plist] [CodeResources]
— W
Code Directory

\ J

L

Signature Blob

\ S

Developer
Certificate

Development or Enterprise
Deployment

Provisioning Profile

Apple Root CA

T

Grazm

ISEC

Application Signing

Web / App Store Distribution:

Apple
Deployment Certificate Developer signs app hrough AppStore Review

Connect

Apple signature

Web /
App Store

Replaces developer
signature

Development Distribution:

Apple issues

. Install Provisionin .
Development Certificate & Developer signs app Profile on Devic eg Install App on Device
Provisioning Profile

Please note the key pair for the development and deployment certificates must be supplied by the developer in both cases
Signing an app involves using the private key for the development/deployment certificate.

ISEC T

Grazm

App Notarization vs. App Store Review

e Any apps published to unlimited devices need to be notarized by Apple

e Screened for
— Content: No user deception, lawfulness
— Functionality: No malfunction
— Privacy & Security: No vulnerabilities or malicious behavior

e For publication to Apple's App Store, apps need to follow further rules
— Content: No nudity, intellectual property, ...
— Monetization: Only Apple’s In-App-Purchase framework is allowed
— Quality: Bad user feedback might lead to rejection

Source: apple com

https://developer.apple.com/app-store/review/guidelines/

RGView / NOtarization “On average, 90% of apps are reviewed in 24

hours.”

Process:
1. Developer uploads app
2. Enter queue for review (on re-upload: back to start)
3. Afterreview
— On reject: Notification with reason

Source: apple.com

— On success: App release

+ Quality control and nearly no evil apps
- Not possible to fix bugs / security issues quickly (2 expedited reviews / yr)

e Used to be a very opaque process
— Some details (App Review process back then) leaked during Apple vs Epic lawsuit

ISEcgiaTU

https://developer.apple.com/app-store/review/

App Review Process

(Much of this also applies to App Notarization)

° - e | .
Multiple steps | LT

T

VAARTAR]
M —— 1

e Automated Static Analysis
— Analyse application binary

Dynamic Analysis

e Automated Dynamic Analysis
— Detect runtime behavior using random user input

Source: Epic vs Apple: Testimony of Trystan Kosmynka

e Manual Reviews
— Manually check for guideline violations

Manual Analysis

ISEC T

Grazm

https://app.box.com/s/6b9wmjvr582c95uzma1136exumk6p989/file/808222509408

App Rewew Process: Dynamic Analysis

a PX-0335 (Redacted). pdf

Details

File properties

SPI Network
Crash Logs Memory
CPU File System Access
Battery Usage iCloud Usage
IDFA Usage canOpenURL
Link Analysis Text Analysis
Screenshot Recording AV Recording
Ul Testing Access Photos
Location Services Access Contacts
Access Microphone Access Bluetooth
Access Camera Access Health
Access HomeKit Access Motion & Fitness
- Use Apple Pay Use |AP

Functionality® Safety® Diagnostics © User Experienc. Input

4.2 MB

Display a menu
& play

https://app.box.com/s/6b9wmjvr582c95uzma1136exumk6p989/file/808238598087?sb=/details

 App Review Process: Static Analysis

Static Signature

Screenshots e viow 1.0 Static Signature
IAP Description '

Size Keywords
Name Localizations |||

What's New Static Analysis
Entitlements RDiff
Assembly Analysis Strings

https://app.box.com/s/6b9wmjvr582c95uzma1136exumk6p989/file/808238598087?sb=/details

App Review Process: Manual Analysis

e More than 500 people review 100,000 apps per week

e Process is assisted by automation
— E.g. automatically identifying changes in app updates

e Decisions regarding high-profile apps may be overruled by ERB

— Executive Review Board
= Phil Schiller, VP of Marketing at Apple

Sources: 9tobmac.com, cnbc.com

https://9to5mac.com/2021/05/07/app-store-review-process-has-over-500-human-experts-less-than-1-of-rejections-are-appealed/
https://www.cnbc.com/2019/06/21/how-apples-app-review-process-for-the-app-store-works.html

9:41 ull ¥ (@)

£ Privacy App Privacy Report ﬁ

App Privacy Report records data and sensor access,
app and website network activity, and the most
frequently contacted domains. Learn more...

DATA & SENSOR ACCESS

& Photos

56 sec. ago - Contacts, Media Library and 1...

Messages
1 hr. ago - Contacts

New District Museum
5 hrs. ago - Camera and Location

GameDev Dojo

2 days ago + Location

Veggiscape

2 days ago - Location

Show All

These apps accessed your data or sensors in the
past 7 days.

APP NETWORK ACTIVITY

m New District Museum

& Trio Ceramics
&

D Veggiscape

Privacy Report

I0S Privacy Features

e iOS dynamically analyses apps
— During runtime

e Developers are required to
disclose data processing
— Scope
— Purpose

e Developers not always honest

— Xiao et al: Lalaine: Measuring and Characterizing Non-
Compliance of Apple Privacy Labels, Usenix Security
2023

App Privacy Nutrition Labels

3:219 Y
< Back g otk GET
App Privacy See Details

The developer, Roblox Corporation, indicated
that the app’s privacy practices may include
handling of data as described below. For more
information, see the developer's privacy policy.

(P
“
Data Used to Track You

The following data may be used to track
you across apps and websites owned by
other companies:

. Purchases @ User Content

B8 Identifiers sl Usage Data

®

Data Linked to You

The following data may be collected and
linked to your identity:

@ Purchases < Location

0 Contact Info @ User Content

@ search History BB [dentifiers

a8l Usage Data Q Diagnostics

£

Privacy practic mple, based

ISEC

T

Grazm

App Distribution: Future

e Several ongoing investigations

e EU investigates sideloading restrictions
— Core Technology Fee
— Paid developer account
— Notarization

e In 2025, Apple was fined for breaching DMA

— Prevented developers from informing about
offers outside of Apple App Store

Sources: macrumars.com, palitico ey

= (@ MacRumors

= POLITICO

@ Home Latestnews EU-USrelations WarinUkraine R«

NEWS > COMPETITION AND INDUSTRIAL POLICY

EU fines Apple €500M and
Meta €200M for breaking
Europe’s digital rules

The highly anticipated penalties are the first to be
issued under the bloc’s Digital Markets Act.

The European Commission issued the first fines
under its Digital Markets Act on Wednesday,
slapping tech giants Apple and Meta with penalties

for breaching the EU’s new digital rulebook.

Apple faces a €500 million fine for breaching the
regulation’s rules for app stores, while Meta drew a

Markets Act (DMA)
s based on
ed on Tuesday.

mission's Executive

le's introduction of

tial attempt to
tores.

[rest in, for

ill de facto not

benefits of the
P investigating, "

ISEC

T

Grazm

https://www.macrumors.com/2024/05/02/ipados-eu-app-changes-fall/
https://www.politico.eu/article/eu-fines-apple-meta-breaking-europe-digital-markets-act-dma/

App-Level
Security

Location Services O

Location Services uses crowd-sourced Wi-Fi hotspot locations to determine your approximate

[[[J
I P e r m I s s I o n s location. About Location Services & Privacy...

App Store

e Users can grant certain permissions BusBahnBim 7
— Apps show permission dialog at runtime B Camera " @
Maps

_ﬁé OBB Scotty

e Can be revoked in app settings & soor

Sir O
e Workflow 09 weatte
— First APl access: Request user permission €3 veather-
@ FindMyiPad on

— Further API access:
Refer to saved permission state

System Services

Note: Only way to remove Internet access for app
—> Turn off your WiFi / LTE connection...

T

Grazm

ISEC

1I0S Permissions

e Apps do not directly (statically) request permissions
— Developers do not have to specify which they want to use
— Depending on use of sensitive APIs

e Example: App wants to access user's contacts Ciater Wodla Lias
— App calls method from CNContactStore class i ocess Your Gontacts
This allows Cluster to let you choose
— Since i0S 10: Apps must present description which mmi ;oa Iig:i:sto shared
how requested data is used
— APl access blocked until permission granted / denied Don't Allow

e Sensitive APIs

Contacts, Microphone, Calendar, Camera, Reminders, Photos, Health, Motion Activity & Fitness,
Speech Recognition, Location Services, Bluetooth Sharing, Media Library, Social Media Accounts

ISEC T

Grazm

i0S Cryptography APIs

e CommonCrypto
— Low-level C library for symmetric encryption, message digests, KDF, HMAC

e CryptoKit

— High-level Swift library for asymmetric & symmetric crypto, MAC, digests

e Security Framework
— Low-level C library for cryptographically secure random numbers

e Network Framework
— Low-level Swift library for TLS (and TCP, UDP)

e URLSession AP
— High-level ObjC/Swift library for HTTPS (and HTTP, FTP, ...)

Source: developerapple.com

https://developer.apple.com/documentation/technologies

App Transport Security (ATS)

e Requires that all URLSession requests are made over HTTPS (instead of HTTP)
— And that the connection employs modern TLS standards

e Configurable in Info.plist dictionary
— Specify exceptions
= For specific domains
= For specific contents (e.g. for Media)
— Exceptions must be justified for App Review!

Certificate Pinning or Self-Signed Certificates still relatively difficult!

Source: developerapple com ISEC ﬂ'lgg.

https://developer.apple.com/documentation/security/preventing_insecure_network_connections

i0S Malware &
Jailbreaking

e oy

Malware?

e Advanced protections
— Code Signing
— Sandbox

e Reduced attack surface - stripped down OS

— Lots of useful binaries missing, e.g. no /bin/sh - no ,shell” code ®
— Evenif shell 2 no 1s, rm, ps, etc.

e Privilege separation
— Most processes run as user ,mobile”
= Mobile Safari, Mobile Mail, Springboard, etc
— Many resources require root privileges

Wirelurker Malware (2014)

e Maiyadi App Store
— 3rd Party Mac AppStore in China
— Hosts ,free” apps
e Code signatures can be disabled on macOS

1. macOS infection

2. App installed via cable on iPhone,
signed with enterprise app store cert
(User has to trust Provisioning Profile!)

Source: paloaltonetworks com

Trojanize Mac
Application

Upload to 3+
Party App Store

User Downloads

& Runs Mac App Check for Updates

Communicate Mac App Drops & |
with C2 Server Installs Files

Download i0S Monitor USB for Download New
Apps i0S Connections Code

Exfiltrate Device
Information

Backup Specific 10S Device
10S Apps Infection

Trojanize i0S Exfiltrate User
Apps Data

Source: paloaltonetworks com

T

Grazm

ISEC

https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/reports/Unit_42/unit42-wirelurker.pdf
https://www.paloaltonetworks.com/content/dam/pan/en_US/assets/pdf/reports/Unit_42/unit42-wirelurker.pdf

XcodeGhost (2015) @Mackumors = ° ©

Apple Studio Display Mac Studio iPh

e Maliciously modified version of the Xcode compiler

"XcodeGhost' Malware Attack in
2015 Impacted 128 Million 10S

o Added badeoorS 1) appS dunng Comp||at|on Users, According to Trial Documents
e Particularly wide-spread in Chinese applications Cloyar 7 202t % pm DTV A

Back in 2015, a malware-infected version
of Xcode began circulating in China, and
malware-ridden "XcodeGhost" apps made

e Infected applications could be remotely controlled their way into Apple’s App Store and past
. . . the App Store review team.
— Steal device information

— Hijack opening of URLs A XcodeGhost

® Affected more than ’I 28 ml”ion users There were more than 50 known infected

i0S apps at the time, including major apps

.) . . like WeChat, NetEase, and Didi Taxi, with
— According to Apple’s estimation Up to 500 milion [0 users potentially
impacted. It's been a long time since the
XcodeGhost attack, but Apple's trial with
Epic is surfacing new details.

Source: macrumaors com

T

Grazm

Source: paloaltonetworks com ISEC

https://www.macrumors.com/2021/05/07/xcodeghost-malware-2015-128-million-ios-users/
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/

Pegasus (2016-now)

e Spyware exploits zero-click vulnerabilities for essentially jailbreaking device
— Location tracking
— Application monitoring
— Intercepting messages
— Recording calls

e Sold by NSO Group to nation state actors for surveiling suspects
— Also used by some authoritarian governments against political opponents

e Supports very recent iOS versions (Documented: up to iOS 16, likely higher!)

Sources: OOOO\G‘DFO\'@CT ero b|OOSpOT com, ice com, amnesty.org ISEC ﬂTU
Grazm

https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html
https://www.vice.com/en/article/8899nz/nso-group-pitched-phone-hacking-tech-american-police
https://www.amnesty.org/en/latest/research/2021/07/forensic-methodology-report-how-to-catch-nso-groups-pegasus/

munkschool & s RESEARCH NEWS ABOUT — Q

Research »> Targeted Threats

Triple Threat

NSO Group’s Pegasus Spyware Returns in 2022
with a Trio of i0S 15 and i0S 16 Zero-Click Exploit
Chains

By Bill Marczak, John Scott-Railton, Bahr Abdul Razzak, and Ron Deibert April 18, 2023

Key Findings

e In 2022, the Citizen Lab gained extensive forensic visibility into new NSO Group exploit
activity after finding infections among members of Mexico’s civil society, including two
human rights defenders from Centro PRODH, which represents victims of military
abuses in Mexico.

e Ourensuing investigation led us to conclude that, in 2022, NSO Group customers
widely deployed at least three i0S 15 and i0S 16 zero-click exploit chains against civil
society targets around the world.

e NSO Group’s third and final known 2022 i0S zero-click, which we call
“PWNYOURHOME," was deployed against i0OS 15 and i0S 16 starting in October 2022. It
appears to be a novel two-step zero-click exploit, with each step targeting a different
process on the iPhone. The first step targets HomeKit, and the second step targets
iMessage. TU

Source: citizenlab ca

Grazm

https://citizenlab.ca/2023/04/nso-groups-pegasus-spyware-returns-in-2022/

Jailbreak

All third-party applications on iOS are jailed

e Must be signed by Apple (or Apple-approved developer)
e Restricted to very few syscalls

e Can only access its own data container

We want to use the device to its full potential
e Run arbitrary unsigned apps

e Use all syscalls, access full file system, ...
e Example: Run Emulator with JIT

How?

e We sneak out of the jail and open the doors for others to escape
Source: J_levin *0S Internals’ ISEC#I}&L

http://newosxbook.com/index.php

Jailbreak Variants

e Untethered Jailbreak

— Persists across reboots

— Hardest to achieve
e Tethered Jailbreak

— Requires USB connection to host for rebooting

— Jailbreak is accomplished by manipulating the USB stack of BootROM or iBoot
e Semitethered Jailbreak

— Manually run app on device after reboot

— Bootstrap re-jailbreaking from a normal sandboxed app

Source: J_Levin *0S Internals’

http://newosxbook.com/index.php

Jailbreaking: General procedure

1. Run code on device

— Install enterprise app or exploit built-in app or exploit Lockdown (iTunes) services
2. Bypass code signing

— Run any code we need
3. Escape Sandbox

— Execute arbitrary syscalls, access full file system

— Exploit unprotected built-in service or allowed kernel interface
4. Elevate privileges

— Obtain root access to modify system files or other processes
5. Kernel patching

— Disable AMFI and Sandbox for other processes

Source: J_Levin *0S Internals’

http://newosxbook.com/index.php

From code execution to kernel

e Usually involves exploiting multiple vulnerabilities
— In built-in services or kernel interfaces

e Hindered by code signing!
— Use Return Oriented Programming (ROP) to chain gadgets of existing functions

e Additional challenge posed by Pointer Authentication (Apple A12+)
— Pointers are signed to prevent modifications

Sources: J Levin *0S Internals’, googleprojectzero blogspot.com

http://newosxbook.com/index.php
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html

Kernel Patching

Kernel Address Space Layout Randomization (KASLR)
Problem: Kernel loaded at different random offsets for each boot

Solution: Find patch targets by scanning kernel memory
— Look for unique instruction sequences or strings

Kernel Patch Protection (KPP)
Problem: Program in protection level EL3 checks for kernel modifications

Solution: Quickly patch and unpatch between checks
— Obtain task port for kernel_task (tfp0)

Kernel Text Readonly Region (KTRR)
Problem: Modern chips catch write attempts to protected kernel pages in HW

Solution: Attack before KTRR is set up (iBoot) or find r/w kernel struct |3EcﬂTGrng_

Sources: J_levin- ™08 Internals’, blog siguzanet

http://newosxbook.com/index.php
https://blog.siguza.net/KTRR/

Full Jailbreak Writeup

e Full jailbreaks are complex to find and take years of experience
— The more countermeasures, the harder it gets

e For the interested: Have a look at the early modern jailbreaks

— EvasiOn:
= j0S 6 Jailbreak (2013)
= The first to deal with KASLR
= Source Code Released in 2017 source giuncom
= Writeups for User Space source wwwacoivant cor
= And Kernel Patches source biogazimutnsecurity com

https://github.com/OpenJailbreak/evasi0n6
https://web.archive.org/web/20160312083132/http:/www.accuvant.com/blog/evasi0n-jailbreaks-userland-component
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html

i0S App Analysis

Application Analysis

—> Traditionally two approaches
— Dynamic Analysis: Monitor live file access using jailbroken device

— Static Analysis: Look for file API calls + parameters in binary dump
= Still needs jailbroken device to obtain decrypted application binary

Challenge?

e iOS apps are compiled down to native code
— Analysis on disassembly, e.g. using Ghidra or Hopper
— Compilation removes high-level information

— Still, the dynamic nature of Objective-C is helpful here!
= Swift is a little more difficult to reverse!

Case Study: Viber

Viber Messenger: Chats & Calls
Message with Confidence
Viber Media SARL.

#30 in Social Networking

*Rx A kK 4.6 321.5K Ratings

Free - Offers In-App Purchases

Source: apps.apple.com

Objective-C Selectors Visible!

-[VIBEncryptionContext initWithContext:]
-[VIBEncryptionContext context]

-[VIBEncryptionContext params]

-[VIBEncryptionContext setParams:]

-[VIBEncryptionContext .cxx_destruct]
-[VIBEncryptionManager initWithlInjector:]
-[VIBEncryptionManager dealloc]

-[VIBEncryptionManager checkEncryptionAbilityForAttachment:completion:]
-[VIBEncryptionManager checkEncryptionForConversation:completion:]
-[VIBEncryptionManager beginEncryptionWithContext:]
-[VIBEncryptionManager encryptData:length:withContext:]
-[VIBEncryptionManager endEncryptionWithContext:]
-[VIBEncryptionManager popEncryptionParamsForContext:]
-[VIBEncryptionManager encryptData:encryptionKey:]
-[VIBEncryptionManager calculateMD5ForAttachment:]
-[VIBEncryptionManager decryptAttachment:completion:]
-[VIBEncryptionManager decryptData:withEncryptionParams:]
-[VIBEncryptionManager decryptFile:withEncryptionParams:]
-[VIBEncryptionManager handleSecureStateChanged:]
-[VIBEncryptionManager supportedMediaTypes]
-[VIBEncryptionManager .cxx_destruct]

T

Grazm

ISEC

https://apps.apple.com/us/app/viber-messenger-chats-calls/id382617920

peec32fa
pRe632fc
PPe63300
00063304
pPB63306
20863308
BPe6330a
P0B6338¢
pP863310
200863312
pOR63316
200863318
pPe6331a
2006331e
peR63322
20863324
POR63328
0863323
BRA6332e
0863330
BeR63334
20063338
pee6333a
PPB6333¢C
pBA6333e
p0a6334e
pPe63344
PRR63346
pRB6334a
PRA6334¢
pPR6334e
PP063352
PRA63356
22063358
BPB6335¢
pP86335¢
PRR63362
PPR63364
30863368
P906336¢C
2006336e
PRR63370
20863372

Case Study: Viber

rd, [5p, #0x100 + var_100)

str
movw
movt
mov
add
mov
mov
blx
mov
blx
str
mov
blx
ldr.w
mov
blx
mov
blx
str
movw
movt
mov
add
mov
mov
blx
mov
blx
str
mov

dr.w
mov
blx
mov
blx
str
movw
movt
mov
add
mov
mov

r2,
rz,
ri,
r2,
r3,

re,

#0x412e
#0xd9
6

pc
8

imp___picsymbolstubd__objc_msgSend

imp___picsymbolstubd4__objc_retainAutoreleasedRetur
re, [sp, #0x1e® + var_(8]

r5

@"Viber can not verify this number. This may be the result of an error or a breach.\\nPlease verify %@ agai
@"Viber can not verify this number. This may be the result of an error or 3 breach.\\nPlease verify %@ agai
arguaent #2 for method imp__ _picsymbolstubd__objc_msgSend

@"Viber can not verify this number. This may be the result of an error or a breach.\\nPlease verify %@ agai

.
’
.
’
.
’
.
'

Method calls have to go through objc_msgSend

Facilitates reverse-engineering

imp___picsymbolstubd__odbjc_release

re,
ri,

(fp)
sl

; objc_cls_ref _NSBundle, 083C_CLASS_S$_NSBundle, argument #1 for method imp___ picsymbolstubd__objc_msgSend

imp___picsymbolstubd__obdjc_msgSend

rl

r7

imp___picsymbolstub4__objc_retainAutoreleasedReturnValue
[sp, #0x100 + var_100]

rd,
r2,
r2,
2y
r2,
£3;
rs,

#0x410a
#0xd9
6

pc

ré

ré

@"Nessages sent by participants in this conversation are encrypted and %@ is Verified", :loweri6:{cfstring_|
@"Messages sent by participants in this conversation are encrypted and %@ is Verified", :upperl6:(cfstring |
argusent #2 for aethod imp___picsymbolstubd__odjc_msqSend

@"Messages sent by participants in this conversation are encrypted and %@ is Verified"

e e we we

imp___picsymbolstubd__objc_msgSend

r?,

r7

imo___picsymbolstub4__obic_retainAutoreleasedReturnValue
re, [sp, #0x102 + var_B8

ro,

rS

imp___picsymbolstubd__objc_release

ro,
ri,

[fpl
sl

; objc_cls_ref NSBundle, 0B8JC_CLASS_$_NSBundle, argument #1 for method imp___picsymbolstubd__objc_msgSend

imp___picsymbolstub4d__objc_msgSend

r7,

7

imp___picsymbolstud4__objc_retainAutorelecasedReturnValue

rd,
r2,
r2,
rl,
r2,
r3,
rs,

[sp, #0x100 + var_100)

20x40e6
#0xd9
ré

pc

r8

9

; @'This conversation cannot be encrypted, This may be the result an error i@ geo=location timitation",
; @'This conversation cannot be encrypted. This may be the result of an error or a geo-location limitation",
; argument #2 for method imp__ picsymbolstubd__odjc_msqgSend

; @'This conversation cannot be encrypted. This may be the result of an error or a geo~location limitation"

o
-

e 23.05.2025
— Mobile Hardware Security

e 06.06.2025
— Mobile Network Security

	Slide 1
	Slide 2: Outline
	Slide 3
	Slide 4: Application Security
	Slide 5: Application Security
	Slide 6
	Slide 7: App Files
	Slide 8: FairPlay DRM
	Slide 9: iOS Executables
	Slide 10: App Installation
	Slide 11
	Slide 12: Application Sandbox
	Slide 13: Recall: Mandatory Access Control (MACF)
	Slide 14: Sandbox.kext
	Slide 15
	Slide 16: Code Signing
	Slide 17: Entitlements
	Slide 18: Code Signatures
	Slide 19: Code Signatures
	Slide 20: Code Signature Enforcement
	Slide 21: AppleMobileFileIntegrity.kext (AMFI)
	Slide 22: AMFI Userspace Daemon (amfid)
	Slide 23: Entitlements Vulnerability (“Psychic Paper”)
	Slide 24
	Slide 25: Application Sideloading (Only in EU!)
	Slide 26: Distribution Options
	Slide 27: Provisioning Profiles
	Slide 28: Provisioning Profile
	Slide 29: Provisioning Profile
	Slide 30: Application Signing
	Slide 31: App Notarization vs. App Store Review
	Slide 32: Review / Notarization
	Slide 33: App Review Process
	Slide 34: App Review Process: Dynamic Analysis
	Slide 35: App Review Process: Static Analysis
	Slide 36: App Review Process: Manual Analysis
	Slide 37: iOS Privacy Features
	Slide 38: App Distribution: Future
	Slide 39
	Slide 40: iOS Permissions
	Slide 41: iOS Permissions
	Slide 42: iOS Cryptography APIs
	Slide 43: App Transport Security (ATS)
	Slide 44
	Slide 45: Malware?
	Slide 46: Wirelurker Malware (2014)
	Slide 47: XcodeGhost (2015)
	Slide 48: Pegasus (2016-now)
	Slide 49
	Slide 50: Jailbreak
	Slide 51: Jailbreak Variants
	Slide 52: Jailbreaking: General procedure
	Slide 53: From code execution to kernel
	Slide 54: Kernel Patching
	Slide 55: Full Jailbreak Writeup
	Slide 56
	Slide 57: Application Analysis
	Slide 58: Case Study: Viber
	Slide 59: Case Study: Viber
	Slide 60: Outlook

