ISEC flaTU

i0S Platform Security

Mobile Security 2025

Florian Draschbacher
florian.draschbacher@tugraz.at

Some slides based on material by Johannes Feichtner

Outline

e Low-level System Security
e Updates

e Encryption Systems

e Key Management & Passcodes

i0S Platform
Fundamentals

i0S Device Architecture

e The device is comprised of a main (ARM) CPU and several coprocessors

e Secure Enclave Processor (SEP)
— Separate processor for cryptographic operations
— Key storage, management, encryption / decryption
= Group ID (GID) key shared between SoC family
= Unique ID (UID) key generated by SEP at factory
— Securely paired to FacelD and TouchlID sensors

Picture: Google / Apache 2.0

e Secure Element
— Separate chip for Apple Pay and NFC

https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html

10S

e XNU Kernel Applications

— Added FreeBSD layer for POSIX compatibility
— IOKit device drivers

Services, Daemons

Hexley DarwinOS Mascot Copyright 2000 by Jon Hooper. All Rights Reserved.

— Shared with macOS BSD Layer
NSWelsale
— Open source! . File Systems
POSIX AP
MACF
e Userspace Mach Layer
: Scheduli
— Partly open-source (Darwin) Mceriofymg
— Frameworks (e.g. Cocoa Touch) -
— Daemons, Services, Programs, Apps A R
= launchd
= SpringBoard

T

Grazm

ISEC

Mandatory Access Control Framework (MACF)

e MAC extends Discretionary Access Control (DAC = file permissions)
e Various hooks scattered throughout syscall implementations in kernel

e Hooks call out to Policy Modules for checking if operation permitted

e Foundation for central iOS security features

— Code Signing Policy Module: AppleMobileFilelntegrity.kext
— Sandbox Policy Module: Sandbox.kext

Source: J_Levin *0S Internals’

Picture: Google / Apache 2.0

https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html
http://newosxbook.com/index.php

Low-Level
System Security

Secure Boot Chain (,iBoot Chain®)

LLB skipped on A10 SoC and later

v
SecureROM Low-Level : System .
a.k.a Boot ROM > Bootloader (LLB) IBoot Kenel _‘ Software _‘ Applieziions
Apple Root CA t —f > 3
On Failure
L, SEP and other coprocessors
Verify FW with their own burnt-in Root CA and BootROM

Device Firmware

Upgrade (DFU)

Mode

e ,Chain of Trust”
Each step ensures next step is signed by Apple
Burned into chip - Hierarchy reaches up to App Signing

Cannot be modified

e From LLB/iBoot to Applications - can be updated

Sources: J_Levin:*QS Internals’, apple com |SEC#T

Grazm

http://newosxbook.com/index.php
https://support.apple.com/en-za/guide/security/welcome/web

Secure Boot Chain

Starting with simple boot loader...

e Burnt into hardware: ,Hardware Root of Trust”
e Prevent tampering of lowest software levels

e Similar (separate) boot process for coprocessors
— Baseband processor (cellular access)
— Secure Enclave coprocessor
— Started by iBoot

- Error if load / verify next step failed
— Enter DFU (Recovery mode)

— Connect to iTunes and restore factory defaults

i0S Downgrades?

Apple prevents them using ,System Software Authorization“!
e Signatures alone would enable replay attacks

e Online process
— Device generates nonce (,anti-replay value®)
— Sends Exclusive Chip ID (ECID) + nonce to Apple server
— Apple generates signature for (OS image + ECID + nonce)
— Device checks if signature ok, nonce / ECID matches
— If fine: Install software

e Prevent installation of old OS images by revoking old signatures

Chip Fuse Mode (CPFM)

e A write-only register controls hardware debuggability
— Burned in factory, enforced by SecureROM

e Two flags: (Production/Development), (Secure/Insecure)

— Controls CPU and SEP strictness
e Apple-internal development devices:
— Development: Allow JTAG debug access for CPU
— Insecure: SEP JTAG + Booting unverified OS image

e |eaked “Dev-Fused” iPhones used by hackers
— Available from gray market

e 2020: Apple Security Research Device Program
— Only for high-profile security researchers

Sources: J L evin:*0S Internals’, vice.com Source: vicecom

Apple Internal Store @Applelnternalsh - 27 Sep 2019

E Genuine Kanzi SWD on sale for 3 days ONLY! $549 for Kanzi With Kanzi
firmware, $349 for SNR with Kanzi Firmware while supply last. Perfect tool
for @axiOmX ‘s bootRom Exploit

Sourece: twitter.com

The Prototype iPhones
That Hackers Use to
Research Apple’s Most
Sensitive Code

Very few people have heard of them, but "dev-fused" iPhones sold on
the grey market are one of the most important tools for the best iOS
hackers in the world.

March 6,2019,723pm] Share W Tweet J Snap

https://twitter.com/AppleInternalsh/status/1177634002288758785?s=20&t=pBh2MEN0AjvrW3WSlIQ-7A
https://www.vice.com/en/article/gyakgw/the-prototype-dev-fused-iphones-that-hackers-use-to-research-apple-zero-days
http://newosxbook.com/index.php
https://www.vice.com/en/article/gyakgw/the-prototype-dev-fused-iphones-that-hackers-use-to-research-apple-zero-days

Kanzi Cable

e®oe® M+ < > [)] @ theiphonewiki.com & ® m +
h | @ Kanzi Cable - The iPhone Wiki
Login
The Page | Discussion Read View source View history |Search The iPhone Wiki Q
iPhone
Wiki
Kanzi Cable
The Kanzi Cable is a JTAG/SWD Cable capable of debugging CPFM 00 or 01 devices (EVT and DVT
Main page devices) which have the Lightning port, using software called Astris. It can be connected to another
Community portal SWD debugger, using the SWD port, and it can also do UART/Serial. They can be purchased from
Current events obscure markets. There are two known types of the Kanzi cable. The normal version and a prototype
Recent changes version with PROTO etched to it.
Random page
Help
Uses
Miscellaneous
Ground rules Dumping the SecureROM

Timeline One use of the cable is dumping the SecureROM from devices. This can be done using commands .

Tools such as this& one. ANormal Kanzi Cable &
What links here g This hardware article is a "stub”, an incomplete page. Please add more content to this article and

Related changes ¥ remove this tag.

Special pages
Printable version

Freamenratiil Categories: Article stubs | Cables

Page information

This page was last edited on 10 January 2021, at 05:42.

. Privacy policy About The iPhone Wiki Disclaimers Powered by
. Display a menu MediaWiki
S

T

Grazm

Kong Cable

eoe M- < > 0 @ theiphonewiki.com < © M + O
N @ Kong Cable - The iPhone Wiki
Log in
The Page Discussion Read View source View history |Search The iPhone Wiki Q
iPhone
Wiki

Kong Cable

The Kong Cable is a JTAG/SWD Cable capable of debugging CPFM 00 or 01 devices (EVT and DVT
devices) which have the Lightning port, using software called Astris. It can do JTAG/SWD and

Main page

Community portal UART/Serial. They can be purchased from obscure markets.

Current events

Recent changes USGS

Random page

Help Dumping the SecureROM

Miscellansous One use of the cable is dumping the SecureROM from devices. This can be done using commands
Ground rules such as this@ one.

Timeline

g This hardware article is a "stub", an incomplete page. Please add more content to this article and
Tools ¥

* remove this tag.
What links here

Related changes

Special pages

Printable version A Kong Cable &
Permanent link

Page information .)
Categories: Article stubs | Cables

Display a menu This page was last edited on 10 January 2021, at 10:52.

T

Grazm

ISEC

onoho Cable

eoe M- < L))
G -

&‘ LambdaConcept

Home / Bonobo JTAG/SWD Debug Cable

OUT-OF-STOCK

-

shop.lambdaconcept.com

@ ¢ © h + O

@ Bonobo JTAG/SWD Debug Cable

BONOBO JTAG/SWD DEBUG CABLE
€749.00

Tax excluded

iPhone debugging requires proper tools.

The Bonobo cable connects to your target through Lightning and allows
CPU debugging through JTAG/SWD using OpenOCD + AArch64 GDB.
Among others, you can: access all CPUs and registers, single step, put
hardware breakpoints, dump memory, etc... Perfect for security
research.

The target serial console can be accessed on the control PC through
Minicom (iBoot prompt), as well as Lightning USB (For DFU, USB
exploitation, demote, etc.)

More Here

Demonstration:

¥8ROCD with-LambdaConcept.B... ~»
‘ e : Share

ISEC

T

Grazm

Tamarin Cable

— iPhone 4S through X
— Only AP fuse may be manipulated

e There is an open-source debug cable!
— Based on Raspberry Pi Pico
— Same functionality as Apple-internal tools

Wit

Sources: DEFCON 30: The Hitchhiker's Guide to iPhone [iahtning and JTAG Hacking

https://www.youtube.com/watch?v=7p_njRMqzrY

amarin-C Cable

eoe [{) - @‘ = x.com < Gy O ® @ -+ [E]
&
X Post New to X?
" . Sign up now to get your own personalized timeline!
& Settings stacksmashing § a
@ghidraninja

& sign up with Google
ljust published the code and hardware for Tamarin-C, the iPhone 15
USB-C exploration tool | presented at #37c3. & Sign up with Apple

github.com/stacksmashing/... radt .
reate accoun

By signing up, you agree to the Terms of Service and
Privacy Policy, including Cookie Use

£ a‘llb‘”':”’:f, £Y ANKER

LA RS Something went wrong. Try reloading.

| B Tamarin-C e
*

=
Terms of Service | Privacy Policy | Cookie Policy |

o0

Y

Accessibility Ads info More -« @ 2025 X Corp.

sy

o

0 @ ¥ @

Don’t miss what’s happening

People on X are the first to know.

T

Grazm

ISEC

Firmware Encryption

e Firmware is stored on the device in encrypted form
— Prevent analysis and reverse-engineering

— Decrypted during boot, using embedded key and IV
= Wrapped with GID key only available to SEP

- Access to SEP decryption needed for accessing raw firmware
— SecureROM exploit
— SEP exploit
— Dev-Fused device

Sources: J Levin *0S Internals’, theiphonew ki com

http://newosxbook.com/index.php
https://www.theiphonewiki.com/wiki/Firmware_Keys

axiOmX ~
6 @axi0mx
(]
J a I I b rea k EPIC JAILBREAK: Introducing checkm8 (read

"checkmate"), a permanent unpatchable bootrom
exploit for hundreds of millions of i0S devices.

® BOOt Chain iS an intereSting attaCk target Most generations of iPhones and iPads are vulnerable:
B . “ from iPhone 4S (A5 chip) to iPhone 8 and iPhone X
Cut the ,Chain of Trust (A11 chip).

— Modify subsequently loaded components

axi0mX/ipwndfu

open-source jailbreaking tool for many 105 devices -
axi0mX/ipwndfu

& github.com

— E.g. Remove code signature checks from kernel

1:15 PM - Sep 27, 2019 - Twitter Web Client

e Exploitsin LLB, iBoot or kernel
— Software patchfix possible!

7.3K Fetweets 16.4K Likes

O Q! V) a
axiOmX @axi0mX - Sep 27, 2019 e
. Replying to @axi0mX
o SeCU re RO M eXp I O ItS 1/ The last i0S device with a public bootrom exploit until today was iPhone

4, which was released in 2010. This is possibly the biggest news in i05
jailbreak community in years. | am releasing my exploit for free for the

— Can nOt be Updated 9 deploy neW ChipS benefit of i0S jailbreak and security research community.
— Checkm8 exploit published in 2019 o o e %

axiomX @axi0mx - Sep 27, 2019 e
2/ What | am releasing today is not a full jailbreak with Cydia, just an exploit.

Researchers and developers can use it to dump SecureROM, decrypt keybags
with AES engine, and demote the device to enable JTAG. You still need
additional hardware and software to use JTAG,

Source: twitter com Q9 1 203 ¢ sk e

https://twitter.com/axi0mX/status/1177542201670168576?s=20&t=yrhgGaVt9VBt3Sr90PhxvQ

Secure Enclave

Goals?
e Store and manage sensitive user data

— Data protection keys
— Biometric information (FacelD, TouchlID)

e Separate from main Application Processor (AP = CPU)
— Even privileged iOS exploits can not access key material

e Enforce strict security policies
— Prevent brute-force attacks
— Prevent offline attacks

Secure Enclave Processor (SEP)

Implementation

e Dedicated separate processor core within SoC running its own sepOS
e Transparently encrypted access to external RAM (shared with AP)
— Replay-protected authenticated encryption in hardware!
e AP has no access to SEP memory
e Mailbox interface for exposing services to AP

e Core primitives:
— Embedded GID and UID keys
— AES engine hardened against multiple side channel attacks
— Public Key Accelerator for asymmetric cryptography
— True Random Number Generator

Source: Mandt et al - ‘Demystifying the Secure Enclave Processor’, apple com

https://www.blackhat.com/docs/us-16/materials/us-16-Mandt-Demystifying-The-Secure-Enclave-Processor.pdf
https://support.apple.com/en-gb/guide/security/sec59b0b31ff/web

TouchiD

e Unlock device without having to enter passcode

— Passcode still required for first unlock after boot
= And 48 hours after last unlock

e Sensoris securely paired to SEP in factory
— Establishes a protected communication channel
— Sensor sends “hash” of fingerprint image to SEP

e Matching fingerprint unlocks access to user data
— Implemented in SEP

Source: lvan Krstic: "Behind the Scenes of [0S Security”

https://www.youtube.com/watch?v=BLGFriOKz6U

TouchlD (similar procedure also for FacelD)

How does it work?

e Interaction between two programs on SEP
— SKS: Secure Key Service

, , Encrypts user data on device
— SBIO: Secure Biometrics

1. On Code Unlock: SKS derives Master Key (MK) from passcode and UID key
1. SKS encrypts MK with Random Secret (RS) = Encrypted MK (EMK)
2. RS sentto SBIO, MK purged from SKS storage

2. 0On Touch Unlock:
1. SBIO obtains fingerprint hash from sensor and compares it to registered values
2. If match: Send RS to SKS
3. SKS can now decrypt the wrapped MK from the EMK again

Source: lvan Krstic (Apple) "Behind the Scenes of i0S Security” ISEC ﬂ-lgg.

https://www.youtube.com/watch?v=BLGFriOKz6U

Baseband Processor

e A separate chip sitting on the PCB
— Supplied by Intel or Qualcomm
— Communicates with AP via UART/12C/USB/SDIO
— Originally used AT commands, now more sophisticated binary protocols

e Manages the cellular communication
— Internet traffic, calls and messages
— Responsible for carrier lock

e Early versions could be exploited from AP
— No exploits from network side are known

Sources: J Levin *0S Internals’, theiphonewiki.com, I0S Security Guide

http://newosxbook.com/index.php
https://www.theiphonewiki.com/wiki/Baseband_Device
https://news.ycombinator.com/item?id=26094934

Encryption
Systems

I0S Data Encryption Systems

e File system encryption
— Alias: ,Full disk encryption®, ,Storage encryption”
— Introduced with iOS 3 and iPhone 3GS
— Keys were not dependent on passcode, so protection was very limited

e Data Protection
— Introduced with iOS 4 (2010)
— Encrypts individual files
— Improved in newer version (new Protection classes, KeyChain features)

Data Protection

e Upon file creation, a fresh file encryption key is generated 0—’
e The key is wrapped with 1 of 4 class keys of varying protection

— Wrapped key and class stored in file metadata
e Class keys are wrapped with SEP UID key and/or user passcode

Benefits

e Passcode strength alone depends on user choice

— Brute-force attacks (offline = on desoldered NAND chip)
e Combined with UID key that never leaves SEP

— Brute-force attacks have to be carried out on-device!

— Enforce security policy in SEP
= Max attempts, delays, ...

Sources: J evin*0S Internals’

http://newosxbook.com/index.php

Data Protection

Change file class? Just rewrap file key!
Change passcode? Just rewrap class key!

Hardware Key
File Metadata

Class Key File Contents

Passcode Key

Hint: To keep it simple... read from right to left ;)

Source: I0S Security Guide (Q2 /2019)

Picture: Google / Apache 2.0

https://github.com/0xmachos/iOS-Security-Guides
https://fonts.google.com/icons
https://www.apache.org/licenses/LICENSE-2.0.html

Data Protection Classes (a.ka.,User Keybag Classes")

Class Class Key Wrapping Class Name

A Passcode + UID NSFileProtectionComplete

Can only be accessed while device is unlocked

B Special Case NSFileProtectionCompleteUnlessOpen

Asymmetric Key Pair: Public key always available, Private key only while unlocked (*)

C Passcode + UID NSFileProtectionCompleteUntilFirstUserAuthentication

Only accessible after user authenticated once (since last boot)

D UID Only NSFileProtectionNone

Always accessible

(*) Exception for file descriptors acquired already while device unlocked

T

Grazm

Sources: J_Levin: "*0OS Internals’, lvan Krstic (Apple) “Behind the Scenes of i0S Security” ISEC

http://newosxbook.com/index.php
https://www.youtube.com/watch?v=BLGFriOKz6U

Data Protection: Implementation

What happens behind the scenes?

e Passcode-dependant Class keys stored in an encrypted file in device storage
-, System Key Bag”“ file

e Upon boot:
— SEP loads and decrypts Class D key from Flash (using UID key)

— System Key Bag sent to SEP, where the class B public key is unwrapped
— Unwrapped Class Keys are stored in SKS Key Ring in SEP
e Upon unlock:

— Remaining class keys unwrapped using Master Key (derived from passcode and UID key)
e Upon lock:

— Class A and Class B private key removed from SKS Key Ring

Source: lvan Krstic (Apple) "Behind the Scenes of i0S Security” ISEC ﬂ-l(_:g.

https://www.youtube.com/watch?v=BLGFriOKz6U

Data Protection: Storage Controller

e Hardware assists in hiding class and file keys from AP

e At boot: SEP generates ephemeral key and sends it to the Storage Controller

e File access:

— Kernel fetches wrapped file key from metadata and sends it to SEP

— SEP unwraps key using corresponding class key

— Rewraps it using ephemeral key and returns result to kernel

— Kernel sends rewrapped key to Storage Controller to retrieve Flash content

Kernel never gets access to any secret of long-term value!

Ephemerally wrapped key is only valid until reboot

Source: lvan Krstic (Apple) "Behind the Scenes of i0S Security”

https://www.youtube.com/watch?v=BLGFriOKz6U

Data Protection — Where is the problem?

Every new file gets assigned a protection class by an app (!)
— Handled by the developer!

— User cannot know which apps encrypt their data (while locked) and which do not

Consider the scenario

— Getting email with PDF attachment (mail app uses data protection Class A)
— Opening the mail in a PDF reader (using data protection Class D)

—> Application Analysis
Dynamic approach: Monitor live file access using jailbroken device
Static approach: Look for file API calls + parameters in binary dump

Data Protection - In Practice

let fileManager = FileManager.default

fileManager.createDirectory(atPath: folder.path, withIntermediateDirectories:

attributes: [FileAttributeKey.protectionKey: FileProtectionType.complete])

fileManager.createFile(atPath: databaseKeyURL.path, contents: nil,
attributes: [FileAttributeKey.protectionKey: FileProtectionType.complete])

let data = Data(count: count)
data.write(to: fullCachePath, options: [.atomic, .completeFileProtection])

Since iOS 7 default protection class: ,Protected until first user authentication”

ISECHiiaT

true,

U

razm

Effaceable Storage

A section of the Flash storage that can be completely erased

e Note that the process displayed so far is still simplified!

e Complete file system is also encrypted using key stored in effaceable storage
— “Media Key"

— Similar to legacy Full Disk Encryption (FDE)
— Protects file metadata

e System Key Bag file additionally encrypted with key from effaceable storage
— Yet another key

Source: lvan Krstic (Apple) "Behind the Scenes of i0S Security” ISEC ﬂ-lgg.

https://www.youtube.com/watch?v=BLGFriOKz6U

File System Encryption - Remote Wipe

From the Apple Platform Security Guide (Q1 /2021):

The metadata of all files in the data volume file system are encrypted with a random
volume key, which is created when the operating system is first installed or when the
device is wiped by a user ... When stored, the encrypted file system key is additionally

wrapped by an “effaceable key” ... This key doesn’t provide additional confidentiality of
data. Instead, it’s designed to be gquickly erased on demand (by the user with the “Erase

All Content and Settings” option, or by a user or administrator issuing a remote wipe

command from a mobile device management (MDM) solution, Microsoft Exchange ActiveSync, or

iCloud). Erasing the key in this manner renders all files cryptographically inaccessible.

—> Erase the file system key to avoid further access to any file!

- Remote Wipe does not actually delete the file... y

razm

ISECHiiaT

Key Management
& Passcodes

i0S KeyChain

What for?
Mobile OS needs to handle passwords, login tokens, PINs, certificates, etc

What does it look like?

e 1 SQLite database stored on file system

e Entries can be shared between apps from same developer (app group)
e Access from apps using ordinary API

e Protection classes similar to those for files

Side note:
Uninstalling an app does not remove KeyChain data!

Sources: J_Levin-*0S Internals’, Apple Platform Security Guide (Q2 / 2021)

http://newosxbook.com/index.php
https://support.apple.com/en-gb/guide/security/secb0694df1a/1/web/1

i0S KeyChain Items .

[KeyChain

Every entry has...

e Access control list (ACL)

Key wrapped with protection class key,
Protection class affiliation

Attributes describing the entry

Version number Secret Value

Secret Value

- Every aspect is encrypted (AES-256 GCM)!
E.g. also usernames (= attribute), not only passwords! _ Y,

a Per-Row Secret Key
a Metadata key

Source: Apple Platform Security Guide (Q2 / 2021) ISEC#I&L

https://support.apple.com/en-gb/guide/security/secb0694df1a/1/web/1

i0S KeyChain Access Control

Every entry has an Access Control List (ACL) specifying

e Accessibility
— When is item readable?
— Similar to protection class for Data Protection

e Authentication
— What authentication is needed for access?

— Confirm user presence through TouchlID, FacelD, passcode
— Ensure TouchlID or FacelD enrollment unchanged since entry stored

Source: Apple Platform Security Guide (Q2 /2021)

https://support.apple.com/en-gb/guide/security/secb0694df1a/1/web/1

KeyChain Protection Classes

Secret Availability Keychain Data Protection

When unlocked kSecAttrAccessibleWhenUnlocked

Protected by user passcode and SEP UID key

After first unlock kSecAttrAccessibleAfterFirstUnlock

Suitable e.qg. for apps that refresh data even while device is locked

Always kSecAttrAccessibleAlways
Only protected by SEP UID key

Passcode-enabled kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly

Same as When unlocked, except unavailable if no passcode configured

T

Grazm

Source: Apple Platform Security Guide (Q2 / 2021) ISEC

https://support.apple.com/en-gb/guide/security/secb0694df1a/1/web/1

i0S KeyChain: App Access Workflow

Application securityd SEP

I—P KeyChain file Request user auth

Via Kernel

Encrypted Entry S

Secret Secret

T

Grazm

Sources: J_Levin *0S Internals’, Apple Platform Security Guide (Q2 / 2021) |SEC

http://newosxbook.com/index.php
https://support.apple.com/en-gb/guide/security/secb0694df1a/1/web/1

e 16.05.2025
— i0S Application Security

e 23.05.2025
— Mobile Hardware Security

	Slide 1
	Slide 2: Outline
	Slide 3
	Slide 4: iOS Device Architecture
	Slide 5: iOS
	Slide 6: Mandatory Access Control Framework (MACF)
	Slide 7
	Slide 8: Secure Boot Chain („iBoot Chain“)
	Slide 9: Secure Boot Chain
	Slide 10: iOS Downgrades?
	Slide 11: Chip Fuse Mode (CPFM)
	Slide 12: Kanzi Cable
	Slide 13: Kong Cable
	Slide 14: Bonobo Cable
	Slide 15: Tamarin Cable
	Slide 16: Tamarin-C Cable
	Slide 17: Firmware Encryption
	Slide 18: Jailbreak
	Slide 19: Secure Enclave
	Slide 20: Secure Enclave Processor (SEP)
	Slide 21: TouchID
	Slide 22: TouchID (similar procedure also for FaceID)
	Slide 23: Baseband Processor
	Slide 24
	Slide 25: iOS Data Encryption Systems
	Slide 26: Data Protection
	Slide 27: Data Protection
	Slide 28: Data Protection Classes (a.k.a. „User Keybag Classes“)
	Slide 29: Data Protection: Implementation
	Slide 30: Data Protection: Storage Controller
	Slide 31: Data Protection – Where is the problem?
	Slide 32: Data Protection – In Practice
	Slide 33: Effaceable Storage
	Slide 34: File System Encryption – Remote Wipe
	Slide 35
	Slide 36: iOS KeyChain
	Slide 37: iOS KeyChain Items
	Slide 38: iOS KeyChain Access Control
	Slide 39: KeyChain Protection Classes
	Slide 40: iOS KeyChain: App Access Workflow
	Slide 41: iOS Platform Security
	Slide 42: Outlook

